Role of PGPR in Sustainable Agriculture: Molecular Approach Toward Disease Suppression and Growth Promotion

  • Rishi Kumar Verma
  • Manisha Sachan
  • Kanchan Vishwakarma
  • Neha Upadhyay
  • Rohit Kumar Mishra
  • Durgesh Kumar Tripathi
  • Shivesh SharmaEmail author


Plant concomitant bacteria play a substantial part in plant growth promotion and disease suppression. However, to deliver the best up to their capacity, efficient colonization of the plant roots is of utmost importance. The microbes introduced to the soil, either as a single inoculant or as a consortium, interact with host plant and initiate cascade of reactions which result in plant growth and defense responses. PGPR produce extensive variety of secondary metabolites, allelochemicals, which may work as starting signals or enhancing the necessary reactions. Their action methodology and molecular machineries offer a great cognizance for their application in control of crop diseases. These genes are either upregulated or downregulated, and their expression decides the fate of plant growth and mechanism by which plant resists the disease. Number of genes which will be expressed, encode several metabolites responsible for better growth and synthesis of antimicrobial compounds. Recent developments in expression profiling methods and availability of extensive genome sequence data have permitted important advancements in understanding of responses toward disease resistance in plants. In the later part, we discussed how DNA microarray fits with the current part of PGPR in plant growth promotion and disease resistance. Overall, this chapter will help to better understand the molecular mechanisms behind plant and rhizobacteria interactions.


PGPR Microarray Microbial consortium Allelochemicals 



The authors are thankful to Director MNNIT Allahabad for providing necessary facilities for execution of this work.


  1. Abeles FB, Morgan PW, Saltveit ME (1992) Ethylene in plant biology. Academic, San DiegoGoogle Scholar
  2. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20CrossRefGoogle Scholar
  3. Ahlawat IPS (2000) Chickpea. In: Rathore PS (ed) Technique and management of field crop production. Agrobios Publications, Jodhpur, pp 317–335Google Scholar
  4. Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313. CrossRefGoogle Scholar
  5. Algar E, Gutierrez-Mañero FJ, Garcia-Villaraco A, García-Seco D, Lucas JA, Ramos-Solano B (2014) The role of isoflavone metabolism in plant protection depends on the rhizobacterial MAMP that triggers systemic resistance against Xanthomonas axonopodis pv. Glycines in Glycine max (L.) Merr. cv. Osumi. Plant Physiol Biochem 82:9–16PubMedCrossRefPubMedCentralGoogle Scholar
  6. Alizadeh H, Behboudi K, Ahmadzadeh M, Javan-Nikkhah M, Zamioudis C, Pieterse CMJ, Bakker PAHM (2013) Induced systemic resistance in cucumber and Arabidopsis thaliana by the combination of Trichoderma harzianum Tr6 and Pseudomonas sp. Ps14. Biol Control 65:14–23CrossRefGoogle Scholar
  7. Almaghrabi OA, Massoud SI, Abdelmoneim TS (2013) Influence of inoculation with plant growth promoting rhizobacteria (PGPR) on tomato plant growth and nematode reproduction under greenhouse conditions. Saudi J Biol Sci 20:57–61PubMedCrossRefPubMedCentralGoogle Scholar
  8. Amalraj ELD, Mohanty D, Kumar GP, Desai S, Ahmed SMH, Pradhan R, Khan SS (2015) Potential microbial consortium for plant growth promotion of sunflower (Helianthus annuus L.). Proc Natl Acad Sci Ind Sect B Biol Sci 85(2):635–642CrossRefGoogle Scholar
  9. Anjaiah V, Koedam N, Nowak-Thompson B, Loper JE, Hofte M, Tambong JT et al (1998) Involvement of phenazines and anthranilate in the antagonism of Pseudomonas aeruginosa PNA1 and Tn5 derivatives toward Fusarium spp. and Pythium spp. Mol Plant-Microbe Interact 11:847–854CrossRefGoogle Scholar
  10. Anupama NB et al (2014) Improvement of growth, fruit weight and early blight disease protection of tomato plants by rhizosphere bacteria is correlated with their beneficial traits and induced biosynthesis of antioxidant peroxidase and polyphenol oxidase. Plant Sci.
  11. Arima K, Imanaka H, Kousaka M, Fukuda A, Tamura G (1964) Pyrrolnitrin, a new antibiotic substance produced by Pseudomonas. Agric Biol Chem 28:575–576CrossRefGoogle Scholar
  12. Artursson V, Finlay R, Jansson J (2006) Interactions between arbuscular mycorrhizal fungi and bacteria and their potential for stimulating plant growth. Environ Microbiol 8:1–10PubMedCrossRefGoogle Scholar
  13. Ashraf MA, Asif M, Zaheer A, Malik A, Ali Q, Rasool M (2013) Plant growth promoting rhizobacteria & sustainable agriculture: a review. Afr J Microbiol Res 7:704–709Google Scholar
  14. Ashrafuzzaman M, Hossen FA, Razi IM, Hoque MA, Islam MZ, Shahidullah SM, Meon S (2009) Efficiency of plant growth promoting rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8(7):1247–1252Google Scholar
  15. Babu S, Prasanna R, Bidyarani N, Nain L, Shivay YS (2015) Synergistic action of PGP agents and Rhizobium spp. for improved plant growth, nutrient mobilization and yields in different leguminous crops. Biocatal Agric Biotechnol 4:456–464Google Scholar
  16. Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85Google Scholar
  17. Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266. CrossRefGoogle Scholar
  18. Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J.
