Small at Size, Big at Impact: Microorganisms for Sustainable Development

  • Nasib Singh
  • Joginder Singh
  • Karan Singh


From being the first life originated on Earth ~3.8 billion years ago to the present time, microorganisms have enormously impacted the human, animal, and plant’s lives and global biogeochemical cycles in one way or another. These are widely distributed in almost all habitats and ecosystems on Earth, including the most hostile and extreme habitats which are otherwise uninhabitable to other organisms. Domain Bacteria and Archaea are composed entirely of prokaryotic microorganisms, whereas eukaryotic microbes, viz., fungi, algae, protozoa, slime molds, and water molds, belong to domain Eukarya. Archaea and bacteria represent the majority of life-forms on our planet. Recent estimate predicts 1011–1012 microbial species on Earth of which 99.9% microbial species are yet to be cultured in the laboratory. Ocean, soil, rhizosphere, human gut, animal body, etc. are some of the most densely populated microbial habitats. Microorganisms are excellent model organisms for the study of metabolism and genetics at cellular level. Considered as Earth’s greatest chemists, microorganisms have unparalleled metabolic capabilities, extraordinary adaptability, and remarkable survival strategies which undoubtedly make them the most successful living creatures. Most microbes are beneficial to humans, plants, and animals. These contribute significantly to ensure the quality of human life and in sustaining life on our planet. Microbes have established ecologically important symbiotic and nonsymbiotic associations with themselves, humans, plants, ruminants, vertebrates, and invertebrates. Incomparable importance of microorganisms led to the origin of concepts of microbiome, hologenome, and superorganism. Microorganisms offer numerous biotechnological compounds for human, animal and agriculture, and environment sustainability. These are the source of numerous bioproducts like antibiotics, biopharmaceuticals, single-cell proteins, organic acids, biofertilizers, biopesticides, enzymes, pigments, vitamins, biofuels, biocement, and many more. Harnessing microbial capabilities is undoubtedly the best possible sustainable solution to ever-increasing challenges of balanced diet, clean air, water, energy, medicine, and healthy environment.


Microbial diversity Sustainable development Microbiome Rhizosphere Nitrogen fixation Probiotics Microbial cell factories Biopharmaceuticals 


  1. Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomol Ther 4:117–139Google Scholar
  2. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20CrossRefGoogle Scholar
  3. Aherfi S, Colson P, La Scola B, Raoult D (2016) Giant viruses of amoebas: an update. Front Microbiol 7:349CrossRefGoogle Scholar
  4. Arnold JW, Roach J, Azcarate-Peril MA (2016) Emerging technologies for gut microbiome research. Trends Microbiol 24:887–901CrossRefGoogle Scholar
  5. Bandyopadhyay AA, Khetan A, Malmberg LH, Zhou W, Hu WS (2017) Advancement in bioprocess technology: parallels between microbial natural products and cell culture biologics. J Ind Microbiol Biotechnol 44:785–797CrossRefGoogle Scholar
  6. Becker J, Wittmann C (2015) Advanced biotechnology: metabolically engineered cells for the bio-based production of chemicals and fuels, materials, and health-care products. Angew Chem Int Ed Engl 54:3328–3350CrossRefGoogle Scholar
  7. Bekker A, Holland HD, Wang PL, Rumble D III (2004) Dating the rise of atmospheric oxygen. Nature 427:117–120CrossRefGoogle Scholar
  8. Bennett GM, Abbà S, Kube M, Marzachì C (2016) Complete genome sequences of the obligate symbionts “Candidatus Sulcia muelleri” and “Ca. Nasuia deltocephalinicola” from the pestiferous leafhopper Macrosteles quadripunctulatus (Hemiptera: Cicadellidae). Genome Announc 4:e01604–e01615CrossRefGoogle Scholar
