Advertisement

Towards Plant-Beneficiary Rhizobacteria and Agricultural Sustainability

  • Mahipal Choudhary
  • Prakash Chand Ghasal
  • Ram Prakash Yadav
  • Vijay Singh MeenaEmail author
  • Tilak Mondal
  • J. K. Bisht
Chapter

Abstract

The increasing demand for crop production, given worldwide increases in the human population, puts pressure on moving natural resources towards sustainable development. This creates a big challenge for the upcoming generation. If improvement is not successful, there exists the unfortunate consequence that global food production may soon become insufficient to feed all of the world’s people. It is therefore essential that agricultural productivity be significantly increased in a more sustainable and environmentally friendly approach. Plant-beneficiary rhizobacteria (PBR) naturally activate microorganisms found in the soil. Because they are inexpensive, effective, and environmentally friendly, PBR are gaining importance for use in crop production by restoring the soil’s natural fertility and protecting it against drought and soil diseases, thereby stimulating plant growth. PBR decrease the use of chemical fertilisers, pesticides, and artificial growth regulators; the intensive use of these inputs has led to severe health and environmental hazards, such as soil erosion, water contamination, pesticide poisoning, decreased groundwater table, water logging, surface crusting and depletion of biodiversity. The use of PBR has been proven to be an environmentally sound way of increasing crop yields by facilitating plant growth through either a direct or indirect mechanism with the aim of sustaining soil health over the long term.

Keywords

PBR IAA Siderophore Biofertilisers Biocontrol agents Biological nitrogen fixation Nodulation 

Notes

Acknowledgments

We are thankful to the editors and anonymous reviewers for their productive comments, which helped us to improve the manuscript.

References

  1. Adesemoye AO, Obini M, Ugoji EO (2008) Comparison of plant growth promotion with pseudomonas aerugenosa and bacillus subtilis in three vegetables. Braz J Microbiol 39:423–426PubMedPubMedCentralCrossRefGoogle Scholar
  2. Adhya TK, Kumar N, Reddy G, Podile AR, Bee H, Samantaray B (2015) Microbial mobilization of soil phosphorus and sustainable P management in agricultural soils. Curr Sci 108:1280–1287Google Scholar
  3. Ahemad M, Khan MS (2011) Insecticide-tolerant and plant growth promoting Bradyrhizobium sp. improves the growth and yield of greengram [Vigna radiate (L.) Wilczek] in insecticide-stressed soils. Symbiosis 54:17–27CrossRefGoogle Scholar
  4. Ahemad M, Khan MS (2012a) Effect of fungicides on plant growth promoting activities of phosphate solubilizing pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86:945–950PubMedCrossRefPubMedCentralGoogle Scholar
  5. Ahemad M, Khan MS (2012b) Alleviation of fungicide-induced phytotoxicity in greengram [Vigna radiate (L.)] using fungicide-tolerant and plant growth promoting pseudomonas strain. Saudi J Biol Sci 19:451–459PubMedPubMedCentralCrossRefGoogle Scholar
  6. Ahemad M, Khan MS (2012c) Productivity of greengram in tebuconazole stressed soil, by using a tolerant and plant growth promoting Bradyrhizobium sp. MRM6 strain. Acta Physiol Plant 34:245–254CrossRefGoogle Scholar
  7. Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ Sci 26:1–20CrossRefGoogle Scholar
  8. Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181PubMedPubMedCentralCrossRefGoogle Scholar
  9. Ahmad M, Zahir ZA, Khalid M (2013) Efficacy of rhizobium and pseudomonas strains to improve physiology, ionic balance and quality of mung bean under salt-affected conditions on farmer’s fields. Plant Physiol Biochem 63:170–176PubMedCrossRefPubMedCentralGoogle Scholar
  10. Ahmad I, Akhtar MJ, Asghar HN, Ghafoor U, Shahid M (2016a) Differential effects of plant growth-promoting rhizobacteria on maize growth and cadmium uptake. J Plant Growth Regul 35:303–315CrossRefGoogle Scholar
  11. Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016b) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313.  https://doi.org/10.1007/978-81-322-2776-2_21 CrossRefGoogle Scholar
