Microbial Biosurfactants: Future Active Food Ingredients

  • Vikrant Sharma
  • Deepansh Sharma


Microbial surfactants are a structurally diverse group of surface-active molecules produced by microorganisms. The rising environmental apprehension about synthetic surfactants elicits awareness to microbial surfactants vitally because of low toxicity, stability to extreme environmental conditions, and biodegradability. Biosurfactants are mostly used in environmental removal of pollutants; however, biosurfactant also exhibits significant utility in various prospects of food processing sector. Emulsion formation, oil-water stabilization, and anti-biofilm, antiadhesive, and antimicrobial potential are characteristics of microbial surfactants, which might be considered as an active ingredient in food processing and formulation. Bearing in mind the community and scientific backgrounds, utilization of microbial surfactants, which are eco-friendly and significantly important, has turned out to be vital for food-related applications.


Biosurfactant Food industries Antiadhesive Antimicrobial Emulsifiers 


Conflict of Interest

The author declares that there is no conflict of interest.


  1. Abalos A, Pinazo A, Infante MR, Casals M, Garcia F, Manresa A (2001) Physicochemical and antimicrobial properties of new rhamnolipids produced by Pseudomonas aeruginosa AT10 from soybean oil refinery wastes. Langmuir 17(5):1367–1371CrossRefGoogle Scholar
  2. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Banat IM, Makkar RS, Cameotra SS (2000) Potential commercial applications of microbial surfactants. Appl Microbiol Biotechnol 53(5):495–508CrossRefGoogle Scholar
  3. Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L et al (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87(2):427–444CrossRefGoogle Scholar
  4. Busscher HJ, Vanderkuijlbooij M, Van der Mei HC (1996) Biosurfactants from thermophilic dairy Streptococci and their potential role in the fouling control of heat exchanger plates. J Ind Microbiol 16:15–21CrossRefGoogle Scholar
  5. Campos JM, Montenegro Stamford TL, Sarubbo LA, de Luna JM, Rufino RD, Banat IM (2013) Microbial biosurfactants as additives for food industries. Biotechnol Prog 29(5):1097–1108CrossRefGoogle Scholar
  6. Chae MS, Schraft H (2000) Comparative evaluation of adhesion and biofilm formation of different Listeria monocytogenes strains. Int J Food Microbiol 62:103–111CrossRefGoogle Scholar
  7. Cirigliano MC, Carman GM (1984) Isolation of a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 48(4):747–750PubMedCentralPubMedGoogle Scholar
  8. Cirigliano MC, Carman GM (1985) Purification and characterization of liposan, a bioemulsifier from Candida lipolytica. Appl Environ Microbiol 50(4):846–850PubMedCentralPubMedGoogle Scholar
  9. Cooper DG, Paddock DA (1984) Production of a biosurfactant from Torulopsis bombicola. Appl Environ Microbiol 47(1):173–176PubMedCentralPubMedGoogle Scholar
  10. De Araujo LV, Abreu F, Lins U, Anna LMDMS, Nitschke M, Freire DMG (2011) Rhamnolipid and surfactin inhibit Listeria monocytogenes adhesion. Food Res Int 44(1):481–488CrossRefGoogle Scholar
  11. Desai JD, Banat IM (1997) Microbial production of surfactants and their commercial potential. Microbiol Mol Biol Rev 61(1):47–64PubMedCentralPubMedGoogle Scholar
  12. DeSanto K (2011) US 7985722 B2Google Scholar
  13. Flasz A, Rocha CA, Mosquera B, Sajo C (1998) A comparative study of the toxicity of a synthetic surfactant and one produced by Pseudomonas aeruginosa ATCC 55925. Med Sci Res 26:181–185Google Scholar
