Integration of Sulfides Enables Enhanced Full-Spectrum Solar Energy Absorption and Efficient Charge Separation

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

The full harvest of solar energy by semiconductor in light conversion requires such a material to simultaneously absorb diverse spectrum ranges of solar radiation and collect photo-generated electrons and holes separately. Through colloidal chemical transformation, we for the first time integrate ZnS, CdS and Cu2-xS semiconductor sulfides one by one in a single nanocrystal, synthesizing a unique ternary multi-node sheath ZnS-CdS-Cu2-xS heteronanorod so as to realize full-spectrum absorption of solar energy. Here the localized surface plasmon resonance (LSPR) of nonstoichiometric copper sulfide Cu2-xS nanostructures enables effective NIR absorption. More significantly, the construction of pn heterojunction between Cu2-xS and CdS forms staggered gaps, as verified by first-principles simulations. Such band alignment enables well-steered photo-generated carriers flow for electron-hole separation in the ternary system and hence efficient solar energy conversion.

References

  1. 1.
    Mayer, M.T., Lin, Y., Yuan, G., Wang, D.: Forming heterojunctions at the nanoscale for improved photoelectrochemical water splitting by semiconductor materials: case studies on hematite. Acc. Chem. Res. 46, 1558–1566 (2013)CrossRefGoogle Scholar
  2. 2.
    Zhang, Z.C., Xu, B., Wang, X.: Engineering nanointerfaces for nanocatalysis. Chem. Soc. Rev. 43, 7870–7886 (2014)CrossRefGoogle Scholar
  3. 3.
    Zhang, P., Wang, T., Gong, J.L.: Mechanistic understanding of the plasmonic enhancement for solar water splitting. Adv. Mater. 27, 5328–5342 (2015)CrossRefGoogle Scholar
  4. 4.
    Tang, J., Huo, Z., Brittman, S., Gao, H., Yang, P.: Solution-processed core-shell nanowires for efficient photovoltaic cells. Nat. Nanotechnol. 6, 568–572 (2011)CrossRefGoogle Scholar
  5. 5.
    Mashford, B.S., Stevenson, M., Popovic, Z., Hamilton, C., Zhou, Z., Breen, C., Steckel, J., Bulovic, V., Bawendi, M., Coe-Sullivan, S.: High-efficiency quantum-dot light-emitting devices with enhanced charge injection. Nat. Photon. 7, 407–412 (2013)CrossRefGoogle Scholar
  6. 6.
    Dai, X., Zhang, Z., Jin, Y., Niu, Y., Cao, H., Liang, X., Chen, L., Wang, J., Peng, X.: Solution-processed, high-performance light-emitting diodes based on quantum dots. Nature 515, 96–99 (2014)CrossRefGoogle Scholar
  7. 7.
    Gao, W., Lee, H.K., Hobley, J., Liu, T., Phang, I.Y., Ling, X.Y.: Graphene liquid marbles as photothermal miniature reactors for reaction kinetics modulation. Angew. Chem. Int. Ed. 54, 3993–3996 (2015)CrossRefGoogle Scholar
  8. 8.
    Sun, X., Wang, C., Gao, M., Hu, A., Liu, Z. (2015) Drug delivery: remotely controlled red blood cell carriers for cancer targeting and near‐infrared light–triggered drug release in combined photothermal–chemotherapy. Adv. Funct. Mater. 25, 2480Google Scholar
  9. 9.
    Cho, S., Lee, M.J., Kim, M.S., Lee, S., Kim, Y.K., Lee, D.H., Lee, C.W., Cho, K.H., Chung, J.H.: Infrared plus visible light and heat from natural sunlight participate in the expression of MMPs and type I procollagen as well as infiltration of inflammatory cell in human skin in vivo. J. Dermatol. Sci. 50, 123–133 (2008)CrossRefGoogle Scholar
  10. 10.
