Symbiotic Tripartism in the Model Plant Family of Legumes and Soil Sustainability

  • Vinod Vijayakumar


The demands of feeding a world population are expected to double by 2050. This is because 2.5 billion will be added to the urban population alone. This massive undertaking has posed many challenges toward agricultural productivity and increase in food quality, quantity, and production of protein-rich crops, but on the other hand, modern aggressive agricultural practices have rendered the current acreage of arable land and soil unsustainable to meet the demands of sustainable cropping systems. However, the beneficial role of legumes in cropping systems such as symbiotic nitrogen fixation, intercropping, and rotation of legumes with cereals offers credible potential for providing economically sustainable advantages for farming. The inherent capacity of legumes to form symbiotic associations with biological nitrogen-fixing (BNF) rhizobia and phosphorus-acquiring arbuscular mycorrhizal fungi (AMF), i.e., symbiotic tripartism, further advocates the use of legumes as cover crops, increasing soil fertility, rhizospheric processes, and sustainable (food/oil) crop production. Furthermore, it is estimated that BNF of legumes contribute to five to seven times less greenhouse gas (GHG) emissions per unit area compared to other crops, in addition to estimates of total global BNF of 122 T gN/year (=million tons of N), while AMF play a critical role in global carbon cycle, with estimates of the amount of total C fixed to be up to 20% which is c. 5 T PgC/year (=billion tons of C). In view of this importance of symbiotic tripartism in natural and managed ecosystems, this chapter emphasizes the genetic and symbiotic feature(s) of legumes in large-scale community and global food security programs and soil sustainability and management.


Arbuscular mycorrhizal symbiosis Common symbiosis pathway Dual inoculation Legume-rhizobia symbiosis Plant mineral nutrition Rhizosphere 



Arbuscular mycorrhizal symbiosis


Common SYM pathway






Root nodule symbiosis


Soil organic matter


  1. Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827PubMedCrossRefPubMedCentralGoogle Scholar
  2. Anand SS, Hawkes C, de Souza RJ, Mente A, Dehghan M, Nugent R, Zulyniak MA, Weis T, Bernstein AM, Krauss RM, Kromhout D, Jenkins DJA, Malik V, Martinez-Gonzalez MA, Mozaffarian D, Yusuf S, Willett WC, Popkin BM (2015) Food consumption and its impact on cardiovascular disease: importance of solutions focused on the globalized food system. J Am Coll Cardiol 66:1590–1514PubMedPubMedCentralCrossRefGoogle Scholar
  3. Anglade J, Medina MR, Billen G, Garnier J (2016) Organic market gardening around the Paris agglomeration: agro-environmental performance and capacity to meet urban requirements. Environ Sci Pollut Res.
  4. Bai B, Suri VK, Kumar A, Choudhary AK (2016) Influence of dual inoculation of AM fungi and Rhizobium on growth indices, production economics, and nutrient use efficiencies in garden pea (Pisum sativum L.). Commun Soil Sci Plant Anal 47:941–954CrossRefGoogle Scholar
  5. Beniston JW, Lal R(2012) Improving soil quality for urban agriculture in the north central U.S. in carbon sequestration in urban ecosystems, Lal R, Augustin B (eds). Springer, Dordrecht, pp 279–314Google Scholar
  6. Beniston JW, Lal R, Mercer KL (2016) Assessing and managing soil quality for urban agriculture in a degraded vacant lot soil. Land Degrad Develop 27:996–1006CrossRefGoogle Scholar
  7. Berg G (2009) Plant–microbe interactions promoting plant growth and health: perspectives for controlled use of microorganisms in agriculture. Appl Microbiol Biotechnol 84:11–18PubMedCrossRefPubMedCentralGoogle Scholar
  8. Beringer JE, Brewin N, Johnston AWB, Schulman HM, Hopwood DA (1979) The rhizogium-legume symbiosis. Proc R Soc Lond 204:219–233PubMedCrossRefPubMedCentralGoogle Scholar
  9. Besserer A, Puech-Pages V, Kiefer P, Gomex-Roldan V, Becard G, Sejalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4: 1239–1247CrossRefGoogle Scholar
  10. Bhattacharjee S, Sharma GD (2012) Effect of dual inoculation of arbuscular mycorrhiza and Rhizobium on the chlorophyll, nitrogen and phosphorus contents of pigeon pea (Cajanus cajan L.). Adv Microbiol 2:561–564CrossRefGoogle Scholar
  11. Bonfante P, Genre A (2010) Mechanisms underlying beneficial plant-fungus interactions in mycorrhizal symbiosis. Nat Commun 1:48PubMedCrossRefGoogle Scholar
  12. Brevik EC (2013) The potential impact of climate change on soil properties and processes and corresponding influence on food security. Agriculture 3:398–317CrossRefGoogle Scholar
  13. Brevik EC, Sauer TJ (2015) The past, present, and future of soils and human health studies. Soil 1:35–46CrossRefGoogle Scholar