  9. Brock TD (1967) Life at high temperatures. Evolutionary, ecological, and biochemical significance of organisms living in hot springs is discussed. Science 158:1012–1029CrossRefGoogle Scholar
  10. Bunge J, Willis A, Walsh F (2014) Estimating the number of species in microbial diversity studies. Ann Rev Stat Appl 1:427–445CrossRefGoogle Scholar
  11. Canganella F, Wiegel J (2014) Anaerobic thermophiles. Life 4:77–104CrossRefGoogle Scholar
  12. Carlton JM, Hirt RP, Silva JC et al (2007) Draft genome sequence of the sexually transmitted pathogen trichomonas vaginalis. Science 315:207–212CrossRefGoogle Scholar
  13. Chang YJ, Land M, Hauser L, Chertkov O, Del Rio TG, Nolan M, Copeland A, Tice H, Cheng JF, Lucas S, Han C et al (2011) Non-contiguous finished genome sequence and contextual data of the filamentous soil bacterium Ktedonobacter racemifer type strain (SOSP1-21 T). Stand Genomic Sci 5:97CrossRefGoogle Scholar
  14. Checinska SA, Kumar RM, Pal D, Mayilraj S, Venkateswaran K (2017) Solibacillus kalamii sp. nov., isolated from a high-efficiency particulate arrestance filter system used in the international Space Station. Int J Syst Evol Microbiol 67:896–901CrossRefGoogle Scholar
  15. Chua KJ, Kwok WC, Aggarwal N, Sun T, Chang MW (2017) Designer probiotics for the prevention and treatment of human diseases. Curr Opin Chem Biol 40:8–16CrossRefGoogle Scholar
  16. Clarke A (2014) The thermal limits to life on Earth. Int J Astrobiol 13:141–154CrossRefGoogle Scholar
  17. Colson P, La Scola B, Levasseur A, Caetano-Anollés G, Raoult D (2017) Mimivirus: leading the way in the discovery of giant viruses of amoebae. Nat Rev Microbiol 15:243–254CrossRefGoogle Scholar
  18. Corradi N, Pombert JF, Farinelli L, Didier ES, Keeling PJ (2010) The complete sequence of the smallest known nuclear genome from the microsporidian Encephalitozoon intestinalis. Nat Commun 1:77CrossRefGoogle Scholar
  19. Cox MM, Battista JR (2005) Deinococcus radiodurans–the consummate survivor. Nat Rev Microbiol 3:882–892CrossRefGoogle Scholar
  20. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochimica et Biophysica Acta (BBA) 1830:3670–3695CrossRefGoogle Scholar
  21. Demain AL, Sanchez S (2009) Microbial drug discovery: 80 years of progress. J Antibiot (Tokyo) 62:5–16CrossRefGoogle Scholar
  22. Derelle E, Ferraz C, Rombauts S, Rouzé P, Worden AZ, Robbens S, Partensky F, Degroeve S, Echeynié S, Cooke R, Saeys Y (2006) Genome analysis of the smallest free-living eukaryote Ostreococcus tauri unveils many unique features. Proc Natl Acad Sci U S A 103:11647–11652CrossRefGoogle Scholar
  23. Donaldson GP, Lee SM, Mazmanian SK (2016) Gut biogeography of the bacterial microbiota. Nat Rev Microbiol 14:20–32CrossRefGoogle Scholar
  24. Doron S, Snydman DR (2015) Risk and safety of probiotics. Clin Infect Dis 60:S129–S134CrossRefGoogle Scholar
  25. Dufresne A, Salanoubat M, Partensky F, Artiguenave F, Axmann IM, Barbe V, Duprat S, Galperin MY, Koonin EV, Le Gall F, Makarova KS (2003) Genome sequence of the cyanobacterium Prochlorococcus marinus SS120, a nearly minimal oxyphototrophic genome. Proc Natl Acad Sci U S A 100:10020–10025CrossRefGoogle Scholar
  26. Fang H, Kang J, Zhang D (2017) Microbial production of vitamin B12: a review and future perspectives. Microb Cell Factories 16:15CrossRefGoogle Scholar
  27. Ferrer-Miralles N, Villaverde A (2013) Bacterial cell factories for recombinant protein production; expanding the catalogue. Microb Cell Factories 12:113CrossRefGoogle Scholar
  28. Fodor AA, DeSantis TZ, Wylie KM, Ye Y, Hepburn T, Hu P, Sodergren E, Liolios K, Huot-Creasy H, Birren BW, Earl AM (2012) The “most wanted” taxa from the human microbiome for whole genome sequencing. PLoS One 7:e41294CrossRefGoogle Scholar
  29. Fontana L, Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gil A (2013) Sources, isolation, characterisation and evaluation of probiotics. Br J Nutr 109:S35–S50CrossRefGoogle Scholar