  12. Akhtar MA, Siddiqui ZA (2010) Role of plant growth promoting rhizobacteria in biocontrol of plant diseases and sustainable agriculture. In: Maheshwari DK (ed) Plant growth and health promoting bacteria, Microbiology monographs 18. Springer, Berlin/Heidelberg.  https://doi.org/10.1007/978-3-642-13612-2_7 CrossRefGoogle Scholar
  13. Ali S, Trevor CC, Glick BR (2014) Amelioration of high salinity stress damage by plant growth-promoting bacterial endophytes that contain ACC deaminase. Plant Physiol Biochem 80:160–167PubMedCrossRefPubMedCentralGoogle Scholar
  14. Al-Karaki G, McMichael B, Zak J (2004) Field response of wheat to arbuscular mycorrhizal fungi and drought stress. Mycorrhiza 14:263–269PubMedCrossRefPubMedCentralGoogle Scholar
  15. Aloni R, Aloni E, Langhans M (2006) Role of cytokinin and auxin in shaping root architecture: regulating vascular differentiation, lateral root initiation, root apical dominance and root gravitropism. Ann Bot 97:883–893PubMedPubMedCentralCrossRefGoogle Scholar
  16. Ambawade MS, Pathade GR (2013) Prevalence of Azospirillum isolates in tomato rhizosphere of coastal areas of Cuddalore district, Tamil Nadu. Int J Recent Sci Res 4:1610–1613Google Scholar
  17. Amein T, Omer Z, Welch C (2008) Application and evaluation of pseudomonas strains for biocontrol of wheat seedling blight. Crop Prot 27:532–536CrossRefGoogle Scholar
  18. Antoun H, Kloepper JW (2001) Plant growth promoting rhizobacteria. In: Brenner S, Miller JH (eds) Encyclopedia of genetics. Academic, New York, pp 1477–1480CrossRefGoogle Scholar
  19. Anusuya V, Manimekalai G (2016) Potential of bacillus isolates as biocontrol agent against fusarium wilt of banana. World J Pharm Sci 5:1679–1694Google Scholar
  20. Araujo FF (2008) Inoculaçä o de sementes com Bacillus subtilis, formulado com farinha de ostras e desenvolvimento de milho, soja e algodäo. Ciênc Agrotec 32:456–462CrossRefGoogle Scholar
  21. Araujo WL, Maccheroni W Jr, Aguilar-Vildoso CI, Barroso PAV, Sardakis HO, Azevedo JL (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks. Can J Microbiol 47:229–236PubMedCrossRefPubMedCentralGoogle Scholar
  22. Armada E, Roldan A, Azcon R (2014) Differential activity of autochthonous bacteria in controlling drought stress in native Lavandula and Salvia plants species under drought conditions in natural arid soil. Microb Ecol 67:410–420PubMedCrossRefPubMedCentralGoogle Scholar
  23. Arora NK, Khare E, Oh JH (2008) Diverse mechanisms adopted by pseudomonas fluorescent PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24:581–585CrossRefGoogle Scholar
  24. Arora NK, Tewari S, Singh S, Lal N, Maheshwari DK (2012) PGPR for protection of plant health under saline conditions. In: Maheshwari DK (ed) Bacteria in agrobiology: stress management, pp 239–258Google Scholar
  25. Arshad M, Frankenberger WT Jr (1998) Plant growth regulating substances in the rhizosphere: microbial production and functions. Adv Agron 62:46–151Google Scholar
  26. Arzanesh MH, Alikhani HA, Khavazi K, Rahimian HA, Miransari M (2011) Wheat (Triticum aestivum L.) growth enhancement by Azospirillum sp. under drought stress. World J Microbiol Biotechnol 27:197–205CrossRefGoogle Scholar
  27. Ashrafuzzaman M, Hossen FA, Ismail MR, Hoque MA, Islam MZ, Shahidullah SM, Meon S (2009) Efficiency of plant growth promoting Rhizobacteria (PGPR) for the enhancement of rice growth. Afr J Biotechnol 8:1247–1252Google Scholar
  28. Atlas R, Bartha R (1997) Microbial ecology. Addison Wesley Longman, New YorkGoogle Scholar
  29. Babalola OO, Glick BR (2012) The use of microbial inoculants in African agriculture: current practice and future prospects. J Food Agric Environ 10:540–549Google Scholar
  30. Babalola OO, Osir EO, Sanni A, Odhaimbo GD, Bulimo WD (2003) Amplification of 1-aminocyclopropane-1-carboxylic (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soils. Afr J Biotechnol 2:157–160CrossRefGoogle Scholar
  31. Baghaeeravari S, Heidarzadeh N (2014) Isolation and characterization of rhizosphere auxin producing bacilli and evaluation of their potency on wheat growth improvement. Arch Agron Soil Sci 60:895–905CrossRefGoogle Scholar