  14. Brewin NJ (2010) Root nodules (Legume–Rhizobium Symbiosis). eLS.
  15. Brown LK, George TS, Dupuy LX, White PJ (2013) A conceptual model of root hair ideotypes for future agricultural environments: what combination of traits should be targeted to cope with limited P availability? Ann Bot 112:317–330PubMedCrossRefGoogle Scholar
  16. Brundrett MC (2002) Coevolution of roots and mycorrhizas of land plants. New Phytol 154:275–304CrossRefGoogle Scholar
  17. Bucher M (2007) Functional biology of plant phosphate uptake at root and mycorrhiza interfaces. New Phytol 173:11–26PubMedCrossRefGoogle Scholar
  18. Bucher M, Hause B, Krajinski F, Kuester F (2014) Through the doors of perception to function in arbuscular mycorrhizal symbioses. New Phytol 204:833–840PubMedCrossRefGoogle Scholar
  19. Busari MA, Kukal SS, Kaur A, Bhatt R, Dulazi AA (2015) Conservation tillage impacts on soil, crop and the environment. Int Soil Water Conserv Res 3:119–129CrossRefGoogle Scholar
  20. Chapelle E, Mendes R, Bakker PA, Raaijmakers JM (2016) Fungal invasion of the rhizosphere microbiome. ISME J 10:265–268PubMedCrossRefGoogle Scholar
  21. Chen X, Cui Z, Vitousek PM, Cassman KG, Matson PA, Romheld V, Zhang F (2011) Integrated soil-crop system management for food security. Proc Natl Acad Sci 108:6399–6404PubMedCrossRefGoogle Scholar
  22. Clarke VC, Loughlin PC, Day DA, Smith PMC (2014) Transport processes of the legume symbiosome membrane. Front Plant Sci 5:699PubMedPubMedCentralCrossRefGoogle Scholar
  23. Courty PE, Smith P, Koegel S, Redecker D, Wipf D (2015) Inorganic nitrogen uptake and transport in beneficial plant root-microbe interactions. CRC Crit Rev Plant Sci 34:4–16CrossRefGoogle Scholar
  24. D’Haeze W, Holsters M (2002) Nod factor structures, responses and perception during initiation of nodule development. Glycobiology 12:79–805CrossRefGoogle Scholar
  25. de Souza RG, da Silva DKA, de Mello CMA, Goto BT, da Silva FSB, Sampaino EVSB, Maia LC (2013) Arbuscular mycorrhizal fungi in revegetated mined dunes. Land Degrad Develop 24:147–155CrossRefGoogle Scholar
  26. Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Leg res 39(4):590–594Google Scholar
  27. Ding X, Zhang S, Wang R, Li S, Liao X (2016) AM fungi and rhizobium regulate nodule growth, phosphorous (P) uptake, and soluble sugar concentration of soybeans experiencing P deficiency. J Plant Nutr 39:1915–1925CrossRefGoogle Scholar
  28. Endre G, Kerszt A, Kevei Z, Milhacea S, Kalo P, Kiss GB (2002) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966PubMedCrossRefGoogle Scholar
  29. Ercolin F, Reinhardt D (2011) Successful joint ventures of plants: arbuscular mycorrhiza and beyond. Trends Plant Sci 16:356–362PubMedCrossRefGoogle Scholar
  30. Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1:636–639CrossRefGoogle Scholar
  31. Fellbaum CR, Gachomo EW, Beesetty Y, Choudhari S, Kiers ET, Bueking H (2012) Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 109:2666–2671PubMedPubMedCentralCrossRefGoogle Scholar
  32. Foyer CH, Lam HM, Nguyen HT, Siddique KH, Varshney RK, Colmer TD, Cowling W, Valliyodan B, Considine MJ (2016) Neglecting legumes has compromised human health and sustainable food production. Nat Plants 2:16112PubMedCrossRefGoogle Scholar
