Perennial and Intercrop Legumes as Energy Crops for Biogas Production

  • P. Walter StinnerEmail author
  • Arno Deuker
  • Tina Schmalfuß
  • Christopher Brock
  • Nadja Rensberg
  • Velina Denysenko
  • Paul Trainer
  • Kurt Möller
  • Joachim Zang
  • Leandro Janke
  • Wilson Mozena Leandro
  • Katja Oehmichen
  • Denny Popp
  • Jaqueline Daniel-Gromke


Biogas generation opens new possibilities for the use of legume growths and thus for legume cropping, as quality restrictions are lower than for other forms of utilization. The German example of energy cropping shows the possibility of up to 20% of forage legume integration for bioenergy production into the cropping systems. This can allow an improvement of sustainability and resilience, especially with regard to reduced external inputs, improved humus, energy and nutrient balances, reduced greenhouse gas emissions, and the general positive impact of forage and intercrop legumes on cropping systems.

One hectare of main crop forage legumes delivers the energy for the operation of 12–17 ha of arable land. Crop residues and intercrop legumes mean additional energy yield.

For organic cropping systems, the anaerobic digestion of forage legumes allows higher nitrogen efficiency combined with reduced greenhouse gas emissions and reduced nitrate leaching risk. The higher N-efficiency results in higher yields and higher raw protein contents of nonlegume crops in crop rotations.

Without regarding the additional positive impacts, forage legumes as energy crops are only competitive under special conditions (e.g., cultivation on marginal sites). Economic internalization of positive external effects would promise legume cropping for this issue. For the further bioeconomy, the legume-based green biorefineries can deliver energy, colors (e.g., based on chlorophyll and carotins), vitamins, proteins, fibers, fatty acids, etc. In this way, forage legumes can get (again) key elements of sustainable economies.


Legume-based green biorefineries Biogas Post fossile cropping Energy balance Climate friendly cropping Nitrogen efficiency Cropping systems Organic cropping 



Biological di-nitrogen fixation






Methane at standard temperature and pressure (0 °C; 1013.25 bar)


Carbon dioxide equivalents




Dry matter


Fresh matter


Kuratorium für Technik und Bauwesen in der Landwirtschaft




Nitrous oxide


Soil organic matter


Standard temperature and pressure (0 °C, 1013.25 bar)