  32. Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85Google Scholar
  33. Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266.  https://doi.org/10.1007/978-81-322-2776-2_18 CrossRefGoogle Scholar
  34. Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J.  https://doi.org/10.1080/01490451.2016.1219431
  35. Bakker PAHM, Pieterse CMJ, Van Loon LC (2007) Induced systemic resistance by fluorescent pseudomonas spp. Phytopathology 97:239–243PubMedCrossRefPubMedCentralGoogle Scholar
  36. Bal HB, Nayak L, Das S, Adhya TK (2013) Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366:93–105CrossRefGoogle Scholar
  37. Barea J-M, Azcón R, Azcón-Aguilar C (2002) Mycorrhizosphere interactions to improve plant fitness and soil quality. Antonie Van Leeuwenhoek 81:343–351PubMedCrossRefPubMedCentralGoogle Scholar
  38. Barriuso J, Solano BR (2008) Ecology, genetic diversity and screening strategies of plant growth promoting rhizobacteria (PGPR). J Plant Nutr 5:1–17Google Scholar
  39. Bashan Y, De-Bashan LE (2010) How the plant growth-promoting bacterium Azospirillum promotes plant growth—a critical assessment. Adv Agron 108:77–136CrossRefGoogle Scholar
  40. Behera BC, Singdevsachan SK, Mishra RR, Dutta SK, Thatoi HN (2013) Diversity, mechanism and biotechnology of phosphate solubilising microorganisms in mangrove – a review. Biocatal Agric Biotechnol 3:97–110Google Scholar
  41. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652PubMedCrossRefPubMedCentralGoogle Scholar
  42. Benhamou N, Belanger RR, Paulitz TC (1996a) Induction of differential host responses by Pseudomonas yuorescens in Ri T-DNA transformed pea roots after challenge with Fusarium oxysporum f. sp. pisi and Pythium ultimum. Phytopathology 86:114–178Google Scholar
  43. Benhamou N, Kloepper JW, Quadt-Hallmann A, Tuzun S (1996b) Induction of defence-related ultrastructural modifications in pearoot tissues inoculated with endophytic bacteria. Plant Physiol 112:919–929PubMedPubMedCentralCrossRefGoogle Scholar
  44. Bhardwaj D, Ansari MW, Sahoo RK, Tuteja N (2014) Biofertilizers function as key player in sustainable agriculture by improving soil fertility, plant tolerance and crop productivity. Microbial cell factories 13:66PubMedPubMedCentralCrossRefGoogle Scholar
  45. Bhattacharyya PN, Jha DK (2012) Plant growth-promoting rhizobacteria (PGPR): emergence in agriculture. World J Microbiol Biotechnol 28:13271350CrossRefGoogle Scholar
  46. Bottini R, Cassan F, Piccoli P (2004) Gibberellin production by bacteria and its involvement in plant growth promotion and yield increase. Appl Microbiol Biotechnol 65:497–503PubMedPubMedCentralCrossRefGoogle Scholar
  47. Bowen GD, Rovira AD (1999) The rhizosphere and its management to improve plant growth. Adv Agron 66:1–102CrossRefGoogle Scholar
  48. Bresson J, Varoquaux F, Bontpart T, Touraine B, Vile D (2013) The PGPR strain Phyllobacterium brassicacearum STM196 induces a reproductive delay and physiological changes that result in improved drought tolerance in Arabidopsis. New Phytol 200:558–569PubMedCrossRefPubMedCentralGoogle Scholar
  49. Brisbane PG, Rovira AD (1988) Mechanisms of inhibition of Gaeumannomyces graminis var.tritici by fluorescent pseudomonads. Plant Pathol 37:104–111CrossRefGoogle Scholar
  50. Buch AD, Archana G, Naresh Kumar G (2009) Enhanced citric acid biosynthesis in Pseudomonas fluorescens ATCC 13525 by overexpression of the Escherichia coli citrate synthase gene. Microbiology 155:2620–2629PubMedCrossRefPubMedCentralGoogle Scholar
  51. Cabello-Conejo MI, Becerra-Castro C, Prieto-Fernández A, Monterroso C, Saavedra-Ferro A, Mench M, Kidd PS (2014) Rhizobacterial inoculants can improve nickel phytoextraction by the hyperaccumulator alyssum pintodasilvae. Plant Soil 379(1–2):35–50CrossRefGoogle Scholar
  52. Carrapiço F (2001) The azolla-anabaena-bacteria system as a natural microcosm spie astrobiology conference “instruments, methods, and missions for astrobiology IV”. San Diego, vol 4495, pp 261–265Google Scholar
  53. Cattelan AJ, Hartel PG, Fuhrmann JJ (1999) Screening for plant growth-promoting rhizobacteria to promote early soybean growth. Soil Sci Soc Am J 63:1670–1680CrossRefGoogle Scholar