  33. Franzini VI, Azcon R, Mendes FL, Aroca R (2010) Interactions between Glomus species and Rhizobium strains affect the nutritional physiology of drought-stressed legume hosts. J Plant Physiol 167:614–619PubMedCrossRefGoogle Scholar
  34. Galloway JN, Aber JD, Erisman JW, Seitzinger SP, Howarth RW, Cowling EB, Cosby BJ (2003) The nitrogen cascade. Bioscience 53:341–356CrossRefGoogle Scholar
  35. Gao X, Lu X, Wu M, Zhang H, Pan R, Tian J, Li S, Liao H (2012) Co-inoculation with rhizobia and AMF inhibited soybean red crown rot: from field study to plant defense- related gene expression analysis. PLoS One 7:e33977PubMedPubMedCentralCrossRefGoogle Scholar
  36. Genre A, Russo G (2016) Does a common pathway transduce symbiotic signals in plant–microbe interactions? Front Plant Sci 7:96PubMedPubMedCentralCrossRefGoogle Scholar
  37. Geurts R, Xiao TT, Reinhold-Hurek B (2016) What does it take to evolve a nitrogen-fixing endosymbiosis? Trends Plant Sci 21:199–208PubMedCrossRefPubMedCentralGoogle Scholar
  38. Giehl RFH, von Wiren N (2014) Root nutrient foraging. Plant Physiol 166:509–517PubMedPubMedCentralCrossRefGoogle Scholar
  39. Gleason C, Chaudhuri S, Yang T, Munoz A, Poovaiah BW, Oldroyd GED (2006) Nodulation independent of rhizobia induced by a calcium-activated kinase lacking autoinhibition. Nature 441:1149–1152PubMedCrossRefPubMedCentralGoogle Scholar
  40. Gobbato E (2015) Recent development in arbuscular mycorrhizal signaling. Curr Opin Plant Biol 26:1–7PubMedCrossRefGoogle Scholar
  41. Gobbato E, Marsh JF, Vernie T, Wang E, Maillet F, Kim J, Miller JB, Sun J, Bano SA, Ratet P (2012) GRAS-type transcription factor with a specific function in mycorrhizal signaling. Curr Biol 22:2236–2241PubMedCrossRefGoogle Scholar
  42. Guissou T (2009) Contribution of arbuscular mycorrhizal fungi to growth and nutrient uptake by jujube and tamarind seedlings in a phosphate (P-) deficient soil. Afr J Microbiol Res 3:297–204Google Scholar
  43. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192PubMedCrossRefGoogle Scholar
  44. Hartman K, van der Heijden MGA, Roussely-Provent V, Valser JC, Schlaeppi K (2017) Deciphering composition and function of the root microbiome of a legume plant. Microbiome 5:2PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hause B, Schaarschmidt S (2009) The role of jasmonates in mutualistic symbioses between plants and soil-born microorganisms. Phytochemistry 70:1589–1599PubMedCrossRefGoogle Scholar
  46. Herridge DF, Peoples MB, Boddey RM (2008) Global inputs of biological nitrogen fixation in agricultural systems. Plant Soil 311:1–18CrossRefGoogle Scholar
  47. Holmer R, Rutten L, Kohlen W, van Velzen R, Geurts R (2017) Commonalities in symbiotic plant-microbe signaling. Adv Bot Res 82. ISSN 0065-2296Google Scholar
  48. Ianneta PP, Young M, Bachinger J, Bergkvist G, Doltra J, Lopez-Bellido RJ, Monti M, Pappa VA, Reckling M, Topp CF, Walker RL, Rees RM, Watson CA, James EK, Squire GR, Begg GS (2016) Comparative nitrogen balance and productivity analysis of legume and non-legume supported cropping systems: the potential role of biological nitrogen fixation. Front Plant Sci 7:1700Google Scholar
  49. Ibiang YB, Mitsumoto H, Sakamoto K (2017) Bradyrhizobia and arbuscular mycorrhizal fungi modulate manganese, iron, phosphorus, and polyphenols in soybean (Glycine max (L.) Merr.) under excess zinc. Environ Exp Bot 137:1–13CrossRefGoogle Scholar