  19. Baldwin D, Crane V, Rice D (1999) A comparison of gel-based, nylon filter and microarray techniques to detect differential RNA expression in plants. Curr Opin Plant Biol 2:96–103PubMedCrossRefGoogle Scholar
  20. Barazani O, Friedman J (2001) Allelopathic bacteria and their impact on higher plants. Crit Rev Plant Sci 18(6):741–755CrossRefGoogle Scholar
  21. Barness E, Hadar Y, Chen Y, Shanzer A, Libman J (1992) Iron uptake by plants from microbial siderophores. Plant Physiol 99:1329–1335CrossRefGoogle Scholar
  22. Batista S, Patriarca EJ, Tatè R, Martínez-Drets G, Gill PR (2009) An alternative succinate (2-oxoglutarate) transport system in Rhizobium tropici is induced in nodules of Phaseolus vulgaris. J Bacteriol 191:5057–5067PubMedPubMedCentralCrossRefGoogle Scholar
  23. Battu PR, Reddy MS (2009) Isolation of secondary metabolites from Pseudomonas fluorescens and its characterization. Asian J Res Chem 2(10):26–29Google Scholar
  24. Bekemakhanova NE, Shemshura ON (2001) Alkaloids of microscopic fungi for plant protection. Bioactive fungal metabolites. Impact and exploitation. In: International symposium by British mycological societyGoogle Scholar
  25. Bharti N, Yadav D, Barnawal D, Maji D, Kalra A (2013) Exiguobacterium oxidotolerans, a halotolerant plant growth promoting rhizobacteria, improves yield and content of secondary metabolites in Bacopa monnieri (L.) Pennell under primary and secondary salt stress. World J Microbiol Biotechnol 29:379–387PubMedCrossRefGoogle Scholar
  26. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:1327–1350PubMedCrossRefPubMedCentralGoogle Scholar
  27. Brusamarello-Santos LCC, Pacheco F, Aljanabi SMM, Monteiro RA, Cruz LM, Baura VA et al (2012) Differential gene expression of rice roots inoculated with the diazotroph Herbaspirillum seropedicae. Plant Soil 356:113–125CrossRefGoogle Scholar
  28. Burdman S, Volpin H, Kigel J, Kapulnik Y, Okon Y (1996) Promotion of nod gene inducers and nodulation in common bean (Phaseolus vulgaris) roots inoculated with Azospirillum brasilense cd. Appl Environ Microbiol 62:3030–3033PubMedPubMedCentralGoogle Scholar
  29. Buresh RJ, Reddy KR, van Kessel C (2008) Nitrogen transformations in submerged soils. In: Schepers JS, Raun WR (eds) Nitrogen in agricultural systems. Agronomy monograph, vol 49. ASA, CSSA, and SSSA, Madison, pp 401–436Google Scholar
  30. Calvo P, Nelson LM, Kloepper JW (2014) Agricultural uses of plant biostimulants. Plant Soil 383:3–41CrossRefGoogle Scholar
  31. Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, and Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur. J. Soil Biol. 45, 28-35. doi:10.1016/j.ejsobi.2008.08.005CrossRefGoogle Scholar
  32. Cartieaux F, Thibaud MC, Zimmerli L, Lessard P, Sarrobert C, David P et al (2003) Transcriptome analysis of Arabidopsis colonized by a plant growth promoting rhizobacterium reveals a general effect on disease resistance. Plant J 36:177–188PubMedCrossRefPubMedCentralGoogle Scholar
  33. Cartwright DK, Chilton WS, Benson DM (1995) Pyrrolnitrin and phenazine production by P. cepacia, strain 5.5B, a biocontrol agent of R. solani. Appl Microbiol Biotechnol 43:211–216CrossRefGoogle Scholar
  34. Cassán F, Perrig D, Sgroy V, Masciarelli O, Penna C, Luna V (2009) Azospirillum brasilense Az39 and Bradyrhizobium japonicum E109, inoculated singly or in combination, promote seed germination and early seedling growth in corn (Zea mays L.) and soybean (Glycine max L.). Eur J Soil Biol 45:28–35. CrossRefGoogle Scholar
  35. Catala C, Rose JK, Bennett AB (1997) Auxin regulation and spatial localization of an endo-1,4-β-D glucanase and a xyloglucan endotransglycosylase in expanding tomato hypocotyls. Plant J 12:417–426PubMedCrossRefPubMedCentralGoogle Scholar
  36. Cessna SG, Sears VE, Dickman MB, Low PS (2000) Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum suppresses the oxidative burst of the host plant. Plant Cell 12:2191–2200PubMedPubMedCentralCrossRefGoogle Scholar
  37. Chamam A, Sanguin H, Bellvert F, Meiffren G, Comte G, Wisniewski Dyé F et al (2013) Plant secondary metabolite profiling evidences strain dependent effect in the Azospirillum-Oryza sativa association. Phytochemistry 87:65–77PubMedCrossRefPubMedCentralGoogle Scholar
  38. Chen W, Provart NJ, Glazebrook J, Katagiri F, Chang H-S et al (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574PubMedPubMedCentralCrossRefGoogle Scholar
  39. Chen XH, Koumoutsi A, Scholz R, Schneider K, Vater J, Seussmuth R et al (2009) Genome analysis of Bacillus amyloliquefaciens FZB42 reveals its potential for biocontrol of plant pathogens. J Biotechnol 140:27–37PubMedCrossRefPubMedCentralGoogle Scholar
  40. Cheong YH, Chang H-S, Gupta R, Wang X, Zhu T, Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol 129:661–677PubMedPubMedCentralCrossRefGoogle Scholar
  41. Chithrashree AC, Udayashankar S, Nayaka C, Reddy MS, Srinivas C (2011) Plant growth-promoting rhizobacteria mediate induced systemic resistance in rice against bacterial leaf blight caused by Xanthomonas oryzae pv. oryzae. Biol Control 59:114–122CrossRefGoogle Scholar
  42. Combes-Meynet E, Pothier JE, Moënne-Loccoz Y, Prigent-Combare C (2011) The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant-growth promotion. Mol Plant-Microbe Interact 24(2):271–284. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Dardanelli MS, Manyani H, Gonzalez-Barroso S, Rodriguez-Carvajal MA, Gil-Serrano AM, Espuny MR et al (2010) Effect of the presence of the plant growth promoting rhizobacterium (PGPR) Chryseobacterium balustinum Aur 9 and salt stress in the pattern of flavonoids exuded by soybean roots. Plant Soil 328:483–493CrossRefGoogle Scholar
  44. Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291. CrossRefGoogle Scholar
  45. de Leon IP, Montesan M (2013) Activation of defense mechanisms against pathogens in mosses and flowering plants. Int J Mol Sci 1:3178–3200CrossRefGoogle Scholar
  46. Desikan R, A.-H.-Mackerness S, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172PubMedPubMedCentralCrossRefGoogle Scholar
  47. Dinesh R, Anandaraja M, Kumar A, Bini YK, Subilaa KP, Aravind R (2015) Isolation, characterization, and evaluation of multi-trait plant growth promoting rhizobacteria for their growth promoting and disease suppressing effects on ginger. Microbiol Res 173:34–43PubMedCrossRefPubMedCentralGoogle Scholar
  48. Divan-Baldani VL, Baldani JI, Döbereiner J (2000) Inoculation of rice plants with the endophytic diazotrophs Herbaspirillum seropedicae and Burkholderia sp. Biol Fertil Soils 30:485–491CrossRefGoogle Scholar
  49. Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98. CrossRefGoogle Scholar
  50. Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280. CrossRefGoogle Scholar
  51. Dutta S, Podile AR (2010) Plant Growth Promoting Rhizobacteria (PGPR): the bugs to debug the root zone. Crit Rev Microbiol 36(3):232–244PubMedCrossRefPubMedCentralGoogle Scholar
  52. Dwivedi D, Johri BN (2003) Antifungals from fluorescent pseudomonads: biosynthesis and regulation. Curr Sci 85:1693–1703Google Scholar
  53. Elander RP, Mabe JA, Hamill RH, Gorman M (1968) Metabolism of tryptophans by Pseudomonas aureofaciens VI production of pyrrolnitrin by selected Pseudomonas species. Appl Microbiol 16:753–758PubMedPubMedCentralGoogle Scholar
  54. Elkoca E, Turan M, Donmez MF (2010) Effects of single, dual and triple inoculations with Bacillus subtilis, Bacillus megaterium and Rhizobium leguminosarum bv. Phaseoli on nodulation, nutrient uptake, yield and yield parameters of common bean (Phaseolus vulgaris l. cv. ‘Elkoca-05’). J Plant Nutr 33:2104–2119CrossRefGoogle Scholar
  55. Esitken A, Yildiz HE, Ercisli S, Donmez MF, Turan M, Gunes A (2010) Effects of plant growth promoting bacteria (PGPB) on yield, growth and nutrient contents of organically grown strawberry. Sci Hortic 124:62–66CrossRefGoogle Scholar
  56. Etesami H, Alikhani HA (2015) Rhizosphere and endorhiza of oilseed rape (Brassica napus L.) plant harbor bacteria with multifaceted beneficial effects. Biol Control.