  14. Freire DMG, Araujo LV, Kronemberger FA, Nitschke M (2009) Biosurfactants as emerging additives in food processing. In: Innovation in food engineering: new techniques and products. Taylor & Francis Group, Boca Raton, pp 685–705CrossRefGoogle Scholar
  15. Gandhi NR, Victoria L Skebba P (2007) WO 2007095258 A2Google Scholar
  16. Ghribi D, Abdelkefi-Mesrati L, Mnif I, Kammoun R, Ayadi I, Saadaoui I et al (2012) Investigation of antimicrobial activity and statistical optimization of Bacillus subtilis SPB1 biosurfactant production in solid-state fermentation. BioMed Res Int 2012:373682Google Scholar
  17. Gudiña EJ, Rocha V, Teixeira JA, Rodrigues LR (2010) Antimicrobial and antiadhesive properties of a biosurfactant isolated from Lactobacillus paracasei ssp. paracasei A20. Lett Appl Microbiol 50(4):419–424CrossRefGoogle Scholar
  18. Gudina EJ, Teixeira JA, Rodrigues LR (2010) Isolation and functional characterization of a biosurfactant produced by Lactobacillus paracasei. Colloids Surf B: Biointerfaces 76(1):298–304CrossRefGoogle Scholar
  19. Gudiña EJ, Teixeira JA, Rodrigues LR (2011) Biosurfactant-producing lactobacilli: screening, production profiles, and effect of medium composition. Appl Environ Soil Sci 2011Google Scholar
  20. Hommel R, Stiiwer O, Stuber W, Haferburg D, Kleber HP (1987) Production of water-soluble surface-active exolipids by Torulopsis apicola. Appl Microbiol Biotechnol 26(3):199–205CrossRefGoogle Scholar
  21. Hood SK, Zottola EA (1995) Biofilms in food processing. Food Control 6(1):9e18CrossRefGoogle Scholar
  22. Howard J, Reid G, Gan BS (2004). Biosurfactants for blocking the interaction of a pathogen with a collagen receptor. United state patent. S 6,727,223 B2Google Scholar
  23. Iyer A, Mody K, Jha B (2006) Emulsifying properties of a marine bacterial exopolysaccharide. Enzym Microb Technol 38(1):220–222CrossRefGoogle Scholar
  24. Jarvis FG, Johnson MJ (1949) A glycolipid produced by Pseudomonas aeruginosa. J Am Chem Soc 71:4124–4126CrossRefGoogle Scholar
  25. Kachholz TRAUDEL, Schlingmann M (1987) Possible food and agricultural application of microbial surfactants: an assessment. Biosurfactants Biotechnol:183–210Google Scholar
  26. Kitamoto D, Yanagishita H, Shinbo T, Nakane T, Kamisawa C, Nakahara T (1993) Surface active properties and antimicrobial activities of mannosylerythritol lipids as biosurfactants produced by Candida antarctica. J Biotechnol 29(1):91–96CrossRefGoogle Scholar
  27. Klich MA, Arthur KS, Lax AR, Bland JM (1994) Iturin A: a potential new fungicide for stored grains. Mycopathologia 127(2):123e127CrossRefGoogle Scholar
  28. Koglin A, Doetsch V, Bernhard F (2010) Molecular engineering aspects for the production of new and modified biosurfactants. In: Biosurfactants. Springer, New York, pp 158–169CrossRefGoogle Scholar
  29. Kosaric N (2001) Biosurfactants and their application for soil bioremediation. Food Technol Biotechnol 39(4):295–304Google Scholar
  30. Kosaric N, Sukan FV (eds) (1993) Biosurfactants: production: properties: applications. CRC Press, New YorkGoogle Scholar
  31. Krohn M, Zinke H (2011) EP 2299848 A1Google Scholar
  32. Lang S (2002) Biological amphiphiles (microbial biosurfactants). Curr Opin Colloid Interface Sci 7(1-2):12–20CrossRefGoogle Scholar
  33. Li ZY, Lang S, Wagner F, White L, Wray V (1984) Formation and identification of interfacial active glycolipids from resting cells of Arthrobacter sp. and potential use in tertiary oil recovery. Appl Environ Microbiol 48:610–617PubMedCentralPubMedGoogle Scholar