  50. Imaizumi-Anraku H, Takeda N, Charpentier M, Perry J, Parniske M, Hayashi M (2005) Plastid proteins crucial for symbiotic fungal and bacterial entry into plant roots. Nature 433:527–531PubMedCrossRefGoogle Scholar
  51. Islam R, Reeder R (2014) No-till and conservation agriculture in the United States: an example from the David Brandt farm, Carroll, Ohio. Int Soil Water Conserv Res 2:97–07CrossRefGoogle Scholar
  52. Jackson LE, Burger M, Cavagnaro TR (2008) Roots, nitrogen transformations, and ecosystem services. Annu Rev Plant Biol 59:341–363PubMedCrossRefPubMedCentralGoogle Scholar
  53. Javot H, Pumplin N, Harrison MJ (2007) Phosphate in the arbuscular mycorrhizal symbiosis: transport properties and regulatory roles. Plant Cell Environ 30:310–322PubMedCrossRefPubMedCentralGoogle Scholar
  54. Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–1175PubMedCrossRefGoogle Scholar
  55. Johnson NC, Graham JH, Smith FA (1997) Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol 135:575–585CrossRefGoogle Scholar
  56. Kamel L, Keller-Pearson M, Roux C, Ane JM (2016) Biology and evolution of arbuscular mycorrhizal symbiosis in the light of genomics. New Phytol 213:531–536PubMedCrossRefGoogle Scholar
  57. Kanamori N, Madsen LH, Radutoiu S, Frantescu M, Esben MHQ, Miwa H, Downie JA, James EK, Felle HH, Haaning LL, Jensen TH, Sato S, Nakamura Y, Tabata S, Sandal N, Stougaard J (2006) Anucleoporin is required for induction of Ca2+ spiking in legume nodule development and essential for rhizobial and fungal symbiosis. Proc Natl Acad Sci U S A 103:359–364PubMedPubMedCentralCrossRefGoogle Scholar
  58. Kaur S, Aggarwal R, Lal R (2016) Assessment and mitigation of greenhouse gas emissions from ground water irrigation. Irrig and Drain 65:762–770CrossRefGoogle Scholar
  59. Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Jansa J, Bucking H (2011) Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333:880–882PubMedCrossRefGoogle Scholar
  60. Kouris-Blazos A, Belski R (2016) Health benefits of legumes and pulses with a focus on Australian sweet lupins. Asia Pac J Clin Nutr 25:1–17PubMedGoogle Scholar
  61. Lal R (2012) Climate change and soil degradation mitigation by sustainable management of soils and other natural resources. Agric Res 1:199–212CrossRefGoogle Scholar
  62. Lalitha S, Rajeshwaran K, Senthil kumar P, Kumar S (2011) Role of AM fungi and rhizobial inoculation for reclamation of phosphorus deficient soil. Asian J Plant Sci 10:227–232CrossRefGoogle Scholar
  63. Lambers H, Raven JA, Shaver GR, Smith SE (2008) Plant nutrient-acquisition strategies change with soil age. Trends Ecol Evol 23:95–103PubMedCrossRefGoogle Scholar
  64. Lavin M, Herendeen PS, Wojciechowski MF (2005) Evolutionary rates analysis of Leguminosae implicates a rapid diversification of lineages during the tertiary. Syst Biol 54:574–594CrossRefGoogle Scholar
  65. Levy J, Bres C, Geurts R, Chalhoub B, Rosenberg C, Debelle F (2004) A putative Ca2+ and calmodulin-dependent protein kinase required for bacterial and fungal symbioses. Science 303:1361–1364PubMedCrossRefGoogle Scholar
  66. Liu C-W, Murray JD (2016) The role of flavonoids in nodulation host-range specificity: an update. Plants 5:33PubMedCentralCrossRefPubMedGoogle Scholar
