Imaging Examination

  • Andrés M. Rousselot
  • Jing Zhang
  • Huaigui Liu
Part of the Ocular Trauma book series (OCTRA)


Technology advances at a great pace. Particularly in medicine and, one may venture to say, even more so in the field of ophthalmology. Yet, regarding ocular trauma, the physician stands between multiple crossroads when deciding which imaging examination method to choose from. He must find balance between cost-benefit, medicolegal purposes, immediate or intermediate availability, and prioritizing strategy-modifying information, more often than not relying on century-old techniques, mixed with state-of-the-art technologies, and always based on solid clinical evaluation to make the best decision in a reasonably short time.

This chapter will attempt to introduce the imaging examination techniques of X-ray, computed tomography scan, magnetic resonance imaging, B-ultrasound, biomicroscopy, optical coherence tomography, and specular microscopy now available for the assessment in ocular trauma, their working mechanisms, scopes, as well as their strong and weak points.


Examination Ocular trauma X-ray Computed tomography scan Magnetic resonance imaging B-ultrasound UBM Biomicroscopy Optical coherence tomography Specular microscopy 


  1. 1.
    Mould R. Roentgen and the discovery of X-rays. Br J Radiol. 1995;68:1145–76.CrossRefGoogle Scholar
  2. 2.
    Kubal WS. Imaging of orbital trauma. Radiographics. 2008;28:1729–39.CrossRefGoogle Scholar
  3. 3.
    Saeed A, Cassidy L, Malone DE, Beatty S. Plain X-ray and computed tomography of the orbit in cases and suspected cases of intraocular foreign body. Eye (Lond). 2008;22:1373–7.CrossRefGoogle Scholar
  4. 4.
    Dunkin JM, Crum AV, Swanger RS, Bokhari SA. Globe trauma. Semin Ultrasound CT MR. 2011;32:51–6.CrossRefGoogle Scholar
  5. 5.
    Iinuma T, Hirota Y, Ishio K. Orbital wall fractures. Conventional views and CT. Rhinology. 1994;32:81–3.PubMedGoogle Scholar
  6. 6.
    Herman GT. Fundamentals of computerized tomography: image reconstruction from projections. London: Springer Science & Business Media; 2009.CrossRefGoogle Scholar
  7. 7.
    Hounsfield GN. Computerized transverse axial scanning (tomography). 1. Description of system. Br J Radiol. 1973;46:1016–22.CrossRefGoogle Scholar
  8. 8.
    Loporchio D, Mukkamala L, Gorukanti K, Zarbin M, Langer P, Bhagat N. Intraocular foreign bodies: a review. Surv Ophthalmol. 2016;61:582–96.CrossRefGoogle Scholar
  9. 9.
    Edelman RR, Warach S. Magnetic resonance imaging. N Engl J Med. 1993;328:708–16.CrossRefGoogle Scholar
  10. 10.
    Lee HJ, Jilani M, Frohman L, Baker S. CT of orbital trauma. Emerg Radiol. 2004;10:168–72.CrossRefGoogle Scholar
  11. 11.
    Pinto A, Brunese L, Daniele S, Faggian A, Guarnieri G, Muto M, Romano L. Role of computed tomography in the assessment of intraorbital foreign bodies. Semin Ultrasound CT MR. 2012;33:392–5.CrossRefGoogle Scholar
  12. 12.
    Caranci F, Cicala D, Cappabianca S, Briganti F, Brunese L, Fonio P. Orbital fractures: role of imaging. Semin Ultrasound CT MR. 2012;33:385–91.CrossRefGoogle Scholar
  13. 13.
    Fulcher TP, McNab AA, Sullivan TJ. Clinical features and management of intraorbital foreign bodies. Ophthalmology. 2002;109:494–500.CrossRefGoogle Scholar
  14. 14.
    Gor DM, Kirsch CF, Leen J, Turbin R, Von Hagen S. Radiologic differentiation of intraocular glass: evaluation of imaging techniques, glass types, size, and effect of intraocular hemorrhage. AJR Am J Roentgenol. 2001;177:1199–203.CrossRefGoogle Scholar
  15. 15.