  57. Fan B, Carvalhais LC, Becker A, Fedoseyenko D et al (2012) Transcriptomic profiling of Bacillus amyloliquefaciens FZB42 in response to maize root exudates. BMC Microbiol 12:116PubMedPubMedCentralCrossRefGoogle Scholar
  58. Fan B, Li L, Chao Y, Förstner K, Vogel J, Borriss R et al (2015) dRNA-Seq reveals genome wide TSSs and noncoding RNAs of plant beneficial Rhizobacterium Bacillus amyloliquefaciens FZB42. PLoS One 10(11):e0142002. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Farooq M, Jabran K, Cheena ZA, Wahid A (2011) The role of allelopathy in agricultural pest management. Pest Manag Sci 67:493–506PubMedCrossRefPubMedCentralGoogle Scholar
  60. Fernandez O, Theocharis A, Bordiec S, Feil R, Jacquens L, Clement C et al (2012) Burkholderia phytofirmans PsJN acclimates grapevine to cold by modulating carbohydrate metabolism. Mol Plant-Microbe Interact 25:496–504PubMedCrossRefPubMedCentralGoogle Scholar
  61. Figueiredo MVB, Seldin L, Araujo FF, Mariano RLR (2011) Plant growth promoting rhizobacteria: fundamentals and applications. In: Maheshwari DK (ed) Plant growth and health promoting bacteria. Springer, Berlin/Heidelberg, pp 21–42Google Scholar
  62. Figueroa-López AM, Cordero-Ramírez JD, Martínez-Álvarez JC, López-Meyer M, Lizárraga-Sánchez GJ, Félix-Gastélum R, Castro-Martínez C, Maldonado-Mendoza IE (2016) Rhizospheric bacteria of maize with potential for biocontrol of Fusarium verticillioides. SpringerPlus 5(1):1CrossRefGoogle Scholar
  63. Frapolli M, Défago G, Moenne-Loccoz Y (2007) Multilocus sequence analysis of bio-control fluorescent Pseudomonas spp. producing the antifungal compound2,4-diacetylphloroglucinol. Environ Microbiol 9:1939–1955PubMedCrossRefPubMedCentralGoogle Scholar
  64. Garcia de Salamone IE, Dobereiner J, Urquiaga S, Boddey RM (1996) Biological nitrogen fixation in Azospirillum strain-maize genotype associations as evaluated by the 15N isotope dilution technique. Biol Fertil Soils 23:249–256CrossRefGoogle Scholar
  65. Ghignone S, Salvioli A, Anca I, Lumini E, Ortu G, Petiti L, Bonfante P (2012) The genome of the obligate endobacterium of an AM fungus reveals an interphylum network of nutritional interactions. ISME J 6(1):136–145PubMedCrossRefPubMedCentralGoogle Scholar
  66. Glaeser SP, Imani J, Alabid I, Guo H, Kumar N, Ka¨mpfer P, Hartmann A (2015) Non-pathogenic Rhizobium radiobacter F4 deploys plant beneficial activity independent of its host Piriformospora indica. ISME J. PubMedPubMedCentralCrossRefGoogle Scholar
  67. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Hindawi Publishing Corporation, ScientificaGoogle Scholar
  68. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theor Biol 190:3–68CrossRefGoogle Scholar
  69. Gopalakrishnan S, Humayun P, Kiran BK, Kannan IGK, Vidya MS, Deepthi K, Rupela O (2010) Evaluation of bacteria isolated from rice rhizosphere for biological control of charcoal rot of sorghum caused by Macrophomina phaseolina (Tassi) Goid. World J Microbiol Biotechnol 27(6):1313–1321PubMedCrossRefPubMedCentralGoogle Scholar
  70. Gopalakrishnan S, Sathya A et al (2015) Plant growth promoting rhizobia:challenges and opportunities. Biotech 5:355–377. PubMedPubMedCentralCrossRefGoogle Scholar
  71. Gurusiddaiah S, Weller DM, Sarkar A, Cook RJ (1986) Characterization of an antibiotic produced by a strain of P. fluorescens inhibitory to Gaeumannomyces graminis var.tritici and Pythium spp. Antimicrob Agents Chemother 29:488–495PubMedPubMedCentralCrossRefGoogle Scholar
  72. Hayat R, Ali S, Amara U, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598CrossRefGoogle Scholar
  73. Hiltner L (1904) Berneuere Erfahrungen und Problem auf dem Gebiet der Bodenbakteriologie und unter besonderer Berucksichtigung der Grundungung und Brache. Arb Dtsch Landwirtsch Ges 98:59–78Google Scholar
  74. Huang C, Zhou J, Jie Y, Xing H, Zhong Y, She W et al (2016) A ramie (Boehmeria nivea) bZIP transcription factor BnbZIP3 positively regulates drought, salinity and heavy metal tolerance. Mol Breed 36:120.