    Cui, J., Li, Y., Liu, L., Chen, L., Xu, J., Ma, J., Fang, G., Zhu, E., Wu, H., Zhao, L.: Near-infrared plasmonic-enhanced solar energy harvest for highly efficient photocatalytic reactions. Nano Lett. 15, 6295–6301 (2015)CrossRefGoogle Scholar
  11. 11.
    Capasso, F.: Band-gap engineering: from physics and materials to new semiconductor devices. Science 235, 172–176 (1987)CrossRefGoogle Scholar
  12. 12.
    Smith, A.M., Nie, S.: Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc. Chem. Res. 43, 190–200 (2009)CrossRefGoogle Scholar
  13. 13.
    Du, Y., Yin, Z., Zhu, J., Huang, X., Wu, X.-J., Zeng, Z., Yan, Q., Zhang, H.: A general method for the large-scale synthesis of uniform ultrathin metal sulphide nanocrystals. Nat. Commun. 3, 1177 (2012)CrossRefGoogle Scholar
  14. 14.
    Gao, M.R., Xu, Y.F., Jiang, J., Yu, S.H.: Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. Chem. Soc. Rev. 42, 2986–3017 (2013)CrossRefGoogle Scholar
  15. 15.
    Wu, X.J., Huang, X., Qi, X., Li, H., Li, B., Zhang, H.: Copper-based ternary and quaternary semiconductor nanoplates: templated synthesis, characterization, and photoelectrochemical properties. Angew. Chem. Int. Ed. 53, 8929–8933 (2014)CrossRefGoogle Scholar
  16. 16.
    Jia, G., Banin, U.: A general strategy for synthesizing colloidal semiconductor zinc chalcogenide quantum rods. J. Am. Chem. Soc. 136, 11121–11127 (2014)CrossRefGoogle Scholar
  17. 17.
    Wu, X.J., Huang, X., Liu, J., Li, H., Yang, J., Li, B., Huang, W., Zhang, H.: Two-dimensional CuSe nanosheets with microscale lateral size: synthesis and template-assisted phase transformation. Angew. Chem. 126, 5183–5187 (2014)CrossRefGoogle Scholar
  18. 18.
    Lhuillier, E., Pedetti, S., Ithurria, S., Nadal, B., Heuclin, H., Dubertret, B.: Two-dimensional colloidal metal chalcogenides semiconductors: synthesis, spectroscopy, and applications. Acc. Chem. Res. 48, 22–30 (2015)CrossRefGoogle Scholar
  19. 19.
    Li, J., Cushing, S.K., Zheng, P., Senty, T., Meng, F., Bristow, A.D., Manivannan, A., Wu, N.: Solar hydrogen generation by a CdS-Au-TiO2 sandwich nanorod array enhanced with au nanoparticle as electron relay and plasmonic photosensitizer. J. Am. Chem. Soc. 136, 8438–8449 (2014)CrossRefGoogle Scholar
  20. 20.
    Wu, K., Zhu, H., Liu, Z., Rodríguez-Córdoba, W., Lian, T.: Ultrafast charge separation and long-lived charge separated state in photocatalytic CdS–Pt nanorod heterostructures. J. Am. Chem. Soc. 134, 10337–10340 (2012)CrossRefGoogle Scholar
  21. 21.
    Simon, T., Bouchonville, N., Berr, M.J., Vaneski, A., Adrovic, A., Volbers, D., Wyrwich, R., Doblinger, M., Susha, A.S., Rogach, A.L., Jackel, F., Stolarczyk, J.K., Feldmann, J.: Redox shuttle mechanism enhances photocatalytic H2 generation on Ni-decorated CdS nanorods. Nat. Mater. 13, 1013–1018 (2014)CrossRefGoogle Scholar
  22. 22.
    Wang, T., Zhuang, J., Lynch, J., Chen, O., Wang, Z., Wang, X., LaMontagne, D., Wu, H., Wang, Z., Cao, Y.C.: Self-assembled colloidal superparticles from nanorods. Science 338, 358–363 (2012)CrossRefGoogle Scholar
  23. 23.
    Zhuang, T.T., Liu, Y., Sun, M., Jiang, S.L., Zhang, M.W., Wang, X.C., Zhang, Q., Jiang, J., Yu, S.H.: A unique ternary semiconductor-(Semiconductor/Metal) nano-architecture for efficient photocatalytic hydrogen evolution. Angew. Chem. Int. Ed. 54, 11495–11500 (2015)CrossRefGoogle Scholar
  24. 24.
    Zhao, Y., Pan, H., Lou, Y., Qiu, X., Zhu, J., Burda, C.: Plasmonic Cu2-xS nanocrystals: optical and structural properties of copper-deficient copper (I) sulfides. J. Am. Chem. Soc. 131, 4253–4261 (2009)CrossRefGoogle Scholar