    John SS, Rehman TA, John D, Raju RS. Missed diagnosis of a wooden intra-orbital foreign body. Indian J Ophthalmol. 2008;56:322–4.CrossRefGoogle Scholar
  16. 16.
    Rao SK, Nunez D, Gahbauer H. MRI evaluation of an open globe injury. Emerg Radiol. 2003;10:144–6.CrossRefGoogle Scholar
  17. 17.
    Sung EK, Nadgir RN, Fujita A, Siegel C, Ghafouri RH, Traband A, Sakai O. Injuries of the globe: what can the radiologist offer? Radiographics. 2014;34:764–76.CrossRefGoogle Scholar
  18. 18.
    Mester V, Kuhn F. Intraocular foreign bodies. Ophthalmol Clin N Am. 2002;15:235–42.CrossRefGoogle Scholar
  19. 19.
    Upshaw JE, Brenkert TE, Losek JD. Ocular foreign bodies in children. Pediatr Emerg Care. 2008;24:409–14. quiz 15–7CrossRefGoogle Scholar
  20. 20.
    Woodcock MG, Scott RA, Huntbach J, Kirkby GR. Mass and shape as factors in intraocular foreign body injuries. Ophthalmology. 2006;113:2262–9.CrossRefGoogle Scholar
  21. 21.
    Zhang Y, Zhang M, Jiang C, Qiu HY. Intraocular foreign bodies in China: clinical characteristics, prognostic factors, and visual outcomes in 1,421 eyes. Am J Ophthalmol. 2011;152:66–73. e1CrossRefGoogle Scholar
  22. 22.
    Bray LC, Griffiths PG. The value of plain radiography in suspected intraocular foreign body. Eye (Lond). 1991;5(Pt 6):751–4.CrossRefGoogle Scholar
  23. 23.
    McElvanney AM, Fielder AR. Intraocular foreign body missed by radiography. BMJ. 1993;306:1060–1.CrossRefGoogle Scholar
  24. 24.
    Memon AA, Iqbal MS, Cheema A, Niazi JH. Visual outcome and complications after removal of posterior segment intraocular foreign bodies through pars plana approach. J Coll Physicians Surg Pak. 2009;19:436–9.PubMedGoogle Scholar
  25. 25.
    Tate E, Cupples H. Detection of orbital foreign bodies with computed tomography: current limits. AJR Am J Roentgenol. 1981;137:493–5.CrossRefGoogle Scholar
  26. 26.
    Modjtahedi BS, Rong A, Bobinski M, McGahan J, Morse LS. Imaging characteristics of intraocular foreign bodies: a comparative study of plain film X-ray, computed tomography, ultrasound, and magnetic resonance imaging. Retina. 2015;35:95–104.CrossRefGoogle Scholar
  27. 27.
    Lit ES, Young LH. Anterior and posterior segment intraocular foreign bodies. Int Ophthalmol Clin. 2002;42:107–20.CrossRefGoogle Scholar
  28. 28.
    Barnes E, Griffiths M, Elliott A. Intraocular foreign body missed by computed tomography. BMJ. 1993;306:1542.CrossRefGoogle Scholar
  29. 29.
    Moisseiev E, Last D, Goez D, Barak A, Mardor Y. Magnetic resonance imaging and computed tomography for the detection and characterization of nonmetallic intraocular foreign bodies. Retina. 2015;35:82–94.CrossRefGoogle Scholar
  30. 30.
    Moisseiev E, Barequet D, Zunz E, Barak A, Mardor Y, Last D, Goez D, Segal Z, Loewenstein A. Validation of an algorithm for nonmetallic intraocular foreign Bodies’ composition identification based on computed tomography and magnetic resonance imaging. Retina. 2015;35:1898–904.CrossRefGoogle Scholar
  31. 31.
    Kim SY, Lee JH, Lee YJ, Choi BS, Choi JW, In HS, Kim SM, Baek JH. Diagnostic value of the anterior chamber depth of a globe on CT for detecting open-globe injury. Eur Radiol. 2010;20:1079–84.CrossRefGoogle Scholar
  32. 32.