  54. Cavaglieri I, Orlando J, Rodriguez MI, Chulze S, Etcheverry M (2005) Biocontrol of Bacillussubtilis against Fusarium verticillioides in vitro and at the maize root level. Res Microbiol 156:748–754PubMedCrossRefPubMedCentralGoogle Scholar
  55. Chen YP, Rekha PD, Arunshen AB, Lai WA, Young CC (2006) Phosphate solubilizing bacteria from subtropical soil and their tricalcium phosphate solubilizing abilities. Appl Soil Ecol 34:33–41.CrossRefGoogle Scholar
  56. Chen Z, Ma S, Lio L (2008) Studies on phosphorus solubilizing activities of a strain of phosphobacteria isolated from chestnut type soil in China. Bioresour Technol 99:6702–6707PubMedCrossRefPubMedCentralGoogle Scholar
  57. Choudhary M, Ghasal PC, Kumar S, Yadav RP, Singh S, Meena VS, Bisht JK (2016) Conservation agriculture and climate change: an overview. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore.  https://doi.org/10.1007/978-981-10-2558-7_1 CrossRefGoogle Scholar
  58. Choudhary M, Patel BA, Meena VS, Yadav RP, Ghasal PC (2017a) Seed bio-priming of green gram with Rhizobium and levels of nitrogen and sulphur fertilization under sustainable agriculture. Legume Res LR-3837:1–6.Google Scholar
  59. Choudhary M, Panday SC, Meena VS (2017b) Azolla’s cultivation and its uses in mountain ecosystem. Indian farming 67(09):09–12Google Scholar
  60. Choudhary M, Panday SC, Meena VS, Singh S, Yadav RP, Mahanta D, Mondal T, Mishra PK, Bisht JK, Pattanayak A (2018a) Long-term effects of organic manure and inorganic fertilization on sustainability and chemical soil quality indicators of soybean-wheat cropping system in the Indian mid-Himalayas. Agric Ecosyst Environ 257:38–46.CrossRefGoogle Scholar
  61. Choudhary M, Panday SC, Meena VS, Yadav RP, Singh S, Mahanta D, Pattanayak A and Bisht JK. (2018b) Effect of long-term fertilization and manure on soil organic carbon fraction and micronutrient status after harvest of wheat under soybean-wheat cropping system. In: Abstracts proceeding international conference on “Sustainability of smallholder agriculture in developing countries under changing climatic scenario”, held at CSAUAT, Kanpur (UP), India, 14-17 February, 2018, pp 448 (AK Tripathi, M Mohan, SK Dubey, K Kumar, IN Shukla, P Singh, D Bhagat, S Kumar and R Kewal, eds), p 98.Google Scholar
  62. Chung H, Park M, Madhaiyan M, Seshadri S, Song J, Cho H (2005) Isolation and characterization of phosphate solubilizing bacteria from the rhizosphere of crop plants of Korea. Soil Biol Biochem 37:1970–1974CrossRefGoogle Scholar
  63. Chowdhury SP, Schmid M, Hartmann A, Tripathi AK (2009) Diversity of 16S-rRNA and nifH genes derived from rhizosphere soil and roots of an endemic drought tolerant grass, Lasiurus sindicus. Eur J Soil Biol 45:114–122CrossRefGoogle Scholar
  64. Cohen AC, Travaglia CN, Bottini R, Piccoli PN (2009) Participation of abscisic acid and gibberellins produced by endophytic Azospirillum in the alleviation of drought effects in maize. Botanique 87:455–462CrossRefGoogle Scholar
  65. Conrath UU, Beckers GJMG, Flors VV, García-Agustín PP, Jakab GG, Mauch FF (2006) Priming: getting ready for battle. Mol Plant-Microbe Interact 19:1062–1071PubMedCrossRefPubMedCentralGoogle Scholar
  66. Cook RJ (1992) Wheat root health management and environmental concern. Can J Plant Pathol 14:76–85CrossRefGoogle Scholar
  67. Cornelis (2010) Iron uptake and metabolism in pseudomonads. Appl Microbiol Biotechnol 86:1637–1645PubMedCrossRefPubMedCentralGoogle Scholar
  68. Curl EA, Truelove B (1986) The rhizosphere. Springer, BerlinCrossRefGoogle Scholar
  69. Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) In situ phytostabilisation of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330PubMedCrossRefPubMedCentralGoogle Scholar
  70. Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291.  https://doi.org/10.1007/978-81-322-2776-2_20 CrossRefGoogle Scholar
  71. Das IK, Indira S, Annapurna A, Prabhakar SN (2008) Biocontrol of charcoal rot in sorghum byfluorescent pseudomonads associated with the rhizosphere. Crop Prot 27:1407–1414CrossRefGoogle Scholar
  72. Das AJ, Kumar M, Kumar R (2013) Plant growth promoting rhizobacteria (pgpr): an alternative of chemical fertilizer for sustainable, environment friendly agriculture. Res J Agric For Sci 4:21–23Google Scholar