  30. Gilbert JA, Neufeld JD (2014) Life in a world without microbes. PLoS Biol 12:e1002020CrossRefGoogle Scholar
  31. Giovannoni SJ, Tripp HJ, Givan S, Podar M, Vergin KL, Baptista D, Bibbs L, Eads J, Richardson TH, Noordewier M, Rappé MS (2005) Genome streamlining in a cosmopolitan oceanic bacterium. Science 309:1242–1245CrossRefGoogle Scholar
  32. Gutleben J, Chaib De Mares M, van Elsas JD, Smidt H, Overmann J, Sipkema D (2017) The multi-omics promise in context: from sequence to microbial isolate. Crit Rev Microbiol doi: [Epub ahead of print], 44, 212CrossRefGoogle Scholar
  33. Hampton-Marcell JT, Lopez JV, Gilbert JA (2017) The human microbiome: an emerging tool in forensics. Microb Biotechnol 10:228–230CrossRefGoogle Scholar
  34. Horneck G, Klaus DM, Mancinelli RL (2010) Space microbiology. Microbiol Mol Biol Rev 74:121–156CrossRefGoogle Scholar
  35. Hug LA, Baker BJ, Anantharaman K, Brown CT, Probst AJ, Castelle CJ, Butterfield CN, Hernsdorf AW, Amano Y, Ise K, Suzuki Y (2016) A new view of the tree of life. Nat Microbiol 1:16048CrossRefGoogle Scholar
  36. Human Microbiome Project Consortium (2012) Structure, function and diversity of the healthy human microbiome. Nature 486:207–214CrossRefGoogle Scholar
  37. Igiehon NO, Babalola OO (2017) Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Appl Microbiol Biotechnol 101:4871–4881CrossRefGoogle Scholar
  38. Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S (2012) Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci U S A 109:16213–16216CrossRefGoogle Scholar
  39. Kashefi K, Lovley DR (2003) Extending the upper temperature limit for life. Science 301:934CrossRefGoogle Scholar
  40. Kinch MS, Patridge E, Plummer M, Hoyer D (2014) An analysis of FDA-approved drugs for infectious disease: antibacterial agents. Drug Discov Today 19:1283–1287CrossRefGoogle Scholar
  41. Kollah B, Patra AK, Mohanty SR (2016) Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change. Environ Sci Pollut Res Int 23:4358–4369CrossRefGoogle Scholar
  42. Krüger A, Schäfers C, Schröder C, Antranikian G (2017) Towards a sustainable biobased industry–Highlighting the impact of extremophiles. N Biotechnol. S1871-6784(16)32667-XGoogle Scholar
  43. Kung Y, Runguphan W, Keasling JD (2012) From fields to fuels: recent advances in the microbial production of biofuels. ACS Synth Biol 1:498–513CrossRefGoogle Scholar
  44. Lebre PH, De Maayer P, Cowan DA (2017) Xerotolerant bacteria: surviving through a dry spell. Nat Rev Microbiol 15:285–296CrossRefGoogle Scholar
  45. Legendre M, Bartoli J, Shmakova L, Jeudy S, Labadie K, Adrait A, Lescot M, Poirot O, Bertaux L, Bruley C, Couté Y (2014) Thirty-thousand-year-old distant relative of giant icosahedral DNA viruses with a pandoravirus morphology. Proc Natl Acad Sci U S A 111:4274–4279CrossRefGoogle Scholar
  46. Ley RE, Peterson DA, Gordon JI (2006) Ecological and evolutionary forces shaping microbial diversity in the human intestine. Cell 124:837–848CrossRefGoogle Scholar
  47. Lippi G, Plebani M (2017) Statins for primary prevention of cardiovascular disease. Trends Pharmacol Sci 38:111–112CrossRefGoogle Scholar
  48. Lo WS, Huang YY, Kuo CH (2016) Winding paths to simplicity: genome evolution in facultative insect symbionts. FEMS Microbiol Rev 40:855–874CrossRefGoogle Scholar
  49. Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci U S A 113:5970–5975CrossRefGoogle Scholar
  50. Marco ML, Heeney D, Binda S, Cifelli CJ, Cotter PD, Foligné B, Gänzle M, Kort R, Pasin G, Pihlanto A, Smid EJ (2017) Health benefits of fermented foods: microbiota and beyond. Curr Opin Biotechnol 44:94–102CrossRefGoogle Scholar
  51. Martin A, McMinn A (2017) Sea ice, extremophiles and life on extra-terrestrial ocean worlds. Int J Astrobiol doi. Epub ahead of printCrossRefGoogle Scholar