    Greven CM, Engelbrecht NE, Slusher MM, Nagy SS. Intraocular foreign bodies: management, prognostic factors, and visual outcomes. Ophthalmology. 2000;107:608–12.CrossRefGoogle Scholar
  33. 33.
    Fielding JA. The assessment of ocular injury by ultrasound. Clin Radiol. 2004;59:301–12.CrossRefGoogle Scholar
  34. 34.
    Koo L, Kapadia MK, Singh RP, Sheridan R, Hatton MP. Gender differences in etiology and outcome of open globe injuries. J Trauma. 2005;59:175–8.CrossRefGoogle Scholar
  35. 35.
    Zilkha A. Computed tomography of blow-out fracture of the medial orbital wall. AJR Am J Roentgenol. 1981;137:963–5.CrossRefGoogle Scholar
  36. 36.
    Harris GJ, Garcia GH, Logani SC, Murphy ML, Sheth BP, Seth AK. Orbital blow-out fractures: correlation of preoperative computed tomography and postoperative ocular motility. Trans Am Ophthalmol Soc. 1998;96:329–47. discussion 47–53PubMedPubMedCentralGoogle Scholar
  37. 37.
    Curtin HD, Wolfe P, Schramm V. Orbital roof blow-out fractures. AJR Am J Roentgenol. 1982;139:969–72.CrossRefGoogle Scholar
  38. 38.
    Sugiura K, Yamada H, Okumoto T, Inoue Y, Onishi S. Quantitative assessment of orbital fractures in Asian patients: CT measurement of orbital volume. J Craniomaxillofac Surg. 2017;45(12):1944–7.CrossRefGoogle Scholar
  39. 39.
    Yan W, Chen Y, Qian Z, Selva D, Pelaez D, Tu Y, Wu W. Incidence of optic canal fracture in the traumatic optic neuropathy and its effect on the visual outcome. Br J Ophthalmol. 2017;101:261–7.PubMedGoogle Scholar
  40. 40.
    Yang J, Li Q, Wang M, Cao X, Ding Y, Wang G, Liao C. Semiquantitative assessment of optic nerve injury using manganese-enhanced MRI. Jpn J Radiol. 2016;34:356–65.CrossRefGoogle Scholar
  41. 41.
    Dussik K. Ultraschall-Diagnostik, insbesondere bei Gehirnerkrankungen, mittels Hyperphonographie. Z Phys Ther Bader Klimanheikd. 1948;1(9–10):140–5.PubMedGoogle Scholar
  42. 42.
    Campbell S. A short history of sonography in obstetrics and gynaecology. Facts Views Vis Obgyn. 2013;5(3):213–29.PubMedPubMedCentralGoogle Scholar
  43. 43.
    Borden Institute, W. R. Ophthalmic care of the combat casualty. Bethesda, MA: Office of the Surgeon General, Department of the Army, United States of America; 2003.Google Scholar
  44. 44.
    Berges O. Orbital ultrasonography: principles and technique. In: Newton TH, editor. Radiology of the eye and orbit. New York, NY: Raven Press; 1990.Google Scholar
  45. 45.
    Kuhn F. Ocular traumatology. Berlin: Springer; 2008.Google Scholar
  46. 46.
    Pavlin CJ. Subsurface ultrasound microscopic imaging of the intact eye. Ophthalmology. 1990;97(2):244–50.CrossRefGoogle Scholar
  47. 47.
    Guha S. Role of ultrasound biomicroscopy (UBM) in the detection and localisation of. Ann Acad Med Singap. 2006;35:536–40.PubMedGoogle Scholar
  48. 48.
    Deramo VA, Shah GK. The role of ultrasound biomicroscopy in ocular trauma. Trans Am Ophthalmol Soc. 1998;96:355–65. discussion 365–7PubMedPubMedCentralGoogle Scholar
  49. 49.
    Deramo VA, Shah GK. Ultrasound biomicroscopy as a tool for detecting and localizing occult foreign bodies after ocular trauma. Ophthalmology. 1999;106(2):301–5.CrossRefGoogle Scholar
  50. 50.
