Effect of Co Addition on Microstructure and Properties of Cu–Ni–Si Alloy

  • Jiang Li
  • Guojie Huang
  • XuJun Mi
  • LiJun Peng
  • HaoFeng Xie
  • Yonglin Kang
Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)

Abstract

Cu–Ni–Si system alloys have been the research hotspots because of high strength and high electrical conductivity in recent years. In this study, the influence of Co addition on microstructure and properties of Cu–Ni–Si alloys were investigated by transmission electron microscopy (TEM) and high resolution transmission electron microscopy (HRTEM). The result shows that the hardness of alloys increase firstly, gradually decline and leveled off while reaching a certain peak with the prolongation of aging time, which the electrical conductivity gradually increased. The best integrated performance is obtained at 500 °C aging for 4 h, which reaches the peak value of 233 HV and the conductivity was 37.3% IACS, the ultimate and yield strength reached 583 and 496 MPa, At the same time, the ductility of Cu–Ni–Si–Co alloy reached 12.9%. The phases of (Ni, Co)2Si precipitated with the addition of Co, which strengthens the alloy and enhances the mechanical properties. However, the formation of Co2Si phase leads to Ni element dissolved in the matrix, which gives rise to the reduction of conductivity.

Keywords

Cu–Ni–Si alloy Microstructure Solution heat treatment Diffusion 

Notes

Acknowledgements

Our study is supported by the National Key R&D Program of China (No. 2016YFB0301300).

References

  1. 1.
    X.P. Xiao, B.Q. Xiong, Q.S. Wang et al., Age-hardening characteristics of Cu–Ni–Si alloy after cold deformation. Appl. Mech. Mater. 217–219, 294–298 (2012)CrossRefGoogle Scholar
  2. 2.
    W. Wang, H. Kang, Z. Chen et al., Effects of Cr and Zr additions on microstructure and properties of Cu–Ni–Si alloys. Mater. Sci. Eng.: A 673, 378–390 (2016)CrossRefGoogle Scholar
  3. 3.
    E. Lee, S. Han, K. Euh et al., Effect of Ti addition on tensile properties of Cu–Ni–Si alloys. Met. Mater. Int. 17(4), 569–576 (2011)CrossRefGoogle Scholar
  4. 4.
    J.Y. Cheng, B.B. Tang, F.X. Yu et al., Evaluation of nanoscaled precipitates in a Cu–Ni–Si–Cr alloy during aging. J. Alloy. Compd. 614, 189–195 (2014)CrossRefGoogle Scholar
  5. 5.
    T. Hu, J.H. Chen, J.Z. Liu, Z.R. Liu, C.L. Wu, Acta Mater. 61, 1210–1219 (2013)CrossRefGoogle Scholar
  6. 6.
    D.M. Zhao, Q.M. Dong, P. Liu et al., Structure and strength of the age hardened Cu–Ni–Si alloy. Mater. Chem. Phys. 79(1), 81–86 (2003)CrossRefGoogle Scholar
  7. 7.
    S.Z. Han, L.S. Hwan, K. Sangshik et al., Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound. Sci. Rep. 6, 30907 (2016)CrossRefGoogle Scholar
  8. 8.
    L.J. Peng, B.Q. Xiong, G.L. Xie et al., Precipitation process and its effects on properties of aging Cu–Ni–Be alloy. Rare Met. 32(4), 332–337 (2013)CrossRefGoogle Scholar
  9. 9.
    K. Wang, K.F. Liu, J.B. Zhang, Microstructure and properties of aging Cu–Cr–Zr alloy. Rare Met. 33(2), 134 (2014)CrossRefGoogle Scholar
  10. 10.
    X.P. Xiao, Z.Y. Yi, T.T. Chen et al., Suppressing spinodal decomposition by adding Co into Cu–Ni–Si alloy. J. Alloy. Compd. 660, 178–183 (2016)CrossRefGoogle Scholar
  11. 11.
    Q. Lei, Z. Li, C. Dai et al., Effect of aluminum on microstructure and property of Cu–Ni–Si alloys. Mater. Sci. Eng.: A Struct. Mater. Prop. Microstruct. Process. 572(6), 65–74 (2013)CrossRefGoogle Scholar
  12. 12.
    C. Watanabe, F. Nishijima, R. Monzen et al., Mechanical properties of Cu–4.0 wt%Ni–0.95 wt%Si alloys with and without P and Cr Addition. Mater. Sci. Forum 561–565, 2321–2324 (2007)CrossRefGoogle Scholar
  13. 13.
    Q.S. Wang, G.L. Xie, X.J. Mi et al., The precipitation and strengthening mechanism of Cu–Ni–Si–Co alloy, in Materials Science Forum, vol. 749 (Trans Tech Publications, 2013), pp. 294–298CrossRefGoogle Scholar
  14. 14.
    S.Z. Han, L.S. Hwan, K. Sangshik et al., Increasing strength and conductivity of Cu alloy through abnormal plastic deformation of an intermetallic compound. Sci. Rep. 6, 30907 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jiang Li
    • 1
    • 2
  • Guojie Huang
    • 1
  • XuJun Mi
    • 1
  • LiJun Peng
    • 1
  • HaoFeng Xie
    • 1
  • Yonglin Kang
    • 2
  1. 1.General Research Institute for Nonferrous MetalsBeijingChina
  2. 2.University of Science and TechnologyBeijingChina

Personalised recommendations