• Daejoong KimEmail author
  • Kilsung Kwon
  • Deok Han Kim
  • Longnan Li
Part of the SpringerBriefs in Applied Sciences and Technology book series (BRIEFSAPPLSCIENCES)


This book comprises six main parts: evaluation of basic parameters (e.g., inlet flow rate and compartment thickness), effect on a spacer open ratio, comparison of a power generation with combinations of various resources, brine recovery in membrane-based desalination processes, a study on predesalination and chemical energy recover in reverse osmosis (RO), and investigation of ammonium bicarbonate solutions. This chapter first introduces salinity gradient energy (SGE), followed by the basics of reverse electrodialysis (RED). Also, the scope for this book is included.


  1. P. Długołecki, K. Nijmeijer, S. Metz, M. Wessling, Current status of ion exchange membranes for power generation from salinity gradients. J. Membr. Sci. 319, 214–222 (2008)CrossRefGoogle Scholar
  2. P. Długołecki, J. Dabrowska, K. Nijmeijer, M. Wessling, Ion conductive spacers for increased power generation in reverse electrodialysis. J. Membr. Sci. 347, 101–107 (2010)CrossRefGoogle Scholar
  3. E. Güler, Y. Zhang, M. Saakes, K. Nijmeijer, Tailor-made anion exchange membranes for salinity gradient power generation using reverse electrodialysis. Chemsuschem 5, 2262–2270 (2012)CrossRefGoogle Scholar
  4. E. Güler, R. Elizen, D.A. Vermaas, M. Saakes, K. Nijmeijer, Performance-determining membrane properties in reverse electrodialysis. J. Membr. Sci. 446, 266–276 (2013)CrossRefGoogle Scholar
  5. E. Güler, R. Elizen, M. Saakes, K. Nijmeijer, Micro-structured membranes for electricity generation by reverse electrodialysis. J. Membr. Sci. 458, 136–148 (2014)CrossRefGoogle Scholar
  6. L. Gurreri, M. Ciofalo, A. Cipollina, A. Tamburini, W. van Baak, G. Micale, CFD modelling of profiled-membrane channels for reverse electrodialysis. Desalin. Water Treat. 55, 3404–3423 (2015)Google Scholar
  7. L. Gurreri, A. Tamburini, A. Cipollina, M. Micale, M. Ciofalo, Flow and mass transfer in spacer-filled channels for reverse electrodialysis: a CFD parametric study. J. Membr. Sci. 497, 300–317 (2016)CrossRefGoogle Scholar
  8. K. Kwon, J. Han, B.H. Park, Y. Shin, D. Kim, Brine recovery using reverse electrodialysis in membrane-based desalination processes. Desalination 362, 1–10 (2015)CrossRefGoogle Scholar
  9. M.S. Lee, H.K. Kim, C.S. Kim, H.Y. Suh, K.S. Nahm, Y.W. Choi, Thin pore-filled ion exchange membranes for high power density in reverse electrodialysis: effects of structure on resistance, stability, and ion selectivity. Chemistry 2, 1974–1978 (2017)Google Scholar
  10. S. Pawlowski, J. Crespo, S. Velizarov, (2015) Sustainable power generation from salinity gradient energy by reverse electrodialysis, in Electrokinetics Across Disciplines and Continents: New Strategies for Sustainable Development, ed. by A.B. Ribeiro, E.P. Mateus, N. Couto (Springer International Publishing, 2015)Google Scholar
  11. S. Pawlowski, T. Rijnaarts, M. Saakes, K. Nijmeijer, J.G. Crespo, S. Velizarov, Improved fluid mixing and power density in reverse electrodialysis stacks with chevron-profiled membranes. J. Membr. Sci. 531, 111–121 (2017)CrossRefGoogle Scholar
  12. J. Ran, L. Wu, Z. Yang, Y. Wang, C. Jiang, L. Ge, E. Bakangura, T. Xu, Ion exchange membranes: new development and applications. J. Membr. Sci. 522, 267–291 (2017)CrossRefGoogle Scholar
  13. J. Schwinge, D.E. Wiley, D.F. Fletcher, Simulation of the flow around spacer filaments between narrow channel walls. 1. Hydrodynamics. Ind. Eng. Chem. Res. 41, 2977–2987 (2002a)CrossRefGoogle Scholar
  14. J. Schwinge, D.E. Wiley, D.F. Fletcher, Simulation of the flow around spacer filaments between channel walls. 2. Mass-transfer enhancement. Ind. Eng. Chem. Res. 41, 4879–4888 (2002b)CrossRefGoogle Scholar
  15. J. Veerman, D.A. Vermas, Reverse electrodialysis: fundamentals, in Sustainable Energy from Salinity Gradients, ed. by A. Cipollina, G. Micale (Woodhead Publishing, 2016)Google Scholar
  16. J. Veerman, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse electrodialysis: performance of a stack with 50 cells on the mixing of sea and river water. J. Membr. Sci. 327, 136–144 (2009a)CrossRefGoogle Scholar
  17. J. Veerman, R.M. de Jong, M. Saakes, S.J. Metz, G.J. Harmsen, Reverse electrodialysis: comparison of six commercial membrane pairs on the thermodynamic efficiency and power density. J. Membr. Sci. 343, 7–15 (2009b)CrossRefGoogle Scholar
  18. D.A. Vermaas, M. Saakes, K. Nijimeijer, Doubled power density from salinity gradient at reduced intermembrane distance. Environ. Sci. Technol. 45, 7089–7095 (2011a)CrossRefGoogle Scholar
  19. D.A. Vermaas, M. Saakes, K. Nijimeijer, Power generation profiled membranes in reverse electrodialysis. J. Membr. Sci. 385–386, 234–242 (2011b)CrossRefGoogle Scholar

Copyright information

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Daejoong Kim
    • 1
    Email author
  • Kilsung Kwon
    • 2
  • Deok Han Kim
    • 1
  • Longnan Li
    • 1
  1. 1.Department of Mechanical EngineeringSogang UniversitySeoulKorea (Republic of)
  2. 2.Korea Atomic Energy Research InstituteSeoulKorea (Republic of)

Personalised recommendations