  52. Mazard S, Penesyan A, Ostrowski M, Paulsen IT, Egan S (2016) Tiny microbes with a big impact: the role of cyanobacteria and their metabolites in shaping our future. Mar Drugs 14:97CrossRefGoogle Scholar
  53. Mirzaei MK, Maurice CF (2017) Menage a trois in the human gut: interactions between host, bacteria and phages. Nat Rev Microbiol 15:397–408CrossRefGoogle Scholar
  54. Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on Earth and in the ocean? PLoS Biol 9:e1001127CrossRefGoogle Scholar
  55. Mora M, Perras A, Alekhova TA, Wink L, Krause R, Aleksandrova A, Novozhilova T, Moissl-Eichinger C (2016) Resilient microorganisms in dust samples of the International Space Station-survival of the adaptation specialists. Microbiome 4:65CrossRefGoogle Scholar
  56. Moran NA, Bennett GM (2014) The tiniest tiny genomes. Annu Rev Microbiol 68:195–215CrossRefGoogle Scholar
  57. Mus F, Crook MB, Garcia K, Garcia Costas A, Geddes BA, Kouri ED, Paramasivan P, Ryu MH, Oldroyd GE, Poole PS, Udvardi MK, Voigt CA, Ané JM, Peters JW (2016) Symbiotic nitrogen fixation and the challenges to its extension to nonlegumes. Appl Environ Microbiol 82:3698–3710CrossRefGoogle Scholar
  58. Ochsenreither K, Glück C, Stressler T, Fischer L, Syldatk C (2016) Production strategies and applications of microbial single cell oils. Front Microbiol 7:1539CrossRefGoogle Scholar
  59. O’Toole PW, Marchesi JR, Hill C (2017) Next-generation probiotics: the spectrum from probiotics to live biotherapeutics. Nat Microbiol 2:17057CrossRefGoogle Scholar
  60. Philippe N, Legendre M, Doutre G, Couté Y, Poirot O, Lescot M, Arslan D, Seltzer V, Bertaux L, Bruley C, Garin J, Claverie JM, Abergel C (2013) Pandoraviruses: amoeba viruses with genomes up to 2.5 Mb reaching that of parasitic eukaryotes. Science 341:281–286CrossRefGoogle Scholar
  61. Pikuta EV, Hoover RB, Tang J (2007) Microbial extremophiles at the limits of life. Crit Rev Microbiol 33:183–209CrossRefGoogle Scholar
  62. Poli A, Finore I, Romano I, Gioiello A, Lama L, Nicolaus B (2017) Microbial diversity in extreme marine habitats and their biomolecules. Microorganisms 5:25CrossRefGoogle Scholar
  63. Pomeroy LR, Williams PJ, Azam F, Hobbie JE (2007) The microbial loop. Oceanography 20:28–33CrossRefGoogle Scholar
  64. Proal AD, Lindseth IA, Marshall TG (2017) Microbe-microbe and host-microbe interactions drive microbiome dysbiosis and inflammatory processes. Discover Med 23:51–60Google Scholar
  65. Qian J, Hospodsky D, Yamamoto N, Nazaroff WW, Peccia J (2012) Size-resolved emission rates of air-borne bacteria and fungi in an occupied classroom. Indoor Air 22:339–351CrossRefGoogle Scholar
  66. Ranjan A, Townsley BT, Ichihashi Y, Sinha NR, Chitwood DH (2015) An intracellular transcriptomic atlas of the giant coenocyte Caulerpa taxifolia. PLoS Genet 11:e1004900CrossRefGoogle Scholar
  67. Remigi P, Zhu J, Young JP, Masson-Boivin C (2016) Symbiosis within symbiosis: evolving nitrogen-fixing legume symbionts. Trends Microbiol 24:63–75CrossRefGoogle Scholar
  68. Sanchez-Garcia L, Martín L, Mangues R, Ferrer-Miralles N, Vázquez E, Villaverde A (2016) Recombinant pharmaceuticals from microbial cells: a 2015 update. Microb Cell Factories 15:33CrossRefGoogle Scholar
  69. Sarkar P, Yarlagadda V, Ghosh C, Haldar J (2017) A review on cell wall synthesis inhibitors with an emphasis on glycopeptide antibiotics. Med Chem Comm 8:516–533CrossRefGoogle Scholar
  70. Schneiker S, Perlova O, Kaiser O, Gerth K, Alici A, Altmeyer MO, Bartels D, Bekel T, Beyer S, Bode E, Bode HB, Bolten CJ, Choudhuri JV, Doss S, Elnakady YA, Frank B, Gaigalat L, Goesmann A, Groeger C, Gross F, Jelsbak L, Jelsbak L, Kalinowski J, Kegler C, Knauber T, Konietzny S, Kopp M, Krause L, Krug D, Linke B, Mahmud T, Martinez-Arias R, McHardy AC, Merai M, Meyer F, Mormann S, Muñoz-Dorado J, Perez J, Pradella S, Rachid S, Raddatz G, Rosenau F, Rückert C, Sasse F, Scharfe M, Schuster SC, Suen G, Treuner-Lange A, Velicer GJ, Vorhölter FJ, Weissman KJ, Welch RD, Wenzel SC, Whitworth DE, Wilhelm S, Wittmann C, Blöcker H, Pühler A, Müller R (2007) Complete genome sequence of the myxobacterium Sorangium cellulosum. Nat Biotechnol 25:1281–1289CrossRefGoogle Scholar