  75. Ipek M, Pirlak L, Esitken A, Figen Dönmez M, Turan M, Sahin F (2014) Plant growth promoting rhizobacteria (PGPR) increase yield, growth and nutrition of strawberry under high-calcareous soil conditions. J Plant Nutr 37:990–1001CrossRefGoogle Scholar
  76. Jain A, Singh S, Sarma BK, Singh HB (2012) Microbial consortium-mediated reprogramming of defence network in pea to enhance tolerance against Sclerotinia sclerotiorum. J Appl Microbiol 112:537–550PubMedCrossRefPubMedCentralGoogle Scholar
  77. Jain A, Singh A, Singh S, Sarma BK, Singh HB (2014) Biocontrol agents mediated suppression of oxalic acid induced cell death during Sclerotinia sclerotiorum pea interaction. J Basic Microbiol 54.
  78. Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29. CrossRefGoogle Scholar
  79. Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221Google Scholar
  80. Jayaprakashvel M, Mathivanan N (2011) Management of plant diseases by microbial metabolites. In: Maheshwari DK (ed) Bacteria in agrobiology: plant nutrient management. Springer, Berlin/Heidelberg, pp 237–265CrossRefGoogle Scholar
  81. Jensen ES, Hauggaard-Nielsen H (2003) How can increased use of biological N2 fixation in agriculture benefit the environment? Plant Soil 252:177–186CrossRefGoogle Scholar
  82. Jetiyanon K (2007) Defensive-related enzyme response in plants treated with a mixture of bacillus strains (IN937a and IN937b) against different pathogens. Biol Control 42:178–185CrossRefGoogle Scholar
  83. Jha CK, Saraf M (2012) Evaluation of multispecies plant-growth- promoting consortia for the growth promotion of Jatropha curcas L. J Plant Growth Regul 31:588–598CrossRefGoogle Scholar
  84. Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162. CrossRefGoogle Scholar
  85. Jing YD, He ZL, Yang XE (2007) Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Univ Sci B 8:192–207PubMedPubMedCentralCrossRefGoogle Scholar
  86. Joe MM, Saravanan VS, Islam MR, Sa T (2014) Development of alginate-based aggregate inoculants of Methylobacterium sp. and Azospirillum brasilense tested under in vitro conditions to promote plant growth. J Appl Microbiol 116:408–423PubMedCrossRefPubMedCentralGoogle Scholar
  87. Kang BG, Kim WT, Yun HS, Chang SC (2010) Use of plant growth-promoting rhizobacteria to control stress responses of plant roots. Plant Biotechnol Rep 4:179–183CrossRefGoogle Scholar
  88. Karthikeyan M, Radhika K, Mathiyazhagan S, Bhaskaran R, Samiyappan R, Velazhahan R (2006) Induction of phenolics and defense-related enzymes in coconut (Cocos nucifera L.) roots treated with biocontrol agents. Braz J Plant Physiol 18:367–377CrossRefGoogle Scholar
  89. Kazan K, Schenk PM, Wilson I, Manners JM (2001) DNA microarrays: new tools in the analysis of plant defence responses. Mol Plant Pathol 2:177–185PubMedCrossRefPubMedCentralGoogle Scholar
  90. Kejela T, Thakkar VR, Thakor P (2016) Bacillus species (BT42) isolated from Coffea Arabica L. rhizosphere antagonizes Colletotrichum gloeosporioides and Fusarium oxysporum and also exhibits multiple plant growth promoting activity. BMC Microbiology 16:277.
  91. Khalid A, Arshad M, Zahir ZA (2004) Screening plant growth promoting rhizobacteria for improving growth and yield of wheat. J Appl Microbiol 9:473–480CrossRefGoogle Scholar
  92. Kirner S, Hammer PE, Hill DS, Altmann A, Fischer I, Weislo LJ et al (1998) Functions encoded by pyrrolnitrin biosynthetic genes from P. fluorescens. J Bacteriol 180:1939–1943PubMedPubMedCentralGoogle Scholar
  93. Kloepper JW, Beauchamp CJ (1992) A review of issues related to measuring of plant roots by bacteria. Can J Microbiol 38:1219–1232Google Scholar
  94. Koumotsi A, Chen XH, Vater J, Borriss R, Deg U, Ycz E (2007) Positively regulate the synthesis of bacillomycin D by B. amyloliquefaciens strain FZB42. Appl Environ Microbiol 73:6953–6964CrossRefGoogle Scholar
  95. Krey T, Vassilev N, Baum C, Eichler-Löbermann B (2013) Effects of long-term phosphorus application and plant-growth promoting rhizobacteria on maize phosphorus nutrition under field conditions. Eur J Soil Biol 55:124–130CrossRefGoogle Scholar
  96. Kumar H, Bajpai VK, Dubey RC, Maheshwari DK, Kang SC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598CrossRefGoogle Scholar
  97. Kumar A, Maurya BR, Raghuwanshi R (2014) Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatal Agric Biotechnol 3:121–128Google Scholar
  98. Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724Google Scholar
  99. Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822CrossRefGoogle Scholar
  100. Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75. CrossRefGoogle Scholar
  101. Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul.