  67. Liu R, Lal R (2014) Synthetic apatite nanoparticles as a phosphorus fertilizer for soybean (Glycine max). Sci Rep 4:5686PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lu C, Tian H (2017) Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth Syst Sci Data 9:181–192CrossRefGoogle Scholar
  69. Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175–1178PubMedCrossRefGoogle Scholar
  70. Maillet F, Poinsot V, Andre O, Puech-Pages V, Becard G, Denarie J (2011) Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–64PubMedCrossRefGoogle Scholar
  71. Martin F, Aerts A, Ahren D, Brun A, Danchin EG, Duchaussoy F, Tunlid A, Tuskan G, Grigoriev IV (2008) The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452:88–92PubMedCrossRefGoogle Scholar
  72. Marzban Z, Faryabi E, Torabian Z (2017) Effects of arbuscular mycorrhizal fungi and Rhizobium on ion content and root characteristics of green bean and maize under intercropping. Acta Agric Slov 109:79–88CrossRefGoogle Scholar
  73. Masclaux-Daubresse C, Daniele-Vedele F, Dechorgnat J, Chardon F, Gaufichon L, Suzuki A (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot 105:1141–1157PubMedPubMedCentralCrossRefGoogle Scholar
  74. Matson PA, Vitousek PM (2006) Agricultural intensification: will land spared from farming be land spared for nature? Conserv Biol 20:709–710PubMedCrossRefPubMedCentralGoogle Scholar
  75. McCauley A, Jones C, Jacobsen J (2011) Plant nutrient functions and deficiency and toxicity symptoms. Nutrient management module no. 9, CCA 1.5 NM CEUGoogle Scholar
  76. McNear DH Jr (2013) The rhizosphere – roots, soil and everything in between. Nat Educ Knowl 4:1Google Scholar
  77. Meena RS, Gogaoi N, Kumar S (2017a) Alarming issues on agricultural crop production and environmental stresses. J Clean Prod 142:3357–3359CrossRefGoogle Scholar
  78. Meena RS, Meena PD, Yadav GS, Yadav SS (2017) Phosphate solubilizing microorganisms, principles and application of microphostechnology. J Clean Prod 145:157–158CrossRefGoogle Scholar
  79. Meena RS, Vijayakumar V, Yadav GS, Mitran T (2018) Response and interaction of Bradyrhizobium japonicum and Arbuscular mycorrhizal fungi in the soybean rhizosphere. A Rev Plant Growth Regul 84:207–223CrossRefGoogle Scholar
  80. Mendes LW, Kuramee EE, Navarrete AA, van Veen JA, Tsai SM (2014) Taxonomical and functional microbial community selection in soybean rhizosphere. ISME J 8:1577–1587PubMedPubMedCentralCrossRefGoogle Scholar
  81. Mendes R, Garbeva P, Raaijmakers JM (2013) The rhizosphere microbiome: significance of plant beneficial, plant pathogenic, and human pathogenic microorganisms. FEMS Microbiol Rev 37:634–663CrossRefGoogle Scholar
  82. Meng L, Zhang A, Wang F, Han X, Wang D, Li S (2015) Arbuscular mycorrhizalfungiandrhizobium facilitatenitrogenuptakeandtransfer insoybean/maizeintercropping system. Front Plant Sci 6:339PubMedPubMedCentralGoogle Scholar
  83. Merckx V, Bidartondo MI, Hynson NA (2009) Myco-heterotrophy: when fungi host plants. Ann Bot 104:1255–1261PubMedPubMedCentralCrossRefGoogle Scholar
  84. Messina M (2010) A brief historical overview of the past two decades of soy and isoflavone research. J Nutr 140:1350S–4SPubMedCrossRefPubMedCentralGoogle Scholar