  25. 25.
    Hsu, S.-W., Bryks, W., Tao, A.R.: Effects of carrier density and shape on the localized surface plasmon resonances of Cu2-xS Nanodisks. Chem. Mater. 24, 3765–3771 (2012)CrossRefGoogle Scholar
  26. 26.
    Wang, X., Ke, Y., Pan, H., Ma, K., Xiao, Q., Yin, D., Wu, G., Swihart, M.T.: Cu-deficient plasmonic Cu2-xS nanoplate electrocatalysts for oxygen reduction. ACS Catal. 5, 2534–2540 (2015)CrossRefGoogle Scholar
  27. 27.
    Zhang, J., Tang, Y., Lee, K., Ouyang, M.: Tailoring light-matter-spin interactions in colloidal hetero-nanostructures. Nature 466, 91–95 (2010)CrossRefGoogle Scholar
  28. 28.
    Wu, K., Zhu, H., Lian, T.: Ultrafast exciton dynamics and light-driven H2 evolution in colloidal semiconductor nanorods and Pt-tipped nanorods. Acc. Chem. Res. 48, 851–859 (2015)CrossRefGoogle Scholar
  29. 29.
    Wu, K., Chen, J., McBride, J.R., Lian, T.: Efficient hot-electron transfer by a plasmon-induced interfacial charge-transfer transition. Science 349, 632–635 (2015)CrossRefGoogle Scholar
  30. 30.
    Nayak, A., Ohno, T., Tsuruoka, T., Terabe, K., Hasegawa, T., Gimzewski, J.K., Aono, M.: Controlling the synaptic plasticity of a Cu2S gap-type atomic switch. Adv. Funct. Mater. 22, 3606–3613 (2012)CrossRefGoogle Scholar
  31. 31.
    Bryks, W., Wette, M., Velez, N., Hsu, S.-W., Tao, A.R.: Supramolecular precursors for the synthesis of anisotropic Cu2S nanocrystals. J. Am. Chem. Soc. 136, 6175–6178 (2014)CrossRefGoogle Scholar
  32. 32.
    Wong, A.B., Brittman, S., Yu, Y., Dasgupta, N.P., Yang, P.D.: Core-shell CdS-Cu2S nanorod array solar cells. Nano Lett. 15, 4096–4101 (2015)CrossRefGoogle Scholar
  33. 33.
    Zhuang, T.-T., Liu, Y., Li, Y., Zhao, Y., Wu, L., Jiang, J., Yu, S.-H.: Integration of semiconducting sulfides for full-spectrum solar energy absorption and efficient charge separation. Angew. Chem. Int. Ed. 55, 6396–6400 (2016)CrossRefGoogle Scholar
  34. 34.
    Son, D.H., Hughes, S.M., Yin, Y., Alivisatos, A.P.: Cation exchange reactions in ionic nanocrystals. Science 306, 1009–1012 (2004)CrossRefGoogle Scholar
  35. 35.
    Robinson, R.D., Sadtler, B., Demchenko, D.O., Erdonmez, C.K., Wang, L.-W., Alivisatos, A.P.: Spontaneous superlattice formation in nanorods through partial cation exchange. Science 317, 355–358 (2007)CrossRefGoogle Scholar
  36. 36.
    Beberwyck, B.J., Surendranath, Y., Alivisatos, A.P.: Cation exchange: a versatile tool for nanomaterials synthesis. J. Phy. Chem. C 117, 19759–19770 (2013)CrossRefGoogle Scholar
  37. 37.
    Hu, M., Hartland, G.V.: Heat dissipation for Au particles in aqueous solution: relaxation time versus size. J Phys. Chem. B 106, 7029–7033 (2002)CrossRefGoogle Scholar
  38. 38.
    Chen, G., Xu, C., Huang, X., Ye, J., Gu, L., Li, G., Tang, Z., Wu, B., Yang, H., Zhao, Z., Zhou, Z., Fu, G., Zheng, N. (2016) Interfacial electronic effects control the reaction selectivity of platinum catalysts. Nat. Mater. advance online publicationGoogle Scholar
  39. 39.
    Jen-La Plante, I., Teitelboim, A., Pinkas, I., Oron, D., Mokari, T.: Exciton quenching due to copper diffusion limits the photocatalytic activity of CdS/Cu2S nanorod heterostructures. J. Phys. Chem. Lett. 5, 590–596 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of Science and Technology of ChinaHefeiChina

Personalised recommendations