  102. Lavania M, Chauhan PS, Chauhan SV, Singh HB, Nautiyal CS (2006) Induction of plant defense enzymes and phenolics by treatment with plant growth promoting rhizobacteria Serratia marcescens NBRI1213. Curr Microbiol 52(5):363–368PubMedCrossRefPubMedCentralGoogle Scholar
  103. Lawongsa P, Boonkerd N, Wongkaew S, O’Gara F, Teaumroong N (2008) Molecular and phenotypic characterization of potential plant growth-promoting Pseudomonas from rice and maize rhizospheres. World J Microbiol Biotechnol 24:1877–1884CrossRefGoogle Scholar
  104. Lekberg Y, Koide RT (2014) Integrating physiological, community, and evolutionary perspectives on the arbuscular mycorrhizal symbiosis. Botanty 92:241–251CrossRefGoogle Scholar
  105. Li B, Su T, Yu R, Tao Z, Wu Z, Algam SAE, Xie G, Wang Y, Sun G (2010) Inhibitory activity of Paenibacillus macerans and Paenibacillus polymyxa against Ralstonia Solanacearum. Afr J Microbiol Res 4:2048–2054Google Scholar
  106. Libault M, Joshi T, Takahashi K, Hurley-Sommer A, Puricelli K, Blake S, Finger RE, Taylor CG, Xu D, Nguyen HT (2009) Large-scale analysis of putative soybean regulatory gene expression identifies a Myb gene involved in soybean nodule development. Plant Physiol 151:1207–1220PubMedPubMedCentralCrossRefGoogle Scholar
  107. Lucas JA, Solano BR, Montes F, Ojeda J, Megias M, Manero FJG (2009) Use of two PGPR strains in the integrated management of blast disease in rice (Oryza sativa) in southern Spain. Field Crop Res 114:404–410CrossRefGoogle Scholar
  108. Lugtenberg BJ, Kamilova F (2009) Plant-growth-promoting rhizobacteria. Annu Rev Microbiol 63:541–556PubMedCrossRefGoogle Scholar
  109. Ma Y, Rajkumar M, Luo Y, Freitas H (2011) Inoculation of endophytic bacteria on host and non-host plants-effects on plant growth and Ni uptake. J Hazard Mater 195:230–237PubMedCrossRefGoogle Scholar
  110. Mader P, Kaiser F, Adholeya A et al (2011) Inoculation of root microorganisms for sustainable wheat-rice and wheat-black gram rotations in India. Soil Biol Biochem 43:609–619CrossRefGoogle Scholar
  111. Magnet-Dana R, Peypoux F (1994) Iturins, a special class of pore forming lipopeptides: biological and physiological properties. Toxicology 87:151–174CrossRefGoogle Scholar
  112. Maketon C, Fortuna AM, Okubara PA (2012) Cultivar dependent transcript accumulation in wheat roots colonized by Pseudomonas fluorescens Q8r1-96 wild type and mutant strains. Biol Control 60:216–224CrossRefGoogle Scholar
  113. Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton KA, Dangl JL, Dietrich RA (2000) The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nat Genet 26:403–410PubMedCrossRefPubMedCentralGoogle Scholar
  114. Marimuthu S, Ramamoorthy V, Samiyappan R, Subbian P (2013) Intercropping system with combined application of Azospirillum and Pseudomonas fluorescens reduces root rot incidence caused by Rhizoctonia bataticola and increases seed cotton yield. J Phytopathol 161:405–411CrossRefGoogle Scholar
  115. Martins SJ, Medeiros FHV, Souza RM, Resende MLV (2013) Biological control of bacterial wilt of common bean by plant growth-promoting rhizobacteria. Biol Control 66:65–71CrossRefGoogle Scholar
  116. Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147. CrossRefGoogle Scholar
  117. Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187Google Scholar
  118. Mavrodi DV, Peever TL, Mavrodi OV, Parejko JA, Raaijmakers JM, Lemanceau P et al (2010) Diversity and evolution of the phenazine biosynthesis pathway. Appl Environ Microbiol 76:866–879PubMedCrossRefPubMedCentralGoogle Scholar
  119. Mavrodi OV, Walte N, Elateek S, Taylor CG, Okubara PA (2012) Suppression of Rhizoctonia and Pythium root rot of wheat by new strains of Pseudomonas. Biol Control 62:93–102CrossRefGoogle Scholar
  120. Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56Google Scholar
  121. Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1, 2 & 3):6–12Google Scholar
  122. Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. The Bioscan 8(3):931–935Google Scholar
  123. Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237Google Scholar
  124. Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347PubMedPubMedCentralCrossRefGoogle Scholar
  125. Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561CrossRefGoogle Scholar
  126. Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553CrossRefGoogle Scholar
  127. Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.). Bangladesh J Bot 44(1):143–146CrossRefGoogle Scholar
  128. Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347CrossRefGoogle Scholar
  129. Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. CrossRefGoogle Scholar
  130. Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. CrossRefGoogle Scholar
  131. Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis and agricultural. Biotechnology 4:806–811Google Scholar
  132. Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260CrossRefGoogle Scholar
  133. Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75Google Scholar
  134. Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20. CrossRefGoogle Scholar
  135. Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691CrossRefGoogle Scholar
  136. Meena VS, Maurya BR, Meena SK, Meena RK, Kumar A, Verma JP, Singh NP (2017) Can Bacillus species enhance nutrient availability in agricultural soils? In: Islam MT, Rahman M, Pandey P, Jha CK, Aeron A (eds) Bacilli and agrobiotechnology. Springer International Publishing, pp 367–395. CrossRefGoogle Scholar
  137. Mehmood Z, Ahmad I, Mohammad F, Ahmad S (1999) Indian medicinal plants: a potential source of anti candidal drug. Pharm Biol 37:237–242CrossRefGoogle Scholar
  138. Meynet EC, Joël F, Pothier JF, Moënne-Loccoz Y, Prigent-Combaret C (2011) The Pseudomonas secondary metabolite 2,4-diacetylphloroglucinol is a signal inducing rhizoplane expression of Azospirillum genes involved in plant growth promotion. Mol Plant-Microbe Interact 24(2):271–284CrossRefGoogle Scholar
  139. Miao G, Jian-jiao Z, En-tao W, Qian C, Jing X, Jian-guang S (2015) Multiphasic characterization of a plant growth promoting bacterial strain, Burkholderia sp. 7016 and its effect on tomato growth in the field. J Integr Agric 14(9):1855–1863CrossRefGoogle Scholar
  140. Muthukumar A, Bhaskaran R, Sanjeevkuma K (2010) Efficacy of endophytic Pseudomonas fluorescens (Trevisan) migula against chilli damping-off. J Biopest 3:105–109Google Scholar
  141. Mwita L, Chan WY, Pretorius T, Lyantagaye SL et al (2016) Gene expression regulation in the plant growth promoting Bacillus atrophaeus UCMB-5137 stimulated by maize root exudates. Gene 590:18–28PubMedCrossRefPubMedCentralGoogle Scholar
  142. Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149PubMedCrossRefPubMedCentralGoogle Scholar
  143. Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confer salt tolerance in maize grown on salt affected fields. Can J Microbiol 55:1302–1309PubMedCrossRefPubMedCentralGoogle Scholar
  144. Nadeem SM, Zahir ZA, Naveed M, Ashraf M (2010) Microbial ACC-deaminase: prospects and applications for inducing salt tolerance in plants. Crit Rev Plant Sci 29:360–393CrossRefGoogle Scholar
  145. Nadeem SM, Ahmad M, Zahir ZA, Javaid A, Ashraf M (2014) The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnol Adv 32:429–448PubMedCrossRefPubMedCentralGoogle Scholar
  146. Nadimpalli R, Yalpani N, Johal GS, Simmons CR (2000) Prohibitins, stomatins, and plant disease response genes compose a protein superfamily that controls cell proliferation, ion channel regulation and death. J Biol Chem 275:29579–29586PubMedCrossRefPubMedCentralGoogle Scholar
  147. Neilands JB (1989) Siderophore systems of bacteria and fungi. In: Doyle RJ (ed) Metalions and bacteria. Wiley, New York, pp 141–163Google Scholar
  148. Okubara PA, Call DR, Kwak YS, Skinner DZ (2010) Induction of defense gene homologues in wheat roots during interactions with Pseudomonas fluorescens. Biol Control 55:118–125CrossRefGoogle Scholar
  149. Ovadis M, Liu X, Gavriel S, Ismailov Z, Chet I, Chernin L (2004) The global regulator genes from biocontrol strain Serratia plymuthica IC1270: cloning, sequencing, and functional studies. J Bacteriol 186:4986–4993PubMedPubMedCentralCrossRefGoogle Scholar
  150. Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116Google Scholar
  151. Parray AP, Jan S, Kamili AN, Qadri RA, Egamberdieva D, Ahmad P (2016) Current perspectives on plant growth promoting rhizobacteria. Plant Growth Regul 35(3):877–902. CrossRefGoogle Scholar
  152. Parthiban S, Chauhan PS, Tipayno S, Krishnamoorthy R, Lee S, Sa T (2012) ACC deaminase producing Methylobacterium oryzae CBMB20 improves plant growth and nodule activity in soybean on co-inoculation with Bradyrhizobium japonicum USDA110. Korean J Soil Sci Fertil 6:47–48Google Scholar
  153. Patten CL, Glick BR (1996) Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol 42:207–220PubMedCrossRefGoogle Scholar
  154. Pereira P, Ibánez SG, Agostini E, Miriam Etcheverry M (2011) Effects of maize inoculation with Fusarium verticillioides and with two bacterial biocontrol agents on seedlings growth and anti-oxidative enzymatic activities. Appl Soil Ecol 51:52–59CrossRefGoogle Scholar