  34. Lima T, Procópio LC, Brandão FD, Leão BA, Tótola MR, Borges AC (2011) Evaluation of bacterial surfactant toxicity towards petroleum degrading microorganisms. Bioresour Technol 102(3):2957–2964CrossRefGoogle Scholar
  35. Linhardt RJ, Bakhit R, Daniels R, Mayerl F, Pickenhagen W (1989) Microbially produced rhamnolipid as a source of rhamnose. Biotechnol Bioeng 33:365–368CrossRefGoogle Scholar
  36. Lukondeh T, Ashbolt NJ, Rogers PL (2003) Evaluation of Kluyveromyces marxianus FII 510700 grown on a lactose-based medium as a source of a natural bioemulsifier. J Ind Microbiol Biotechnol 30(12):715–720CrossRefGoogle Scholar
  37. Maddikeri GL, Gogate PR, Pandit AB (2015) Improved synthesis of sophorolipids from waste cooking oil using fed batch approach in the presence of ultrasound. Chem Eng J 263:479–487CrossRefGoogle Scholar
  38. Magalhães L, Nitschke M (2013) Antimicrobial activity of rhamnolipids against Listeria monocytogenes and their synergistic interaction with nisin. Food Control 29(1):138–142CrossRefGoogle Scholar
  39. Makkar RS, Cameotra SS, Banat IM (2011) Advances in utilization of renewable substrates for biosurfactant production. AMB Express 1(1):5PubMedCentralCrossRefGoogle Scholar
  40. Meylheuc T, Van Oss CJ, Bellon-Fontaine MN (2001) Adsorption of biosurfactant on solid surfaces and consequences regarding the bioadhesion of Listeria monocytogenes LO28. J Appl Microbiol 91(5):822–832CrossRefGoogle Scholar
  41. Mireles JR-II, Toguchi A, Harshey RM (2001) Salmonella enterica serovar Typhimurium swarming mutants with altered biofilm-forming abilities: surfactin inhibits biofilm formation. J Bacteriol 183:5848–5854PubMedCentralCrossRefGoogle Scholar
  42. Mnif I, Chaabouni-Ellouze S, Ghribi D (2012) Optimization of the nutritional parameters for enhanced production of B. subtilis SPB1 biosurfactant in submerged culture using response surface methodology. Biotechnol Res Int 2012Google Scholar
  43. Mohan PK, Nakhla G, Yanful EK (2006) Biokinetics of biodegradation of surfactants under aerobic, anoxic and anaerobic conditions. Water Res 40(3):533–540CrossRefGoogle Scholar
  44. Mulligan CN (2005) Environmental applications for biosurfactants. Environ Pollut 133(2):183–198CrossRefGoogle Scholar
  45. Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Curr Sci 94(6):736–747Google Scholar
  46. Neta NDAS, Santos JCSD, Sancho SDO, Rodrigues S, Gonçalves LRB, Rodrigues LR, Teixeira JA (2012) Enzymatic synthesis of sugar esters and their potential as surface-active stabilizers of coconut milk emulsions. Food Hydrocoll 27(2):324–331CrossRefGoogle Scholar
  47. Nitschke M, Costa SG, Haddad R, Gonçalves G, Lireny A, Eberlin MN, Contiero J (2005) Oil wastes as unconventional substrates for rhamnolipid biosurfactant production by Pseudomonas aeruginosa LBI. Biotechnol Prog 21(5):1562–1566CrossRefGoogle Scholar
  48. Nitschke M, Costa SGVAO (2007) Biosurfactants in food industry. Trends Food Sci Technol 18(5):252–259CrossRefGoogle Scholar
  49. Nitschke M, Pastore GM (2006) Production and properties of a surfactant obtained from Bacillus subtilis grown on cassava wastewater. Bioresour Technol 97(2):336–341CrossRefGoogle Scholar
  50. Ochsner UA, Hembach T, Fiechter A (1996) Production of rhamnolipid biosurfactants. In: Downstream processing biosurfactants carotenoids. Springer, Berlin/Heidelberg, pp 89–118Google Scholar
  51. Paik HD, Bae SS, Park SH, Pan JG (1997) Identification and partial characterisation of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis. J Ind Microbiol Biotechnol 19(4):294–298CrossRefGoogle Scholar
  52. Pierce D, Heilman TJ (2001) US 6262038 B1Google Scholar