Volatile Solids


  1. Balesdent J, Chenu C, Balabane M (2003) Relationship of soil organic matter dynamics to physical protection and tillage. Soil Till Res 53:215–230CrossRefGoogle Scholar
  2. Bolinder MA, Janzen HH, Gregorich EG, Angers DA, VandenBygaart AJ (2007) An approach for estimating net primary productivity and annual carbon inputs to soil for common agricultural crops in Canada. Agric Ecosys Environ 118:29–42CrossRefGoogle Scholar
  3. Brandenburger BauernZeitung (2010–2017) Data from issue 2010 (42) to 2017 (02). Deutscher Bauernverlag GmbH, BerlinGoogle Scholar
  4. Bull II (2013) Untersuchungen zum Anbau und zur Verwertung von Steinklee. Dissertation, Universität RostockGoogle Scholar
  5. Cansunar E, Richardson AJ, Wallace G, Stewart CS (1990) Effect of coumarin on glucose-uptake by anaerobic rumen fungi in the presence and absence of Methanobrevibacter smithii. FEMS Microbiol Lett 70(2):157–160Google Scholar
  6. Datta R, Kelkar A, Baraniya D, Molaei A, Moulick A, Meena RS, Formanek P (2017) Enzymatic degradation of lignin in soil: a review. Sustain MDPI 9(7):1163. 1–18CrossRefGoogle Scholar
  7. Deuker A (2013) Energieerzeugung in landwirtschaftlichen Biogasanlagen: Potenziale und Grenzen. Sustainable biogas production in agriculture – potential and limitations. Including three journal articles. Verlag Dr. Köster, BerlinGoogle Scholar
  8. Deuker A, Stinner W, Leithold G (2008) Biogas energy potentials from agricultural by-products: examples from organic farming in Germany compared with energy maize. In: 16th European biomass conference and exhibition: from research to industry and markets, Valencia, Spain, 2–6 June 2008, pp 274–284Google Scholar
  9. Deuker A, Stinner W, Leithold G (2011) Biogas energy from agricultural by-products: energy yields and effects on organic farming systems compared with energy maize cropping. In: Behnassi M, Draggan S, Yaya S (eds) Global food insecurity. Springer, Dordrecht, pp 269–279. CrossRefGoogle Scholar
  10. Dhakal Y, Meena RS, Kumar S (2016) Effect of INM on nodulation, yield, quality and available nutrient status in soil after harvest of green gram. Leg res 39(4):590–594Google Scholar
  11. DMK (2012a) Hohe Erträge und Erntemengen beim Mais. Deutsches Maiskomitee eV. (DMK) Accessed 25 Jan 2012
  12. DMK (2012b) Flächenerträge.Deutsches Maiskomitee e.V. (DMK) Accessed 10 Aug 2017
  13. FAO (2013) Food and agricultural commodities production [WWW Document]. FAOSTAT. Accessed 25 May 2015
  14. FNR (2016) Cultivation of renewable resources in Germany. Fachagentur Nachwachsende Rohstoffe eV. (FNR). Accessed 03 Aug 2017
  15. FNR (2017) Biofuels in comparison. In: Bioenergy in Germany Fact and Figures 2016. Fachagentur Nachwachsende Rohstoffe e.V. (FNR). Accessed 03 Aug 2017
  16. Goplen BP (1971) Polara, a low coumarin cultivar of sweet clover. Can J Plant Sci 51:249–251CrossRefGoogle Scholar
  17. Goplen BP (1980) Sweet clover production and agronomy. Can Vet J 21(5):149–151PubMedPubMedCentralGoogle Scholar
  18. Goplen BP (1981) Norgold – a low coumarin yellow blossom sweet clover. Can J Plant Sci 51:1019–1021CrossRefGoogle Scholar
  19. Gregorich EG, Drury CF, Baldock JA (2001) Changes in soil carbon under long-term maize in monoculture and legume-based rotation. Can J Soil Sci 81:21–31CrossRefGoogle Scholar
  20. Janke L (2017) Optimization of anaerobic digestion of sugarcane waste for biogas production in Brazil. Dissertation, Department of Waste Management and Material Flow Rostock University (in press)Google Scholar
  21. Janke L, Leite AF, Batista K, Silva W, Nikolausz M, Nelles M, Stinner W (2016) Enhancing biogas production from vinasse in sugarcane biorefineries: effects of urea and trace elements supplementation on process performance and stability. Bioresour Technol 217:10–20. CrossRefPubMedGoogle Scholar
  22. Keymer U (2006) Biogasausbeuten verschiedener Substrate. Accessed 10 May 2007
  23. Keymer U (2017) Biogasausbeuten verschiedener Substrate. Accessed 28 Feb 2017
  24. Kirkby CA, Richardson AE, Wade LJ, Batten GD, Blanchard C, Kirkegaard JA (2013) Carbon-nutrient stoichiometry to increase soil carbon sequestration. Soil Biol Biochem 60:77–86CrossRefGoogle Scholar
  25. Kong AYY, Six J, Bryant DC, Denison RF, van Kessel C (2005) The relationship between carbon input, aggregation, and soil organic carbon stabilization in sustainable cropping systems. Soil Sci Soc Am J 69:1078–1085. CrossRefGoogle Scholar
  26. Körschens M (1982) Der Einfluss unterschiedlicher Fruchtarten auf den Ct-Gehalt des Bodens. [In German]. Arch Acker- u. Pflanzenbau u. Bodenkd 26:711–716Google Scholar
  27. KTBL (2005) Gasausbeute in landwirtschaftlichen Biogasanlagen. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), DarmstadtGoogle Scholar
  28. KTBL (2010) Betriebsplanung Landwirtschaft 2010/11. Kuratorium für Technik und Bauwesen in der Landwirtschaft e.V. (KTBL), DarmstadtGoogle Scholar