  155. Pérez-Montano F et al (2013) Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol Res.
  156. Persello-Cartieaux F, Nussaume L, Robaglia C (2003) Tales from the underground, molecular plant-rhizobacteria interactions. Plant Cell Environ 26:189–199CrossRefGoogle Scholar
  157. Peypoux F, Bonmatin JM, Wallach J (1999) Recent trends in the biochemistry of surfactin. Appl Environ Microbiol 51:553–563Google Scholar
  158. Pierson LS, Thomashow LS (1992) Cloning of heterologous expression of phenazine biosynthesis locus from P. aureofaciens 30-84. Mol Plant-Microbe Interact 53:330–339CrossRefGoogle Scholar
  159. Pierson LS III, Pierson EA (2010) Metabolism and function of phenazines in bacteria: impacts on the behavior of bacteria in the environment and biotechnological processes. Appl Microbiol Biotechnol 86:1659–1670PubMedPubMedCentralCrossRefGoogle Scholar
  160. Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process- a review. Biol Fertil Soil 51:403–415CrossRefGoogle Scholar
  161. Piromyou P, Buranabanyat B, Tantasawat P, Tittabutr P, Boonkerd N, Teaumroong N (2011) Effect of plant growth promoting rhizobacteria (PGPR) inoculation on microbial community structure in rhizosphere of forage corn cultivated in Thailand. Eur J Soil Biol 47:44–54CrossRefGoogle Scholar
  162. Prakamhang J, Tittabutr P, Boonkerd N et al (2014) Proposed some interactions at molecular level of PGPR coinoculated with Bradyrhizobium diazoefficiens USDA110 and B. japonicum THA6 on soybean symbiosis and its potential of field application. Appl Soil Ecol 85:38–49CrossRefGoogle Scholar
  163. Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331. CrossRefGoogle Scholar
  164. Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125. CrossRefGoogle Scholar
  165. Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59. CrossRefGoogle Scholar
  166. Raj SN, Deepaka SA, Basavaraju P, Shettya HS, Reddy MS, Kloepper JW (2003) Comparative performance of formulations of plant growth promoting rhizobacteria in growth promotion and suppression of downy mildew in pearl millet. Crop Prot 22:579–588CrossRefGoogle Scholar
  167. Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. CrossRefGoogle Scholar
  168. Recep K, Fikrettin S, Erkol D, Cafer E (2009) Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biol Control 50:194–198CrossRefGoogle Scholar
  169. Resendis-Antonio O, Hernández M, Salazar E, Contreras S, Batallar GM, Mora Y, Encarnación S (2011) Systems biology of bacterial nitrogen fixation: high throughput technology and its integrative description with constraint-based modeling. BMC Syst Biol 5:120PubMedPubMedCentralCrossRefGoogle Scholar
  170. Richardson AE, Barea JM, Mcneill AM, Combaret CP (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339CrossRefGoogle Scholar
  171. Riggs PJ, Chelius MK, Iniguez AL, Kaeppler SM, Triplett EW (2001) Enhanced maize productivity by inoculation with diazotrophic bacteria. Aus J Plant Physiol 28:829–836Google Scholar
  172. Roopa B, Maya C, Makari HK (2012) Effect of different PGPR strain along with rhizobium on nodulation and chick pea productivity. Asian J Exp Biol Sci 3:424–426Google Scholar
  173. Rosas SB, Avanzin G, Carlier E, Pasluosta C, Pastor N, Rovera M (2009) Root colonization and growth promotion of wheat and maize by Pseudomonas aurantiaca SR1. Soil Biol Biochem 41:1802–1806CrossRefGoogle Scholar
  174. Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136. CrossRefGoogle Scholar
  175. Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29PubMedCrossRefPubMedCentralGoogle Scholar
  176. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648PubMedCrossRefPubMedCentralGoogle Scholar
  177. Salvioli A, Ghignone S, Novero M, Navazio L, Bagnaresi P, Bonfante P (2015) Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. ISME J 10(1):130–144PubMedPubMedCentralCrossRefGoogle Scholar
  178. Santner A, Calderon-Villalobos LIA, Estelle M (2009) Plant hormones are versatile chemical regulators of plant growth. Nat Chem Biol 5:301–307PubMedCrossRefPubMedCentralGoogle Scholar
  179. Saraf M, Pandya U, Thakkar A (2014) Role of allelochemicals in plant growth promoting rhizobacteria for biocontrol of phytopathogens. Microbiol Res 169:18–29PubMedCrossRefPubMedCentralGoogle Scholar
  180. Sarma BK, Yadav SK, Singh S, Singh HB (2015) Microbial consortium-mediated plant defense against phytopathogens: readdressing for enhancing efficacy. Soil Biol Biochem 30:1–9Google Scholar
  181. Sasaki Y, Asamizu E, Shibata D, Nakamura Y, Kaneko T et al (2001) Monitoring of methyl jasmonate-responsive genes in Arabidopsis by cDNA macroarray: self-activation of jasmonic acid biosynthesis and crosstalk with other phytohormone signaling pathways. DNA Res 8:153–161PubMedCrossRefPubMedCentralGoogle Scholar
  182. Sayyed RZ, Patel PR (2011) Biocontrol potential of siderophore producing heavy metal resistant Alcaligenes sp. and Acinetobacter sp. vis-à-Vis organophosphorus fungicide. Indian J Microbiol 51(3):266–272PubMedPubMedCentralCrossRefGoogle Scholar
  183. Scheideler M, Schlaich NL, Fellenberg K, Beissbarth T, Hauser NC, Vingron M, Slusarenko AJ, Hoheisel JD (2002) Monitoring the switch from housekeeping to pathogen defense metabolism in Arabidopsis thaliana using cDNA arrays. J Biol Chem 277:10555–10561PubMedCrossRefPubMedCentralGoogle Scholar
  184. Schenk PM, Kazan K, Wilson I, Anderson JP, Richmond T, Somerville SC, Manners JM (2000) Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci U S A 97:11655–11660PubMedPubMedCentralCrossRefGoogle Scholar
  185. Shaharoona B, Naveed M, Arshad M, Zahir ZA (2008) Fertilizer-dependent efficiency of Pseudomonads for improving growth, yield, and nutrient use efficiency of wheat (Triticum aestivum L.). Appl Microbiol Biotechnol 79:147–155PubMedCrossRefPubMedCentralGoogle Scholar