  85. Messina MJ (1999) Legumes and soybeans: overview of their nutritional profiles and health effects. Am J Clin Nutr 70:439S–450SPubMedCrossRefPubMedCentralGoogle Scholar
  86. Mortimer PE, Perez-Fernandez MA, Valentine MA (2012) Arbuscular mycorrhiza maintains nodule function during external NH4+ supply in Phaseolus vulgaris (L.). Mycorrhiza 22:237–245PubMedCrossRefPubMedCentralGoogle Scholar
  87. Nadal M, Paszkowski U (2013) Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis. Curr Opin Plant Biol 16:473–479PubMedCrossRefGoogle Scholar
  88. Needelman BA (2013) What are soils? Nat Educ Knowl 4:2Google Scholar
  89. Nihorimbere V, Ongena M, Smargiassi M, Thonart P (2011) Beneficial effect of the rhizosphere microbial community for plant growth and health. Biotechnol Agron Soc Environ 15:327–337Google Scholar
  90. Oburger E, Schmidt H (2016) New methods to unravel rhizosphere processes. Trends Plant Sci 21:243–255PubMedCrossRefGoogle Scholar
  91. Ohkama-Ohtsu N, Wasaki J (2010) Recent progress in plant nutrition research: cross- talk between nutrients, plant physiology and soil microorganisms. Plant Cell Physiol 51:1255–1264PubMedCrossRefGoogle Scholar
  92. Ohyama T (2017) The role of legume-rhizobium symbiosis in sustainable agriculture. In Sulieman S, Tran LSP (eds) Legume nitrogen fixation in soils with low phosphorus availability. Google Scholar
  93. Oldroyd GED, Harrison MJ, Paszkowski U (2009) Reprogramming plant cells for endosymbiosis. Science 324:753–754PubMedCrossRefGoogle Scholar
  94. Oliveira RS, Carvalho P, Marques G, Ferreira L, Vosatka M, Freitas H (2017) Increased protein content of chickpea (Cicer arietinum L.) inoculated with arbuscular mycorrhizal fungi and nitrogen-fixing bacteria under water deficit conditions. J Sci Food Agric. DOI
  95. Ordonez YM, Fernandez BR, Lara LS, Rodriguez A, Uribe-Velez D, Sanders IR (2016) Bacteria with phosphate solubilizing capacity alter mycorrhizal fungal growth both inside and outside the root and in the presence of native microbial communities. PLoS One 11:e0154438PubMedPubMedCentralCrossRefGoogle Scholar
  96. Parikh SJ, James BR (2012) Soil: the foundation of agriculture. Nat Educ Knowl 3:2Google Scholar
  97. Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol 6:763–775PubMedCrossRefGoogle Scholar
  98. Penuelas J, Poulter B, Sardans J, Ciais P, van der Velde M, Obersteiner M, Janssens IA (2013) Human-induced nitrogen–phosphorus imbalances alter natural and managed ecosystems across the globe. Nat Commun 4:2934PubMedCrossRefGoogle Scholar
  99. Phillipot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799CrossRefGoogle Scholar
  100. Radutoiu S, Madsen LH, Madsen EB, Felle HH, Sandal N, Stougaard J (2003) Plant recognition of symbiotic bacteria requires two LysM receptor-like kinases. Nature 425:585–592PubMedCrossRefGoogle Scholar
  101. Rascovan N, Carbonetto B, Perrig D, Diaz M, Canciani W, Abalo M, Alloat J, Gonzalez-Anta G, Vasquez MP (2016) Integrated analysis of root microbiomes of soybean and wheat from agricultural fields. Sci Rep 6:28084PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ren C-G, Kong C-C, Bian B, Liu W, Li Y, Liou Y-M, Zhi-Hong X (2017) Enhanced phytoremediation of soils contaminated with PAHs by arbuscular mycorrhiza and rhizobium. Int J Phytoremed.