  73. Dawson JO (2008) Ecology of actinorhizal plants. In: Pawlowski K, Newton WE (eds) Nitrogen-fixing actinorhizal symbioses. Nitrogen fixation: origins, applications, and research progress, vol 6. Springer, Dordrecht, pp 199–234CrossRefGoogle Scholar
  74. de Salamone IEG, Hynes RK, Nelson LM (2001) Cytokinin production by plant growth promoting rhizobacteria and selected mutants. Can J Microbiol 47:404–411CrossRefGoogle Scholar
  75. Dimkpa C, Weinand T, Asch F (2009) Plant-rhizobacteria interactions alleviate abiotic stress conditions. Plant Cell Environ 32:1682–1694CrossRefGoogle Scholar
  76. Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98.  https://doi.org/10.1007/978-81-322-2776-2_6 CrossRefGoogle Scholar
  77. Dotaniya ML, Meena HM, Lata M, Kumar K (2013) Role of phytosiderophores in iron uptake by plants. Agric Sci Digest 33(1):73–76Google Scholar
  78. Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280.  https://doi.org/10.1007/978-81-322-2776-2_19 CrossRefGoogle Scholar
  79. Duca D, Lorv J, Patten CL, Rose D, Glick BR (2014) Indole-3-acetic acid in plant-microbe interactions. Antonie Van Leeuwenhoek 106:85–125PubMedCrossRefPubMedCentralGoogle Scholar
  80. Duponnois R, Kisa M, Plenchette C (2006) Phosphate solubilizing potential of the nematofungus Arthrobotrys oligospora. J Plant Nutr Soil Sci 169:280–282Google Scholar
  81. Durand A, Piutti S, Rue M, Morel JL, Echevarria G, Benizri E (2016) Improving nickel phytoextraction by co-cropping hyperaccumulator plants inoculated by plant growth promoting rhizobacteria. Plant Soil 399:179–192CrossRefGoogle Scholar
  82. Dwivedi SK, Sangeeta, Gopal R (2015) Role of mycorrhizae as biofertilizer and bioprotectant. Int J Pharm Bio Sci 6:1014–1026Google Scholar
  83. Egamberdieva D, Kamilova F, Validov S, Gafurova L, Kucharova Z, Lugtenberg B (2008) Highincidence of plant growth-stimulating bacteria associated with the rhizosphere of wheat grownon salinated soil in Uzbekistan. Environ Microbiol 10:1–9PubMedPubMedCentralGoogle Scholar
  84. Egamberdieva D (2013) The role of phytohormone producing bacteria in alleviating salt stress in crop plants. In: Miransari M (ed) Biotechnological techniques of stress tolerance in plants. Stadium Press LLC, USA, pp 21–39Google Scholar
  85. Elsharkawy MM, Shimizu M, Takahashi H, Hyakumachi M (2012) Induction of systemic resistance against cucumber mosaic virus by Penicillium simplicissimum GP17-2 in Arabidopsis and tobacco. Plant Pathol 61(5):964–976.  https://doi.org/10.1111/j.13653059.2011.02573.x CrossRefGoogle Scholar
  86. Etesami HA, Alikhani A, Akbari N (2009) Evaluation of plant growth hormones production (IAA) ability by Iranian soils rhizobial strains and effects of superior strains application on wheat growth indexes. World Appl Sci J 6:1576–1584Google Scholar
  87. Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D (2015) Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. Environ Sci Pollut Res 22:4907–4921PubMedCrossRefPubMedCentralGoogle Scholar
  88. Farajzadeh D, Yakhchali B, Aliasgharzad N, Sokhandan-Bashir N, Farajzadeh M (2012) Plant growth promoting characterization of ndigenous Azotobacteria isolated from soils in Iran. Curr Microbiol 64:397–403PubMedCrossRefGoogle Scholar
  89. Fenice M, Seblman L, Federici F, Vassilev N (2000) Application of encapsulated Penicilliumvariabile P16 in solubilization of rock phosphate. Bioresour Technol 73:157–162CrossRefGoogle Scholar
  90. Figueiredo MVB, Burity HA, Martinez CR, Chanway CP (2008) Alleviation of water stress effects in common bean (Phaseolus vulgaris L.) by co-inoculation Paenibacillus x Rhizobium tropici. Appl Soil Ecol 40:182–188CrossRefGoogle Scholar
  91. Flores-Felix JD, Menendez E, Rivera LP (2013) Use of rhizobium leguminosarum as a otential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176:876–882CrossRefGoogle Scholar
  92. Franche C, Bogusz D (2011) Signalling and communication in actinorhizal symbiosis. In: Perotto S, Baluska F (eds) Signalling and communication in plant symbiosis. Springer, Berlin, pp 73–92Google Scholar