  186. Shanmugaiah V, Mathivanan N, Varghese B (2010) Purification, crystal structure and antimicrobial activity of phenazine-1-carboxamide produced by a growth-promoting biocontrol bacterium, Pseudomonas aeruginosa MML2212. J Appl Microbiol 108:703–711PubMedCrossRefPubMedCentralGoogle Scholar
  187. Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219. CrossRefGoogle Scholar
  188. Shaw LJ, Morris P, Hooker JE (2006) Perception and modification of plant flavonoid signals by rhizosphere microorganisms. Environ Microbiol 8:1867–1880PubMedCrossRefPubMedCentralGoogle Scholar
  189. Shishido M, Breuil C, Chanway CP (1999) Endophytic colonization of spruce by plant growth promoting rhizobacteria. FEMS Microbiol Ecol 29:191–196CrossRefGoogle Scholar
  190. Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234. CrossRefGoogle Scholar
  191. Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185. CrossRefGoogle Scholar
  192. Singh A, Sarma BK, Upadhyay RS, Singh HB (2013) Compatible rhizosphere microbes mediated alleviation of biotic stress in chickpea through enhanced antioxidant and phenylpropanoid activities. Microbiol Res 168:33–40PubMedCrossRefGoogle Scholar
  193. Singh A, Jain A, Sarma BK, Upadhyay RS, Singh HB (2014) Rhizosphere competent microbial consortium mediates rapid changes in phenolic profiles in chickpea during Sclerotium rolfsii infection. Microbiol Res 169:353–360PubMedCrossRefPubMedCentralGoogle Scholar
  194. Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. CrossRefGoogle Scholar
  195. Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134. CrossRefGoogle Scholar
  196. Smith R (1992) Legume inoculant formulation and application. Can J Microbiol 38:485–492CrossRefGoogle Scholar
  197. Smith SE, Read D (2008) Mycorrhizal Symbiosis, 3rd edn. Academic, New YorkGoogle Scholar
  198. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol. Scholar
  199. Srinivasan K, Mathivanan N (2009) Biological control of sunflower necrosis virus disease with powder and liquid formulations of plant growth promoting microbial consortia under field conditions. Biol Control 51:395–402CrossRefGoogle Scholar
  200. Srivastava R, Khalid A, Singh US, Sharma AK (2010) Evaluation of arbuscular mycorrhizal fungus, fluorescent Pseudomonas and Trichoderma harzianum formulation against Fusarium oxysporum f. sp. lycopersici for the management of tomato wilt. Biol Control 53:24–31CrossRefGoogle Scholar
  201. Srivastava S, Chaudhry V, Mishra A, Chauhan PS, Rehman A, Yadav A et al (2012) Gene expression profiling through microarray analysis in Arabidopsis thaliana colonized by Pseudomonas putida MTCC5279, a plant growth promoting rhizobacterium. Plant Signal Behav 7:235–245PubMedPubMedCentralCrossRefGoogle Scholar
  202. Steenhoudt O, Vanderleyden J (2000) Azospirillum, a free-living nitrogen-fixing bacterium closely associated with grasses: genetic, biochemical and ecological aspects. FEMS Microbiol Rev 24(4):487–506PubMedPubMedCentralCrossRefGoogle Scholar
  203. Stein T (2005) Bacillus subtilis antibiotics: structures, syntheses and specific functions. Mol Microbiol 56:845–857PubMedCrossRefGoogle Scholar
  204. Stelller S, Sokoll A, Wilde C, Bernhard F, Franke P, Vater J (2004) Initiation of surfactin biosynthesis and the role of the SrfD-thioesterase protein. Biochemistry 43:11331–11343CrossRefGoogle Scholar
  205. Stockwell VO, Johnson KB, Sugar D, Loper JE (2011) Mechanistically compatible mixtures of bacterial antagonists improve biological control of fire blight of pear. Phytopathology 101:113–123PubMedCrossRefGoogle Scholar
  206. Sudharani M, Shivaprakash MK, Prabhavathi MK (2014) Role of consortia of biocontrol agents and PGPR in the production of cauliflower under field condition. Trends Biosci 7(22):3542–3546Google Scholar
  207. Taguchi G, Yazawa T, Hayashida N, Okazaki M (2001) Molecular cloning and heterologous expression of novel glucosyltransferases from tobacco cultured cells that have broad substrate specificity and are induced by salicylic acid and auxin. Eur J Biochem 268:4086–4094PubMedCrossRefGoogle Scholar
  208. Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325. CrossRefGoogle Scholar
  209. Theocharis A, Bordiec S, Fernandez O, Paquis S, Dhondt Cordelier S, Baillieul F et al (2012) Burkholderia phytofirmans PsJN primes Vitis vinifera L. and confers a better tolerance to low non freezing temperatures. Mol Plant-Microbe Interact 25:241–249PubMedCrossRefGoogle Scholar
  210. Timmusk S, Wagner EG (1999) The Plant-Growth-Promoting Rhizobacterium Paenibacillus polymyxa induces changes in Arabidopsis thaliana gene expression: a possible connection between biotic and abiotic stress responses. Mol Plant-Microbe Interact 12(11):951–959PubMedCrossRefPubMedCentralGoogle Scholar
  211. Turan M, Ekinci M, Yildirim E, Gunes A, Karagoz K, Kotan R, Dursun A (2014) Plant growth-promoting rhizobacteria improved growth, nutrient, and hormone content of cabbage (Brassica oleracea) seedlings. Turk J Agric For 38:327–333CrossRefGoogle Scholar
  212. Vacheron J, Desbrosses G, Marie-Lara B, Touraine B, Moenne-Loccoz Y, Muller D, Legendre L, Wisniewski-Dye F, Prigent-Combaret C (2013) Plant growth promoting rhizobacteria and root system functioning. Front Plant Sci 4:356PubMedPubMedCentralCrossRefGoogle Scholar
  213. van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense related proteins in infected plants. Annu Rev Phytopathol 44:135–162PubMedCrossRefPubMedCentralGoogle Scholar