  103. Ribaudo M, Delgado J, Hansen L, Livingston M, Mosheim R, Williamson J (2011) Nitrogen in agricultural systems: implications for conservation policy. Economic Research Service/USDA/ERR-127Google Scholar
  104. Rodak BW, Freitas DS, Bamberg SM, Carneiro MAC, Guilherme LRG (2017) X-ray microanalytical studies of mineral elements in the tripartite symbiosis between lima bean, N2-fixing bacteria and mycorrhizal fungi. J Microbiol Methods 132:14–20PubMedCrossRefGoogle Scholar
  105. Rubiales D, Mikic A (2015) Introduction: legumes in sustainable agriculture. CRC Crit Rev Plant Sci 34:2–3CrossRefGoogle Scholar
  106. Saito K, Yoshikawa M, Yano K, Miwa H, Hayashi M, Kawaguchi M (2007) NUCLEOPORIN85 is required for calcium spiking, fungal and bacterial symbioses, and seed production in Lotus japonicus. Plant Cell 19:610–624PubMedPubMedCentralCrossRefGoogle Scholar
  107. Sakamoto K, Ogiwara N, Kaji T (2013) Involvement of autoregulation in the interaction between rhizobial nodulation and AM fungal colonization in soybean roots. Biol Fertil Soils 49:1141–1152CrossRefGoogle Scholar
  108. Schachtman DP, Reid RJ, Ayling SM (1998) Phosphorus uptake by plants: from soil to cell. Plant Physiol 11:447–453CrossRefGoogle Scholar
  109. Scheublin TA, Ridgway KP, Young JPW, van der Heijden MGA (2004) Nonlegumes, legumes, and root nodules harbor different arbuscular mycorrhizal fungal communities. Appl Environ Microbiol 70:6240–6246PubMedPubMedCentralCrossRefGoogle Scholar
  110. Shukla A, Kumar A, Chaturvedi OP, Nagori T, Kumar N, Gupta A (2017) Efficacy of rhizobial and phosphate-solubilizing bacteria and arbuscular mycorrhizal fungi to ameliorate shade response on six pulse crops. Agrofor Syst.
  111. Siddique KHM, Johansen C, Turner NC, Jeuffroy MH, Gan Y, Alghamdi SS (2012) Agron Sustain Dev 32:45–64CrossRefGoogle Scholar
  112. Siebers M, Brands M, Wewer V, Duan Y, Hoelzl G, Doermann P (2016) Lipids in plant–microbe interactions. Biochim Biophys Acta 1861:1379–1395PubMedCrossRefPubMedCentralGoogle Scholar
  113. Smith SE, Robson AD, Abbott LK (1992) The involvement of mycorrhizas in assessment of genetically dependent efficiency of nutrient uptake and use. Plant Soil 146:169–179CrossRefGoogle Scholar
  114. Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250PubMedCrossRefPubMedCentralGoogle Scholar
  115. Smith, Read (2008) Mycorrhizal symbiosis, 3rd edn. Academic press, Boston. ISBN: 9780123705266Google Scholar
  116. Sprent J (2007) Evolving ideas of legume evolution and diversity: a taxonomic perspective on the occurrence of nodulation. New Phytol 174:11–25PubMedCrossRefPubMedCentralGoogle Scholar
  117. Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric 4:2CrossRefGoogle Scholar
  118. Stougaard J (2000) Regulators and regulation of legume root nodule development. Plant Physiol 124:531–540PubMedPubMedCentralCrossRefGoogle Scholar
  119. Strack D, Fester T, Hause B, Schliemann W, Walter MH (2003) Arbuscular mycorrhiza: biological, chemical, and molecular aspects. J Chem Ecol 29:1955–1979PubMedCrossRefGoogle Scholar
  120. Stracke S, Kistner C, Yoshida S, Mulder L, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962PubMedCrossRefGoogle Scholar
  121. Sulieman S, Tran L-SP (2015) Legume nitrogen fixation in a changing environment.
  122. Syntikov DM (2013) How to increase the productivity of the soybean- rhizobial symbiosis. In: A comprehensive survey of international soybean research – genetics, physiology, agronomy and nitrogen relationships.