  29. Leithold G, Hülsbergen K-J, Brock C (2015) Organic matter returns to soils must be higher under organic compared to conventional farming. J Plant Nutr Soil Sci 178:4–12CrossRefGoogle Scholar
  30. Lenz V, Müller-Langer F, Denysenko V, Daniel-Gromke J, Rensberg N, Rönsch C, Janczik S, Kaltschmitt M (2017) Erneuerbare Energien. BWK 69(5):54–77Google Scholar
  31. Li X, Mu Y, Cheng Y, Liu X, Nian H (2013) Effects of intercropping sugarcane and soybean on growth, rhizosphere soil microbes, nitrogen and phosphorus availability. Acta Physiol Plant 35(4):1113–1119. CrossRefGoogle Scholar
  32. Lithourgidis AS, Dordas CA, Damalas CA, Vlachostergios DN (2011) Annual intercrops: an alternative pathway for sustainable agriculture. Aust J Crop Sci 5(4):396–410. http://searchinformitcomau/documentSummary;dn=281409060336481;res=IELHSS ISSN: 1835–2693. Accessed 20 Mar 17Google Scholar
  33. Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena R, Meena SK (2013) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. The Bioscience 8(3):931–935Google Scholar
  34. Meena VS, Maurya BR, Meena RS, Meena SK, Singh NP, Malik VK (2014a) Microbial dynamics as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi, India. Afr J Microb Res 8(1):257–263Google Scholar
  35. Meena RS, Yadav RS, Meena VS (2014b) Response of groundnut (Arachis hypogaea L.) varieties to sowing dates and NP fertilizers under western dry zone of India. Bangladesh J Bot 43(2):169–173Google Scholar
  36. Meena RS, Yadav RS, Meena H, Kumar S, Meena YK, Singh A (2015a) Towards the current need to enhance legume productivity and soil sustainability worldwide: a book review. J Clean Prod 104:513–515CrossRefGoogle Scholar
  37. Meena VS, Maurya BR, Meena RS (2015b) Residual impact of well-grow formulation and NPK on growth and yield of wheat (Triticum aestivum L.). Bangladesh J Bot 44(1):143–146CrossRefGoogle Scholar
  38. Meena HR, Meena RS, Lal R, Singh GS, Mitran T, Layek J, Patil SB, Kumar S, Verma T (2017) Response of sowing dates and bioregulators on yield of clusterbean under current climate in alley cropping system in eastern U.P. Indian Leg Res, Accepted in pressGoogle Scholar
  39. Michel D (1988) Beitrag zur Quantifizierung der Stickstoff- und Humusreproduktionsleistung der Luzerne aus einem Fruchtfolge-Düngungsversuch /On the evaluation of data from a test on crop rotation and fertilization in the case of lucernes with respect to their nitrogen and humus production efficiency. Tag-Ber Akad Landwirtsch-Wiss DDR 269:367–374Google Scholar
  40. Möller K, Stinner W (2009) Effects of different manuring systems with and without biogas digestion on soil mineral nitrogen content and on gaseous nitrogen losses (ammonia, nitrous oxides). Eur J Agron 30:1–16. CrossRefGoogle Scholar
  41. Möller K, Stinner W, Leithold G (2006a) Biogas in organic agriculture: effects on yields, nutrient uptake and environmental parameters of the cropping system. Presented at Joint Organic Congress, Odense, Denmark, 30–31 May 2006.
  42. Möller K, Leithold G, Michels J, Schnell S, Stinner W, Weiske A (eds) (2006b) Auswirkung der Fermentation biogener Rückstände in Biogasanlagen auf Flächenproduktivität und Umweltverträglichkeit im Ökologischen Landbau – Pflanzenbauliche, ökonomische und ökologische Gesamtbewertung im Rahmen typischer Fruchtfolgen viehhaltender und viehloser ökologisch wirtschaftender Betriebe. Endbericht Deutsche Bundesstiftung Umwelt, OsnabrückGoogle Scholar
  43. Moniello G, Richardson AJ, Duncan SH, Stewart CS (1996) Effects of coumarin and sparteine on attachment to cellulose and cellulolysis by Neocallimastix frontalis RE1. Appl Environ Microbiol 62(12):4666–4668PubMedPubMedCentralGoogle Scholar
  44. Mosier AR (2001) Exchange of gaseous nitrogen compounds between agricultural systems and the atmosphere. Plant Soil 228:17–27CrossRefGoogle Scholar
  45. Oenema O, Wrage N, Velthof GL, Groenigen JW, van Dolfing J, Kuikman PJ (2005) Trends in global nitrous oxide emissions from animal production systems. Nutr Cycl Agroecosyst 72:51–65CrossRefGoogle Scholar
  46. Overman RS, Stahmann MA, Sullivan WR, Huebner CF, Campbell HA, Link KP (1942) Studies on the hemorrhagic sweet clover disease: VII. The effect of 3,3′-methylenebis(4-hydroxycoumarin) on the prothrombin time of the plasma of various animals. J Biol Chem 142:941–955Google Scholar
  47. Plaza-Bonilla D, Nolot J-M, Passot S, Raffaillac D, Justes E (2016) Grain legume-based rotations managed under conventional tillage need cover crops to mitigate soil organic matter losses. Soil Till Res 156:33–43CrossRefGoogle Scholar
  48. Poeplau C, Don A (2015) Carbon sequestration in agricultural soils via cultivation of cover crops – a meta-analysis. Agric Ecosys Environ 200:33–41CrossRefGoogle Scholar