    Fercher A. Ophthalmic interferometry. In: von Bally G, Khanna S, editors. Proceedings of the International Conference on Optics in Life Sciences. Germany: Garmisch-Partenkirchen; 1990. p. 221–8.Google Scholar
  51. 51.
    Naohiro Tanno TI. 1990. Japan Patent No 2010042.Google Scholar
  52. 52.
    Huang D, Swanson E, Lin C, Schuman J, Stinson W, Chang W, et al. Optical coherence tomography. Science. 1991;254(5035):1178–81.CrossRefGoogle Scholar
  53. 53.
    Fercher AF. In vivo optical coherence tomography. Am J Ophthalmolol. 1993;116(1):113–4.CrossRefGoogle Scholar
  54. 54.
    Gabriele ML, Wollstein G. Optical coherence tomography: history, current status, and laboratory work. Invest Ophthalmol Vis Sci. 2011;52(5):2425–36.CrossRefGoogle Scholar
  55. 55.
    Yaqoob Z, Wu J, Yang C. Spectral domain optical coherence tomography: a better OCT imaging strategy. BioTechniques. 2005;39:S6–S13.CrossRefGoogle Scholar
  56. 56.
    Branco Ramos JL, Li Y, Huang D. Clinical and research applications of anterior segment optical coherence tomography – a review. Clin Exp Ophthalmol. 2009;37(1):81–9.CrossRefGoogle Scholar
  57. 57.
    Srinivasan VJ. Novel techniques for measuring capillary blood flow using OCT. Biomed Opt Express. 2012;3:612.CrossRefGoogle Scholar
  58. 58.
    Wojtkowski M, Srinivasan V, et al. Three-dimensional retinal imaging with high-speed ultrahigh-resolutionoptical coherence tomography. Ophthalmology. 2005;112:1734–−1746.CrossRefGoogle Scholar
  59. 59.
    Wu L, Grzybowski A. Current management of traumatic macular holes. J Ophthalmol. 2017;2017:1748135.Google Scholar
  60. 60.
    Volt A. Graefes archives kin. Ophthalmology. 1920;101:123.Google Scholar
  61. 61.
    Maurice DM. Cellular membrane activity in the corneal endothelium of the intact eye. Experientia. 1968;24:1094–5.CrossRefGoogle Scholar
  62. 62.
    Bourne WM, et al. Novel techniques for measuring capillary blood flow using OCT. Trans Sect Ophthalmol Am Acad Ophthalmol Otolaryngol. 1976;81(5):743–53.PubMedGoogle Scholar
  63. 63.
    Laing RA, Sandstrom MM, Leibowitz HM. In vivo photomicrography of the corneal endothelium. Arch Ophthalmol. 1975;93:143–5.CrossRefGoogle Scholar
  64. 64.
    Hirst LW, Sterner R, Patel AJ, Dunkelberger G. The past, present, and future of clinical specular microscopy. Aust J Ophthalmol. 1983;11:33–8.CrossRefGoogle Scholar
  65. 65.
    Laing RA, Sandstrom MM, Leibowitz HM. Clinical specular microscopy. I Optical principles. Arch Ophthalmol. 1979;97(9):1714–9.CrossRefGoogle Scholar
  66. 66.
    Remington LA. Clinical anatomy of the visual system. 2nd ed. Oxford: Butterworth-Heinemann; 2004.Google Scholar
  67. 67.
    Capó-Aponte JE, et al. Effects of repetitive low-level blast exposure on visual system and ocular structure. J Rehabil Res Dev. 2015;52(3):273–90.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Andrés M. Rousselot
    • 1
    • 2
  • Jing Zhang
    • 3
  • Huaigui Liu
    • 3
  1. 1.Benisek—Ascarza Ophthalmological Offices, Department in Instituto Oftalmológico Libertador of Buenos AiresBuenos AiresArgentina
  2. 2.Auxiliary Faculty in OphthalmologyUniversidad del Salvador of Buenos AiresBuenos AiresArgentina
  3. 3.Department of RadiologyTianjin Medical University General HospitalTianjinChina

Personalised recommendations