  123. Tajini F, Trabelsi M, Drevon J-J (2012) Combined inoculation with Glomus intraradices and Rhizobium tropici CIAT899 increases phosphorus use efficiency for symbiotic nitrogen fixation in common bean (Phaseolus vulgaris L.). Saudi J Biol Sci 19:157–163PubMedCrossRefPubMedCentralGoogle Scholar
  124. Tavasolee A, Aliasgarzard N, SalehiJoulani G, Mardi M, Asgharzadeh A (2013) Interactive effects of arbuscular mycorrhizal fungi and rhizobial strains on chickpea growth and nutrient content in plant. Afr J Biotechnol 10:7585–7591Google Scholar
  125. Tilman D, Cassman KG, Matson PA, Naylor R, Polasky S (2002) Agricultural sustainability and intensive production practices. Nature 418:671–677PubMedCrossRefPubMedCentralGoogle Scholar
  126. Tirichine L, Imaizumi-Anraku H, Yoshida S, Murakami Y, Madsen LH, Miwa H, Nakagawa T, Sandal N, Albrektsen AS, Kawaguchi M, Kawasaki S, Stougaard J (2006) Deregulation of a Ca2+/calmodulin-dependent kinase leads to spontaneous nodule development. Nature 441:1153–1156PubMedCrossRefGoogle Scholar
  127. UNEP and WHRC (2007) Reactive nitrogen in the environment: too much or too little of a good thing? (The United Nations environment program, 2007);
  128. van der Heijden MGA, Martin FM, Selosse M-A, Sanders IR (2015) Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol 205:1406–1423PubMedCrossRefPubMedCentralGoogle Scholar
  129. van der Ploeg RR, Bohm W, Kirkham MB (1999) On the origin of the theory of mineral nutrition of plants and the law of the minimum. Soil Sci Soc Am J 63:1055–1062CrossRefGoogle Scholar
  130. Vance CP (2001) Symbiotic nitrogen fixation and phosphorus acquisition. Plant nutrition in a world of declining renewable resources. Plant Physiol 127:390–397PubMedPubMedCentralCrossRefGoogle Scholar
  131. Varshney RK (2016) Exciting journey of 10 years from genomes to fields and markets: some success stories of genomics-assisted breeding in chickpea, pigeon pea and groundnut. Plant Sci 242:98–07PubMedCrossRefGoogle Scholar
  132. Venturi V, Keel C (2016) Signaling in the rhizosphere. Trends Plant Sci 21:187–198PubMedCrossRefGoogle Scholar
  133. Vijayakumar V, Liebisch G, Buer B, Xue L, Gerlach N, Blau S, Schmitz J, Bucher M (2016) Integrated multi-omics analysis supports role of lysophosphatidylcholine and related glycerophospholipids in the Lotus japonicusGlomusintraradices mycorrhizal symbiosis. Plant Cell Environ 39:393–315PubMedCrossRefPubMedCentralGoogle Scholar
  134. Wagner SC (2012) Biological nitrogen fixation. Nat Educ Knowl 3:15Google Scholar
  135. Wang X, Pan Q, Chen F, Yan X, Liao X (2011) Effects of co-inoculation with arbuscular mycorrhizal fungi and rhizobia on soybean growth as related to root architecture and availability of N and P. Mycorrhiza 21:173–181PubMedCrossRefGoogle Scholar
  136. Wang Y-Y, Hsu P-K, Tsay Y-F (2012) Uptake, allocation and signaling of nitrate. Trends Plant Sci 17:458–467PubMedCrossRefPubMedCentralGoogle Scholar
  137. White PJ, Brown PH (2010) Plant nutrition for sustainable development and global health. Ann Bot 105:1073–1080PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wittwer RA, Dorn B, Jossi W, van der Heijden MG (2017) Cover crops support ecological intensification of arable cropping systems. Sci Rep 7:41911PubMedPubMedCentralCrossRefGoogle Scholar
  139. Xue L, Cui H, Buer B, Vijayakumar V, Delaux P-M, Junkermann S, Bucher M (2015) Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Physiol 167:854–871PubMedPubMedCentralCrossRefGoogle Scholar
  140. Yaseen T, Ali K, Munsif F, Rab A, Ahmad M, Israr M, Bariach AK (2016) Influence of arbuscular mycorrhizal fungi, Rhizobium inoculation and rock phosphate on growth and quality of lentil. Pak J Bot 48:2101–2107Google Scholar
  141. Yasmeen T, Hameed S, Tariq M, Ali S (2012) Significance of arbuscular mycorrhizal and bacterial symbionts in a tripartite association with Vigna radiata. Acta Physiol Plant 34:1519–1528CrossRefGoogle Scholar
  142. Yoshida S, Parniske M (2005) Regulation of plant symbiosis receptor kinase through serine and threonine phosphorylation. J Biol Chem 280:9203–9209PubMedCrossRefGoogle Scholar
  143. Zezza A, Tasciotti L (2010) Urban agriculture, poverty and food security: empirical evidence from a sample of developing countries. Food Policy 35:265–273CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Vinod Vijayakumar
    • 1
  1. 1.College of Food, Agricultural and Environmental Sciences, Department of Food Science and TechnologyThe Ohio State UniversityColumbusUSA

Personalised recommendations