  49. Popp D, Schrader S, Kleinsteuber S, Harms H, Sträuber H (2015) Biogas production from coumarin-rich plants - inhibition by coumarin and recovery by adaptation of the bacterial community. FEMS Microbiol Ecol 91(9):fiv103CrossRefPubMedGoogle Scholar
  50. Ram K, Meena RS (2014) Evaluation of pearl millet and mungbean intercropping systems in arid region of Rajasthan (India). Bangladesh J Bot 43(3):367–370Google Scholar
  51. Rauhe K (1969) Der Einfluß des Futterbaues sowie der organischen und mineralischen Düngung auf den C- und N-Gehalt des Bodens im Fruchtfolgedüngungsversuch Seehausen/Certain humus losses which require humus substitution would occurwith the cultivation of fellow crops and grain, according to the conditions of soil and climate. [In German]. Arch Acker- u Pflanzenbau u Bodenkd 13:455–462Google Scholar
  52. Roderick LM (1931) A problem in the coagulation of the blood. Am J Phys 96(2):413–425Google Scholar
  53. Schäfer (2012) Saatgut. Accessed 25 Jan 2012
  54. Schimel JP, Weintraub MN (2003) The implications of exoenzyme activity on microbial carbon and nitrogen limitation in soil: a theoretical model. Soil Biol Biochem 35:549–563CrossRefGoogle Scholar
  55. Schjønning P, Munkholm LJ, Elmholt S, Olesen JE (2007) Organic matter and soil tilth in arable farming: management makes a difference within 5–6 years. Agric Ecosys Environ 122:157–172CrossRefGoogle Scholar
  56. Schulz F, Brock C, Schmidt H, Franz K-P, Leithold G (2015) Development of soil organic matter stocks under different farm types and tillage systems in the organic arable farming experiment Gladbacherhof. Arch Agron Soil Sci 60:313–326CrossRefGoogle Scholar
  57. Smith WK, Brink RA (1938) Relation of bitterness to the toxic principle in sweet clover. J Agr Res 57:145–154CrossRefGoogle Scholar
  58. Smith WK, Gorz HJ (1965) Sweet clover improvement. In: Norman AG (ed) Advances in agronomy, vol 17. Academic Press Inc, New YorkGoogle Scholar
  59. Statistisches Bundesamt (2005) Statistisches Jahrbuch 2004 für die Bundesrepublik DeutschlandGoogle Scholar
  60. Stevens WB, Hoeft RG, Mulvaney RL (2005) Fate of Nitrogen-15 in a long-term nitrogen rate study: II nitrogen uptake efficiency. Agron J 97:1046–1053CrossRefGoogle Scholar
  61. Stinner W (2011) Auswirkungen der Biogaserzeugung in einem ökologischen Marktfruchtbetrieb auf Ertragsbildung und Umweltparameter. Dissertation, Chair of organic agriculture, Giessen University, (ed) Verlag Dr. Köster, BerlinGoogle Scholar
  62. Stinner W (2015) The use of legumes as a biogas substrate – potentials for saving energy and reducing greenhouse gas emissions through symbiotic nitrogen fixation. Energy Sust Soc 5(4).
  63. Stinner W, Rensberg N (2011) Perspektive der Biogasgewinnung aus nachwachsenden Rohstoffen – Bewertung von Substratalternativen zu Silomais. Accessed 21 Apr 2017
  64. Stinner W, Möller K, Leithold G (2008) Effects of biogas digestion of clover/grass-leys, cover crops and crop residues on nitrogen cycle and crop yield in organic stockless farming systems. Eur J Agron 29(2):125–134. CrossRefGoogle Scholar
  65. Suman A, Lal M, Singh AK, Gaur A (2006) Microbial biomass turnover in Indian subtropical soils under different sugarcane intercropping systems. Agron J 98:698–704. CrossRefGoogle Scholar
  66. Thaysen J (2012) Wie hoch sind die Silierverluste? Bauernblatt 25 Aug 2012, pp 10–12Google Scholar
  67. Thrän D, Pfeiffer D (eds) (2012) Brückenschlag nach Osteuropa – Biomassepotenziale und -nutzungsoptionen in Russland, Weißrussland und der Ukraine. Schriftenreihe des BMU-Förderprogramms “Energetische Biomassenutzung”, vol 6, Leipzig Accessed 21 Apr 2017
  68. Turkington RA, Cavers PB, Rempel E (1978) The biology of Canadian weeds. 29. Melilotus alba Desr. and M. officinalis (L.) Lam. Can J Plant Sci 58:523–537CrossRefGoogle Scholar
  69. UBA (2017) National trend tables for the German Atmospheric Emission Reporting 1990–2015. Umweltbundesamt, Dessau. Accessed 21 Apr 2017
  70. Verma JP, Jaiswal DK, Meena VS, Meena RS (2015) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547CrossRefGoogle Scholar
  71. Vetter A (2009) Biogassubstrate – welche “Exoten” haben potential für die Zukunft. In Gülzower Fachgespräche Band 32 Tagungsband “Biogas in der Landwirtschaft – Stand und Perspektiven, pp 278–288Google Scholar
  72. Vetter A, Eckner J, Strauß C, Nehring A (2014) Entwicklung und Optimierung von standortangepassten Anbausystemen für Energiepflanzen im Fruchtfolgeregime. Abschlussbericht zum Teilprojekt 1. (EVA II).
  73. Witt J, Magdowski A, Janzczik S, Kaltschmitt M (2017) Erneuerbare Energien – Globaler Stand 2016. BWK 69(07/08):6–28Google Scholar
  74. Yadav GS, Lal R, Meena RS, Babu S, Das A, Bhomik SN, Datta M, Layak J, Saha P (2017) Conservation tillage and nutrient management effects on productivity and soil carbon sequestration under double cropping of rice in north eastern region of India. Ecol Ind