  93. Franche C, Lindström K, Elmerich C (2009) Nitrogen-fixing bacteria associated with leguminous and non-leguminous plants. Plant Soil 321:35–59CrossRefGoogle Scholar
  94. Gandhi A, Muralidharan G (2016) Assessment of zinc solubilizing potentiality of Acinetobacter sp. isolated from rice rhizosphere. Eur J Soil Biol 76:1–8CrossRefGoogle Scholar
  95. Garcia-Fraile P, Carro L, Robledo M (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7:e38122PubMedPubMedCentralCrossRefGoogle Scholar
  96. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374PubMedCrossRefPubMedCentralGoogle Scholar
  97. Glick BR (2012) Plant growth-promoting bacteria: mechanisms and applications. Scientifica Article ID 963401.  https://doi.org/10.6064/2012/963401 CrossRefGoogle Scholar
  98. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169(1):30–39PubMedCrossRefPubMedCentralGoogle Scholar
  99. Glick BR, Cheng Z, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase-containing soil bacteria. Eur J Plant Pathol 119:329–339CrossRefGoogle Scholar
  100. Gobat JM, Aragno M, Matthey W (2004) The living soil: fundamentals of soil science and soil biology. Science Publishers, EnfieldGoogle Scholar
  101. Gopalakrishnan S, Sathya A, Vijayabharathi R, Varshney RK, Gowda CLL, Krishnamurthy L (2015) Plant growth promoting rhizobia: challenges and opportunities. Biotech 5:355–377Google Scholar
  102. Gray EJ, Smith DL (2005) Intracellular and extracellular PGPR: commonalities and distinctions in the plant–bacterium signaling processes. Soil Biol Biochem 37:395–412CrossRefGoogle Scholar
  103. Gupta G, Parihar SS, Ahirwar NK, Snehi SK, Singh V (2015) Plant growth promoting rhizobacteria (pgpr): current and future prospects for development of sustainable agriculture. J Microb Biochem Technol 7:096–102Google Scholar
  104. Haghighi BJ, Alizadeh O, Firoozabadi AH (2011) The role of plant growth promoting rhizobacteria (pgpr) in sustainable agriculture. Adv Environ Biol 5:3079–3083Google Scholar
  105. Hiltner L (1904) Uber neuere erfahrungen und probleme auf dem gebiet der boden bakteriologie und unter besonderer berucksichtigung det grundungung und branche. Arb Deut Landw Ges 98:59–78Google Scholar
  106. Hussain MB, Zahir ZA, Asghar HN, Asghar M (2014) Exopolysaccharidesproducing rhizobia ameliorate drought stress in wheat. Int J Agric Biol 16:3–13Google Scholar
  107. Idris AH, Labuschagne N, Korsten L (2007) Screening rhizobacteria for biological control of Fusarium root and crown rot of sorghum in Ethiopia. Biol Control 40:97–106CrossRefGoogle Scholar
  108. Idris AH, Labuschagne N, Korsten L (2008) Suppression of Pythium ultimum root rot of sorghumby rhizobacterial isolates from Ethiopian and South Africa. Biol Control 45:72–84CrossRefGoogle Scholar
  109. Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29.  https://doi.org/10.1007/978-81-322-2776-2_2 CrossRefGoogle Scholar
  110. Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR, Miransari M (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674PubMedCrossRefPubMedCentralGoogle Scholar
  111. Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221Google Scholar
  112. Jha CK, Saraf M (2015) Plant growth promoting rhizobacteria (PGPR): a review. J Agric Res Dev 5:0108–0119Google Scholar
  113. Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162.  https://doi.org/10.1007/978-81-322-2776-2_11 CrossRefGoogle Scholar
  114. Jog R, Pandya M, kumar GN, Kumar SR (2014) Mechanism of phosphate solubilization and antifungal activity of streptomyces spp. isolated from wheat roots and rhizosphere and their application in improving plant growth. Microbiology 160:778–788PubMedCrossRefPubMedCentralGoogle Scholar
  115. Joo GJ, Kim YM, Kim JT (2005) Gibberellins-producing rhizobacteria increase endogenous gibberellins content and promote growth of red peppers. J Microbiol 43:510–515PubMedPubMedCentralGoogle Scholar
  116. Jourdan E, Henry G, Duby F, Dommes J, Barthelemy JP, Thonart P, Ongena M (2009) Insights into the defenserelated events occurring in plant cells following perception of surfactin-type lipopeptide from Bacillus subtilis. Mol Plant-Microbe Interact 22:456−468CrossRefGoogle Scholar