  214. Vargas L, Gurjao de Carvalho TL, Gomes Ferreira PC, Baldani VL, Baldani JI, Hemerly AS (2012) Early responses of rice (Oryza sativa L.) seedlings to inoculation with beneficial diazotrophic bacteria are dependent on plant and bacterial genotypes. Plant Soil 356:127–137CrossRefGoogle Scholar
  215. Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. CrossRefGoogle Scholar
  216. Verhagen BW, Glazebrook J, Zhu T, Chang HS, vanLoon LC, Pieterse CM (2004) The transcriptome of rhizobacteria induced systemic resistance in Arabidopsis. Mol Plant Microbe Interact 17:895–908PubMedCrossRefPubMedCentralGoogle Scholar
  217. Verma JP, Yadav J, Tiwari KN, Kumar A (2013) Effect of indigenous Mesorhizobium spp. and plant growth promoting rhizobacteria on yields and nutrients uptake of chickpea (Cicer arietinum L.) under sustainable agriculture. Ecol Eng 51:282–286CrossRefGoogle Scholar
  218. Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919Google Scholar
  219. Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547CrossRefGoogle Scholar
  220. Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794CrossRefGoogle Scholar
  221. Verma P, Yadav AN, Khannam KS, Panjiar N, Kumar S, Saxena AK, Suman A (2015) Assessment of genetic diversity and plant growth promoting attributes of psychrotolerant bacteria allied with wheat (Triticum aestivum) from the northern hills zone of India. Ann Microbiol 65:1885–1899CrossRefGoogle Scholar
  222. Vurukonda SSKP, Vardharajula S, Shrivastava M, Ali SZ (2015) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24. PubMedCrossRefPubMedCentralGoogle Scholar
  223. Walker V, Bertrand C, Bellvert F, Moënne-Loccoz Y, Bally R, Comte G (2011) Host plant secondary metabolite profiling shows a complex, strain dependent response of maize to plant growth promoting rhizobacteria of the genus Azospirillum. New Phytol 189:494–506PubMedCrossRefGoogle Scholar
  224. Walker V, Couillerot O, Von Felten A, Bellvert F, Jansa J, Maurhofer M et al (2012) Variation of secondary metabolite levels in maize seedling roots induced by inoculation with Azospirillum, Pseudomonas and Glomus consortium under field conditions. Plant Soil 356:151–163CrossRefGoogle Scholar
  225. Wang Y, Ohara Y, Nakayashiki H, Tosa Y, Mayama S (2005) Microarray analysis of the gene expression profile induced by the endophytic plant growth promoting rhizobacteria, Pseudomonas fluorescens FPT9601-T5 in Arabidopsis. Mol Plant-Microbe Interact 18:385–396PubMedCrossRefGoogle Scholar
  226. Weller DM, Landa BB, Mavrodi OV, Schroeder KL, De La Fuente L, Blouin Bankhead S et al (2007) Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol 9:4–20PubMedCrossRefPubMedCentralGoogle Scholar
  227. Werner D (1992) Symbiosis of plants and microbes. Chapman & Hall, LondonGoogle Scholar
  228. Whipps JM (2001) Microbial interactions and biocontrol in the rhizosphere. J Exp Bot 52:487–511PubMedCrossRefPubMedCentralGoogle Scholar
  229. Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201. CrossRefGoogle Scholar
  230. Yadav J, Verma JP (2014) Effect of seed inoculation with indigenous Rhizobium and plant growth promoting rhizobacteria on nutrients uptake and yields of chickpea (Cicer arietinum L.). Eur J Soil Biol 63:70–77CrossRefGoogle Scholar
  231. Yasin M, Munir I, Faisal M (2016) Can bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. CrossRefGoogle Scholar
  232. Yim W, Seshadri S, Kim K, Lee G, Sa T (2013) Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium sp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions. Plant Physiol Biochem 67:95–104PubMedCrossRefPubMedCentralGoogle Scholar
  233. Yin G, Xu H, Liu J, Gao C, Sun J et al (2014) Screening and identification of soybean seed-specific genes by using integrated bioinformatics of digital differential display, microarray, and RNA-seq data. Gene 546:177–186PubMedCrossRefPubMedCentralGoogle Scholar
  234. Youssef SA, Tartoura KA, Abdelraouf GA (2016) Evaluation of Trichoderma harzianum and Serratia proteamaculans effect on disease suppression, stimulation of ROS-scavenging enzymes and improving tomato growth infected by Rhizoctonia solani. Biol Control.
  235. Zachow C, Müller H, Tilcher R, Berg G (2014) Differences between the rhizosphere microbiome of Beta vulgaris spp. maritime ancestor of all beet crops and modern sugar beets. Front Microbiol 5:415PubMedPubMedCentralCrossRefGoogle Scholar
  236. Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42. CrossRefGoogle Scholar
  237. Zahir ZA, Munir A, Asghar HN, Shaharoona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of pea (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963PubMedPubMedCentralGoogle Scholar
  238. Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424PubMedCrossRefGoogle Scholar
  239. Zaidi A, Ahmad E, Khan MS, Saif S, Rizvi A (2015) Role of plant growth promoting rhizobacteria in sustainable production of vegetables: current perspective. Sci Hortic 193:231–239CrossRefGoogle Scholar
  240. Zhang H, Murzello C, Sun Y, Kim X, Mi-S R, Jeter RM, Zak JC, Scot Dowd E, Pare PW (2010) Choline and osmotic-stress tolerance induced in Arabidopsis by the soil microbe Bacillus subtilis (GB03). Mol Plant Microb Interact 23:1097–1104PubMedCrossRefPubMedCentralGoogle Scholar
  241. Zhu T, Wang X (2000) Large-scale profiling of the Arabidopsis transcriptome. Plant Physiol 124:1472–1476PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rishi Kumar Verma
    • 1
  • Manisha Sachan
    • 1
  • Kanchan Vishwakarma
    • 1
  • Neha Upadhyay
    • 1
  • Rohit Kumar Mishra
    • 1
  • Durgesh Kumar Tripathi
    • 1
  • Shivesh Sharma
    • 1
    Email author
  1. 1.Department of BiotechnologyMotilal Nehru National Institute of Technology Allahabad, Centre for Medical Diagnostic and Research, MNNITAllahabadIndia

Personalised recommendations