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • P. Walter Stinner
    • 1
    Email author
  • Arno Deuker
    • 2
  • Tina Schmalfuß
    • 1
  • Christopher Brock
    • 3
  • Nadja Rensberg
    • 1
  • Velina Denysenko
    • 1
  • Paul Trainer
    • 1
  • Kurt Möller
    • 4
  • Joachim Zang
    • 5
  • Leandro Janke
    • 1
  • Wilson Mozena Leandro
    • 6
  • Katja Oehmichen
    • 1
  • Denny Popp
    • 7
  • Jaqueline Daniel-Gromke
    • 1
  1. 1.Deutsches Biomasseforschungszentrum gemeinnützige GmbH – DBFZLeipzigGermany
  2. 2.STEAG New Energies GmbH, Kompetenzzentrum Biomassebeschaffung und StoffstrommanagementSaarbrückenGermany
  3. 3.Forschungsring für Biologisch-Dynamische Wirtschaftsweise e.V.DarmstadtGermany
  4. 4.Landwirtschaftliches Technologiezentrum, AugustenbergKarlsruheGermany
  5. 5.Instituto Federal de Goiás – IFGGoiâniaBrazil
  6. 6.Universidade Federal de Goiás – UFGGoiâniaBrazil
  7. 7.Helmholtz Centre for Environmental Research – UFZLeipzigGermany

Personalised recommendations