Advertisement

Quadrature Synchronization of Two Van der Pol Oscillators Coupled by Fractional-Order Derivatives

  • Aman K. Singh
  • R. D. S. Yadava
Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 714)

Abstract

The paper presents a theoretical analysis of the synchronization behavior of two coupled Van der Pol oscillators, where the coupling is defined by fractional-order derivatives. The condition for frequency synchronization is obtained for the two oscillators being in-phase quadrature. It is found that the synchronization frequency oscillates rapidly with respect to the deviations from phase quadrature and the order of fractional derivative. The linear stability analysis is carried out by analyzing the roots of Jacobian on phase error.

Keywords

Coupled Van der Pol oscillators Synchronization Fractional-order coupling Quadrature oscillators 

Notes

Acknowledgments

The author AKS is thankful to University Grants Commission (UGC, Govt. of India, Delhi) for financial assistance.

References

  1. 1.
    Miller, K., Ross, B.: An Introduction to Fractional Calculus and Fractional Differential Equations, Wiley, New York (1993)Google Scholar
  2. 2.
    Bagley, R.L., Torvik, P.J.: On the fractional calculus model of viscoelastic behavior, Journal of Rheology 30 (1984) 133–155Google Scholar
  3. 3.
    Torvik, P.J., Bagley, R.L.: On the appearance of fractional derivative in the behaviour of real materials, Transaction of the ASME, Journal of Applied Mechanics 51 (1984) 294–298Google Scholar
  4. 4.
    Mainardi, F.: Fractional relaxation-oscillation and fractional diffusion-wave phenomena, Chaos, Solitons and Fractals 7 (1996) 1461–1477Google Scholar
  5. 5.
    Wahi, P., Chatterjee, A.: Averaging oscillations with small fractional damping and delayed term, Nonlinear Dynamics 38 (2004) 3–22Google Scholar
  6. 6.
    Galucio, A.C., Deu, J.F., Ohayon, R.: Finite element formulation of viscoelastic sandwich beams using fractional derivative operators, Computational Mechanics 33 (2004) 282–291Google Scholar
  7. 7.
    Jesus, I.S., Machado, J.A.T.: Implementation of fractional order electromagnetic potential through a genetic algorithm, Commun Nonlinear Sci Numer Simulat 14 (2008) 1838–1843Google Scholar
  8. 8.
    Rand, R.H., Sah, S.M., Suchorsky, M.K.: Fractional Mathieu equation, Commun Nonlinear Sci Numer Simulat 15 (2010) 3254–3262Google Scholar
  9. 9.
    Machado, J.A.T., Silva, M.F., Barbosa, R.S., Jesus, I.S., Reis, C.M., Marcos, M.G. Galhano, A.F.: Some applications of fractional calculus in engineering, Mathematical Problems in Engineering 2010 (2010) 1–34Google Scholar
  10. 10.
    Tusset, A.M., Balthazar, J.M., Bassinello, D.G., Pontes Jr., B.R., Felix, J.L.P.: Statements on chaos control designs, including a fractional order dynamical system applied to a MEMS comb-drive actuator, Nonlinear Dynamics 69 (2012) 1837–1857Google Scholar
  11. 11.
    Suchorsky, M.K., Rand, R.H.: A pair of Van der Pol oscillators coupled by fractional derivatives, Nonlinear Dynamics 69 (2012) 313–324Google Scholar
  12. 12.
    Rappaport, T.S.: Wireless Communication: Principles and Practice. 2nd edn. Prentice Hall, (2002)Google Scholar
  13. 13.
    Elbadry, M., Harjani, R.: Quadrature Frequency Generation for Wideband Wireless Application, Springer, New York (2015)Google Scholar
  14. 14.
    Wasterlund, S., Ekstam, L.: Capacitor theory, IEEE Transaction on Dielectric and Electrical Insulation 1 (1994) 826–839Google Scholar
  15. 15.
    Ginoux, J.M., Letellier, C.: Van der Pol and the history of relaxation oscillations: Toward the emergence of a concept, Chaos 22 (2012) 1–15Google Scholar
  16. 16.
    Dumitrescu, I., Bachir, S., Cordeau, D., Paillot, J. –M., Iordache, M.: Modelling and characterization of oscillator circuits by Van Der Pol model using parameter estimation, J. Circuits Systems Computers 21 (2012) 1–15Google Scholar
  17. 17.
    Nayfeh, A.H.: Introduction to Perturbation Techniques, Wiley, New York (1993)Google Scholar
  18. 18.
    Adronov, A.A, Vitt, S.E., Khaikin, S.E.: Theory of Oscillators, 2nd edn. Pergamon, Oxford (1966)Google Scholar
  19. 19.
    Török, J.S.: Analytical Mechanics with an Introduction to Dynamical Systems, Wiley, New York (2000)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  1. 1.Sensors & Signal Processing Laboratory, Department of PhysicsInstitute of Science, Banaras Hindu UniversityVaranasiIndia

Personalised recommendations