  71. Schulz HN, Brinkhoff T, Ferdelman TG, Mariné MH, Teske A, Jørgensen BB (1999) Dense populations of a giant sulfur bacterium in Namibian shelf sediments. Science 284:493–495CrossRefGoogle Scholar
  72. Sender R, Fuchs S, Milo R (2016) Revised estimates for the number of human and bacteria cells in the body. PLoS Biol 14:e1002533CrossRefGoogle Scholar
  73. Show PL, Tang MS, Nagarajan D, Ling TC, Ooi CW, Chang JS (2017) A holistic approach to managing microalgae for biofuel applications. Int J Mol Sci 18:215CrossRefGoogle Scholar
  74. Sirohi SK, Singh N, Dagar SS, Puniya AK (2012) Molecular tools for deciphering the microbial community structure and diversity in rumen ecosystem. App Microbio Biotechnol 95:1135–1154CrossRefGoogle Scholar
  75. Slade D, Radman M (2011) Oxidative stress resistance in Deinococcus radioduran. Microbiol Mol Biol Rev 75:133–191CrossRefGoogle Scholar
  76. Smith ML, Bruhn JN, Anderson JB (1992) The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356:428–431CrossRefGoogle Scholar
  77. Spribille T, Tuovinen V, Resl P, Vanderpool D, Wolinski H, Aime MC, Schneider K, Stabentheiner E, Toome-Heller M, Thor G, Mayrhofer H (2016) Basidiomycete yeasts in the cortex of ascomycete macrolichens. Science 353:488–492CrossRefGoogle Scholar
  78. Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122°C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci U S A 105:10949–10954CrossRefGoogle Scholar
  79. Tamang JP, Shin DH, Jung SJ, Chae SW (2016) Functional properties of microorganisms in fermented foods. Front Microbiol 7:578PubMedPubMedCentralGoogle Scholar
  80. Tighe S, Afshinnekoo E, Rock TM, McGrath K, Alexander N, McIntyre A, Ahsanuddin S, Bezdan D, Green SJ, Joye S, Johnson SS (2017) Genomic methods and microbiological technologies for profiling novel and extreme environments for the extreme microbiome project (XMP). J Biomol Tech 28:31–39CrossRefGoogle Scholar
  81. Tuli HS, Chaudhary P, Beniwal V, Sharma AK (2015) Microbial pigments as natural color sources: current trends and future perspectives. J Food Sci Technol 52:4669–4678CrossRefGoogle Scholar
  82. Udvardi M, Poole PS (2013) Transport and metabolism in legume-rhizobia symbioses. Ann Rev Plant Biol 64:781–805CrossRefGoogle Scholar
  83. van Hylckama VJET, Veiga P, Zhang C, Derrien M, Zhao L (2011) Impact of microbial transformation of food on health – from fermented foods to fermentation in the gastro-intestinal tract. Curr Opin Biotechnol 22:211–219CrossRefGoogle Scholar
  84. Weiss MC, Sousa FL, Mrnjavac N, Neukirchen S, Roettger M, Nelson-Sathi S, Martin WF (2016) The physiology and habitat of the last universal common ancestor. Nat Microbiol 1:16116CrossRefGoogle Scholar
  85. Whitman WB, Coleman DC, Wiebe W (1998) Perspective: prokaryotes: the unseen majority. Proc Natl Acad Sci U S A 95:6578–6583CrossRefGoogle Scholar
  86. Woese CR (1998) Default taxonomy: Ernst Mayr’s view of the microbial world. Proc Natl Acad Sci U S A 95:11043–11046CrossRefGoogle Scholar
  87. Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc Nat Acad Sci U S A 74:5088–5090CrossRefGoogle Scholar
  88. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Nasib Singh
    • 1
  • Joginder Singh
    • 2
  • Karan Singh
    • 3
  1. 1.Department of Microbiology, Akal College of Basic SciencesEternal UniversityBaru SahibIndia
  2. 2.Department of Microbiology, School of Bioengineering and BiosciencesLovely Professional UniversityPhagwaraIndia
  3. 3.Department of ChemistryAkal College of Basic Sciences, Eternal UniversityBaru SahibIndia

Personalised recommendations