Effect of Intermediate Annealing on the Interface and Plasticity of Cu–Ni–Si/Al–Mg–Si Clad Composite Wires

  • Zhen Yang
  • Xujun Mi
  • Haofeng Xie
  • Lijun Peng
  • Guojie Huang
  • Xue Feng
  • Xiangqian Yin
Conference paper

Abstract

The aim of this article is to study the effect of intermediate annealing on the interface and plasticity of Cu–Ni–Si/Al–Mg–Si clad composite wires. Cu–Ni–Si/Al–Mg–Si clad composite wires were produced by cold drawing process and annealed at the temperature from 150 to 350 °C for 0.5 h. The presence of various intermetallic compounds in different temperature was detected by scanning electron microscope and EDS analyzer. The mechanical properties were measured by stretch test. The elongation increased with the temperature increment. The morphology of fracture showed that intermetallic compounds were tough and brittle. During the subsequent drawing, the intermetallic compounds were harmful to the overall structure of composite wires. The elongation cannot identify the plasticity of copper-clad aluminum (CCA) composite wires accurately.

Keywords

Interface Clad composite wire Plasticity Intermediate annealing Intermetallic compounds 

References

  1. 1.
    Ahmed N., Extrusion of copper clad aluminum wire, J. Mech. Work. Technol. 2 (1978) 19–32.Google Scholar
  2. 2.
    K. Y. Rhee, W. Y. Han, H. J. Park, Fabrication of aluminum/copper clad composite using hot hydrostatic extrusion process and its material characteristics, Mater. Sci. Eng., A. 384 (2004) 70–76.Google Scholar
  3. 3.
    T. Sapanathan, S. Khoddam, S. H. Zahiri, Spiral extrusion of aluminum/copper composite for future manufacturing of hybrid rods: A study of bond strength and interfacial characteristics, J. Alloys Compd. 571 (2013) 85–92.Google Scholar
  4. 4.
    X. F. Hu, H. M. Zheng, J. W. Cui, The effect of Sc on the performance of copper clad aluminum magnesium busbar, J. Funct Mater. Dev. 5 (2015) 154–159.Google Scholar
  5. 5.
    X. Ji, H. Zhang, S. Luo, Microstructures and properties of Al-Mg-SI alloy overhead conductor by horizontal continuous casting and continuous extrusion forming process, Mater. Sci. Eng., A. 649 (2016) 128–134.Google Scholar
  6. 6.
    H. L. Seet, X. P. Li, K. S. Lee, Cold drawing of micro Ni80Fe20/Cu composite wires, J. Mater. Process. Technol. 192–193 (2007) 350–354.Google Scholar
  7. 7.
    S. LEE, M. LEE, S. LEE, Effect of bonding interface on delamination behavior of drawn Cu/Al bar clad material, T. Nonferr. Metal. Soc. 22 (2012) 645–649.Google Scholar
  8. 8.
    I. K. Kim, H. Sun. Mechanochemical joining in cold roll-cladding of tri-layered Cu/Al/Cu composite and the interface cracking behavior, Mater. Des. 57 (2014) 625–631.Google Scholar
  9. 9.
    M. Abbasi, T. A. Karimi, M. T. Salehi, Growth rate of intermetallic compounds in Al/Cu bimetal produced by cold roll welding process, J. Alloys Compd. 319 (2001) 233–241.Google Scholar
  10. 10.
    A. Gueydan, B. Domenges, E. Hug, Study of the intermetallic growth in copper-clad aluminum wires after thermal aging, Intermetallics. 50 (2014) 34–42.Google Scholar
  11. 11.
    J. Lei, P. Liu, D. Zhao, Recrystallization Behavior of Re-aged Cu–Ni–Si Alloy, Shanghai, China, 2004.Google Scholar
  12. 12.
    E. Hug, N. Billido, Brittleness study of intermetallic (Cu, Al) layers in copper-clad aluminium thin wires, Mater. Sci. Eng., A. 528 (2011) 7103–7106.Google Scholar
  13. 13.
    C. Chen, Effect of Annealing on the Interfacial Structure of Aluminum-Copper Joints, Mater. Trans. 7 (2007) 1938–1947.Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Zhen Yang
    • 1
  • Xujun Mi
    • 1
  • Haofeng Xie
    • 1
  • Lijun Peng
    • 1
  • Guojie Huang
    • 1
  • Xue Feng
    • 1
  • Xiangqian Yin
    • 1
  1. 1.State Key Laboratory of Nonferrous Metals & Processes, General Research Institute for Nonferrous MetalsBeijingChina

Personalised recommendations