Numerical Evaluation on the Filtration and Clogging Behavior of Porous Pavement

  • Guoyang LuEmail author
  • Guoxiang Zhou
  • Dawei Wang
  • Jing Zhong
  • Markus Oeser
Conference paper


To avoid the floods in urban pavement system, the use of permeable pavement is increasingly considered as an effective way to optimize the existing sealed pavement. Porous Asphalt (PA) has constituted the permeable pavement infrastructure for years, which can realize the fast infiltration and precipitation of surface water through layers. But the poor durability is the main obstacle inhibits the application of conventional PA. The substitution of the innovative Polyurethane binder can perform excellent mechanical property as well as the permeability. Apart from it, the filtration property is found effectively to reduce the quantity of particulate matter (PM) flooded by the rainfall. In this study, the filtration and clogging behavior of PU-bonded pavement under different concentration gradient of PM are quantified. Both filtration property and hydraulic conductivity are predicted by numerical modelling and adopted as comparative indexes. Results indicate that PU-Bonded permeable pavement has significant hydraulic conductivity and the effective absorptive-filtration performance for the contaminant of flow. The numerical modelling can well conduct the prediction of filtration and clogging performance of permeable pavement.


Filtration Porous Asphalt Permeable pavement Hydraulic conductivity Porosity Polyurethane 



The work underlying this project was carried out under at the request of the German Research Foundation (DFG), under research project No. OE 514/4-1.


  1. 1.
    Kuang, X., Sansalone, J.: Cementitious porous pavement in stormwater quality control: pH and alkalinity elevation. Water Sci. Technol. 63(12), 2992–2998 (2011)CrossRefGoogle Scholar
  2. 2.
    Wang, D., Schacht, A., Leng, Z., Leng, C., Kollmann, J., Oeser, M.: Effects of material composition on mechanical and acoustic performance of poroelastic road surface (PERS). Constr. Build. Mater. 135, 352–360 (2017)CrossRefGoogle Scholar
  3. 3.
    Sansalone, J., Teng, Z.: In situ partial exfiltration of rainfall runoff. I: quality and quantity attenuation. J. Environ. Eng. 130(9), 990–1007 (2004)CrossRefGoogle Scholar
  4. 4.
    Teng, Z., Sansalone, J.: In situ partial exfiltration of rainfall runoff. II: particle separation. J. Environ. Eng. 130(9), 1008–1020 (2004)CrossRefGoogle Scholar
  5. 5.
    Rushton, B.T.: Low-impact parking lot design reduces runoff and pollutant loads. J. Water Resour. Plan. Manag. 127(3), 172–179 (2001)CrossRefGoogle Scholar
  6. 6.
    Pagotto, C., Legret, M., Le Cloirec, P.: Comparison of the hydraulic behaviour and the quality of highway runoff water according to the type of pavement. Water Res. 34(18), 4446–4454 (2000)CrossRefGoogle Scholar
  7. 7.
    Kamali, M., Delkash, M., Tajrishy, M.: Evaluation of permeable pavement responses to urban surface runoff. J. Environ. Manag. 187, 43–53 (2017)CrossRefGoogle Scholar
  8. 8.
    Oeser, M., Hovagimian, P., Kabitzke, U.: Hydraulic and mechanical properties of porous cement-stabilised materials for base courses of PICPs. Int. J. Pavement Eng. 13(1), 68–79 (2012)CrossRefGoogle Scholar
  9. 9.
    Albrecht, F.: Theoretische untersuchungen über bie ablegerung staub und luft und ihre anwendung auf die theorie der staubfilter. Physik. Zeitschr 32, 48 (1931)Google Scholar
  10. 10.
    Kaufmann, A.: Die faserstoffe für atemschutzfiltern. Z. Ver. Dtsch. Ing. 8, 593–597 (1936)Google Scholar
  11. 11.
    Davies, C.N.: Air Filtration. Academic Press, London (1973)Google Scholar
  12. 12.
    Tien, C., Wang, C.S., et al.: Chainlike formation of particle deposits in fluid-particle separation. Chem. Eng. Sci. Technol. 196(7), 983–985 (1977)Google Scholar
  13. 13.
    Leung, W., Hung, C.: Investigation on pressure drop evolution of fibrous filter operating in aerodynamic slip regime under continuous loading of sub-micron aerosols. Sep. Purif. Technol. 63(11), 691–700 (2008)CrossRefGoogle Scholar
  14. 14.
    Renken, L., Oeser, M., Milatz, M., Grabe, J.: Measurement of hydraulic properties of unsaturated permeable polyurethane bound asphalt materials. In: Unsaturated Soil Mechanics-from Theory to Practice: Proceedings of the 6th Asia Pacific Conference on Unsaturated Soils, Guilin, China, 23–26 October 2015, p. 407. CRC Press, 4 November 2015CrossRefGoogle Scholar
  15. 15.
    Cooley Jr., L.A.: Permeability of superpave mixtures: evaluation of field permeameters. National Center for Asphalt Technology, NCAT Report No. 99-1, February 1999Google Scholar
  16. 16.
    Forschungsgesellschaft für das Straßen- und Verkehrswesen (FGSV): Handbuch für die Bemessung von Straßenverkehrsanlagen (HBS) (2009)Google Scholar
  17. 17.
    Vukovic, M., Soro, A.: Determination of Hydraulic Conductivity of Porous Media from Grain-Size Distribution. Water Resources Publications, Littleton (1992)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Guoyang Lu
    • 1
    Email author
  • Guoxiang Zhou
    • 2
  • Dawei Wang
    • 1
    • 3
  • Jing Zhong
    • 2
  • Markus Oeser
    • 1
  1. 1.Institute of Highway EngineeringRWTH Aachen UniversityAachenGermany
  2. 2.School of Civil EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China
  3. 3.School of Transportation Science and EngineeringHarbin Institute of TechnologyHarbinPeople’s Republic of China

Personalised recommendations