  117. Jumpponen A (2001) Dark septate endophytes are they mycorrhizal? Mycorrhiza 11:207–211CrossRefGoogle Scholar
  118. Kapoor R, Soni R, Kaur M (2016) Gibberellins production by fluorescent ‘Pseudomonas’ isolated from Rhizospheric soil of ‘Malus’ and ‘Pyrus’. Int J Agric Environ Biotechnol 9:193–199CrossRefGoogle Scholar
  119. Kaur H, Kaur J, Gera R (2016) Plant growth promoting rhizobacteria: a boon to agriculture. Int J Cell Sci Biotechnol 5:17–22Google Scholar
  120. Khan AL, Lee IJ (2013) Endophytic Penicillium funiculosum LHL06 secretes gibberellin that reprograms Glycine max L. growth during copper stress. BMC Plant Biol 13:86–100PubMedPubMedCentralCrossRefGoogle Scholar
  121. Khan MR, Fischer S, Egan D, Doohan FM (2006) Biological control of Fusarium seedling blightdisease of wheat and barley. Phytopathology 96:386–394PubMedCrossRefPubMedCentralGoogle Scholar
  122. Khan AA, Jilani G, Akhtar MS, Naqvi SMS, Rasheed M (2009) Phosphorus solubilizing bacteria: occurrence, mechanisms and their role in crop production. J Agric Biol Sci 1(1):48–58Google Scholar
  123. Khan MS, Zaidi A, Ahemad M, Oves M, Wani PA (2010) Plant growth promotion by phosphate solubilizing fungi - current perspective. Arch Agron Soil Sci 56:73–98CrossRefGoogle Scholar
  124. Khan AL, Waqas M, Kang SM (2014) Bacterial endophyte Sphingomonas sp. LK11 produces gibberellins and IAA and promotes tomato plant growth. J Microbiol 52:689–695PubMedCrossRefPubMedCentralGoogle Scholar
  125. Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Lee IJ (2016) Indole acetic acid and acc deaminase fromendophytic bacteria improves the growth of Solanum lycopersicum. Electron J Biotechnol 21:58–64CrossRefGoogle Scholar
  126. Khan MR, Khan SM (2002) Effect of root-dip treatment with certain phosphate solubilizing microorganisms. Bioresour Technol 85(2):213–215Google Scholar
  127. Kloepper JW, Zablowicz RM, Tipping B, Lifshitz R (1991) Plant growth mediated by bacterial rhizosphere colonizers. In: Keister DL, Gregan B (eds) The rhizosphere and plant growth, BARC symposium. pp 315–326Google Scholar
  128. Kloepper JW, Ryu CM, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus sp. Phytopathology 94:1259–1266PubMedCrossRefPubMedCentralGoogle Scholar
  129. Kohler J, Caravaca F, Roldan A (2010) An AM fungus and a PGPR intensify the adverse effects of salinity on the stability of rhizosphere soil aggregates of Lactuca sativa. Soil Biol Biochem 42:429–434CrossRefGoogle Scholar
  130. Koike N, Hyakumachi M, Kageyama K, Tsuyumu S, Doke N (2001) Induction of systemic resistance in cucumber against several diseases by plant growth-promoting fungi: lignifications and superoxide generation. Eur J Plant Pathol 108:1871–1896Google Scholar
  131. Kollah B, Patra AK, Mohanty SR (2016) Aquatic microphylla Azolla: a perspective paradigm for sustainable agriculture, environment and global climate change. Environ Sci Pollut Res 23:4358–4369CrossRefGoogle Scholar
  132. Kumar A (2016) Phosphate solubilizing bacteria in agriculture biotechnology: diversity, mechanism and their role in plant growth and crop yield. Int J Adv Res 4:116–124CrossRefGoogle Scholar
  133. Kumar H, Bajpai VK, Dubey RC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Prot 29:591–598CrossRefGoogle Scholar
  134. Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724Google Scholar
  135. Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822CrossRefGoogle Scholar
  136. Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75.  https://doi.org/10.1007/978-81-322-2776-2_5 CrossRefGoogle Scholar
  137. Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul 36(3):608–617.  https://doi.org/10.1007/s00344-016-9663-5 CrossRefGoogle Scholar
  138. Kumar V, Behl RK, Narula N (2001) Establishment of phosphate solubilising strains of Azotobacter chroococcum in the rhizosphere and their effect on wheat cultivars under green house conditions. Microbiol Res 156:87–93PubMedCrossRefPubMedCentralGoogle Scholar
  139. Kundan R, Pant G, Jadon N, Agrawal PK (2015) Plant growth promoting rhizobacteria: mechanism and current prospective. J Fertil Pestic 6:2CrossRefGoogle Scholar