  53. Price NP, Ray KJ, Vermillion KE, Dunlap CA, Kurtzman CP (2012) Structural characterization of novel sophorolipid biosurfactants from a newly identified species of Candida yeast. Carbohydr Res 348:33–41CrossRefGoogle Scholar
  54. Rosenberg E, Ron EZ (1999) High-and low-molecular-mass microbial surfactants. Appl Microbiol Biotechnol 52(2):154–162CrossRefGoogle Scholar
  55. Saharan BS, Sahu RK, Sharma D (2011) A review on biosurfactants: fermentation, current developments and perspectives. Genet Eng Biotechnol J 2011:14Google Scholar
  56. Shao L, Song X, Ma X, Li H, Qu Y (2012) Bioactivities of sophorolipid with different structures against human esophageal cancer cells. J Surg Res 173(2):286–291CrossRefGoogle Scholar
  57. Sharma D, Singh Saharan B (2014) Simultaneous production of biosurfactants and Bacteriocins by probiotic lactobacillus casei MRTL3. Int J Microbiol 2014Google Scholar
  58. Sharma D, Saharan BS, Chauhan N, Procha S, Lal S (2015) Isolation and functional characterization of novel biosurfactant produced by Enterococcus faecium. Springer Plus 4(1):4CrossRefGoogle Scholar
  59. Shepherd R, Rockey J, Sutherland IW, Roller S (1995) Novel bioemulsifiers from microorganisms for use in foods. J Biotechnol 40(3):207–217CrossRefGoogle Scholar
  60. Shete AM, Wadhawa G, Banat IM, Chopade BA (2006) Mapping of patents on bioemulsifier and biosurfactant: a review. J Sci Ind Res 65(2):91Google Scholar
  61. Singh P, Cameotra SS (2004) Potential applications of microbial surfactants in biomedical sciences. Trends Biotechnol 22(3):142–146CrossRefGoogle Scholar
  62. Soberón-Chávez G, Maier RM (2011) Biosurfactants: a general overview. In: Biosurfactants. Springer, Berlin/Heidelberg, pp 1–11CrossRefGoogle Scholar
  63. Stadler M, Bitzer J, Köpcke B, Reinhardt K, Moldenhauer J (2014) US 20140178444 A1Google Scholar
  64. Suzuki M, Kitagawa M, Yamamoto S, Sogabe A, Kitamoto D, Morita T, Fukuoka T,Imura T (2011) US 7989599 B2Google Scholar
  65. Takahashi M, Morita T, Fukuoka T, Imura T, Kitamoto D (2011) Glycolipid biosurfactants, mannosylerythritol lipids, show antioxidant and protective effects against H (2) O (2)-induced oxidative stress in cultured human skin fibroblasts. J Oleo Sci 61(8):457–464CrossRefGoogle Scholar
  66. Thavasi R, Jayalakshmi S, Balasubramanian T, Banat IM (2008) Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J Microbiol Biotechnol 24(7):917–925CrossRefGoogle Scholar
  67. Van Haesendonck IPH, Vanzeveren ECA (2004) Rhamnolipids in bakery products. W.O. 2004/040984, International application patent (PCT)Google Scholar
  68. Velikonja J, Kosaric N (1993) Biosurfactants in food applications. Surfactant Science Series, 419–419Google Scholar
  69. Xu Q, Nakajima M, Liu Z, Shiina T (2011) Biosurfactants for microbubble preparation and application. Int J Mol Sci 12(1):462–475PubMedCentralCrossRefGoogle Scholar
  70. Yin X (2014) US 20140294925 A1Google Scholar
  71. Yoo DS, LEE BS, KIM EK (2005) Characteristics of microbial biosurfactant as an antifungal agent against plant pathogenic fungus. J Microbiol Biotechnol 15(6):1164–1169Google Scholar
  72. Zottola EA (1994) Microbial attachment and biofilm formation: a new problem in the food industry? Food Technol 48:107e114Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Vikrant Sharma
    • 1
  • Deepansh Sharma
    • 2
    • 3
  1. 1.School of Bioengineering and BiosciencesLovely Professional UniversityPunjabIndia
  2. 2.Department of Microbiology, School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraIndia
  3. 3.Amity Institute of Microbial TechnologyAmity UniversityJaipurIndia

Personalised recommendations