  140. Lecomte J, St-Arnaud M, Hijri M (2011) Isolation and identification of soil bacteria growing at the expense of arbuscular mycorrhizal fungi. FEMS Microbiol Lett 317:43–51PubMedCrossRefPubMedCentralGoogle Scholar
  141. Leong J (1986) Siderophores: their biochemistry, and possible role in the biocontrol of Plantpathogens. Annu Rev Phytopathol 24:187–209CrossRefGoogle Scholar
  142. León M, Yaryura PM, Montecchia MS, Hernandez AI, Correa OS, Pucheu NL, Kerber NL, Garcıa AF (2009) Antifungal activity of selected indigenous Pseudomonas and Bacillus from the soybean rhizosphere. Int J Microbiol:572049, 9 pGoogle Scholar
  143. Lincoln M, Kotasthane AS (2014) Isolation and assessment of plant growth promoting activity of siderophores producing Pseudomonas fluorescens in crops. International journal of agriculture. Enviro Biotechnol 7:63–67Google Scholar
  144. Linderman RG (1988) Mycorrhizal interactions with the rhizosphere microflora: the mycorrhizosphere effect. Phytopathology 78:366–371Google Scholar
  145. Liu F, Xing S, Ma H, Du Z, Ma B (2013) Cytokinin producing, plant growthpromoting rhizobacteria that confer resistance to drought stress in Platycladusorientalis container seedlings. Appl Microbiol Biotechnol 97:9155–9164PubMedCrossRefPubMedCentralGoogle Scholar
  146. Mahanta D, Rai RK, Mishra SD, Raja A, Purakayastha TJ, Varghese E (2014) Influence of phosphorus and biofertilizers on soybean and wheat root growth and properties. Field Crop Res 166:1–9CrossRefGoogle Scholar
  147. Maheshwari DK, Kumar S, Kumar B, Pandey P (2010) Co-inoculation of urea and DAP tolerant Sinorhizobium meliloti and Pseudomonas aeruginosa as integrated approach for growth enhancement of Brassica juncea. Indian J Microbiol 50(4):425–431PubMedCrossRefPubMedCentralGoogle Scholar
  148. Martínez-Hidalgo P, García JM, Pozo MJ (2015) Induced systemic resistance against Botrytis cinerea by Micromonospora strains isolated from root nodules. Front Microbiol 6:922PubMedPubMedCentralCrossRefGoogle Scholar
  149. Martinez-Viveros JM, Crowley DE, Gajardo G, Mora ML (2010) Mechanisms and practical considerations involved in plant growth promotion by rhizobacteria. J Soil Sci Plant Nutr 10:293–319CrossRefGoogle Scholar
  150. Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147.  https://doi.org/10.1007/978-81-322-2776-2_10 CrossRefGoogle Scholar
  151. Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187Google Scholar
  152. Mavrodi OV, Mavrodi DV, Parejko JA, Thomashow LS, Weller DM (2012) Irrigation differentially impacts populations of indigenous antibiotic-producing Pseudomonas sp. in the rhizosphere of wheat. Appl Environ Microbiol 78:3214−3220PubMedCentralGoogle Scholar
  153. Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth- promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53PubMedCrossRefPubMedCentralGoogle Scholar
  154. Mazid M, Khan TA (2014) Future of bio-fertilizers in Indian agriculture: an overview. Int J Agric Food Res 3(3):10–23Google Scholar
  155. Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013a) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12Google Scholar
  156. Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013b) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8(3):931–935Google Scholar
  157. Meena OP, Maurya BR, Meena VS (2013c) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sustain Dev 1:53–56Google Scholar
  158. Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237Google Scholar
  159. Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability inagricultural soils? Microbiol Res 169:337–347PubMedPubMedCentralCrossRefGoogle Scholar
  160. Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015a) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347CrossRefGoogle Scholar
  161. Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015b) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563.  https://doi.org/10.1016/j.jclepro.2015.04.044 CrossRefGoogle Scholar
  162. Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.). Bangladesh J. Bottomline 44(1):143–146Google Scholar
  163. Meena VS, Verma JP, Meena SK (2015d) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557.  https://doi.org/10.1016/j.jclepro.2015.04.030 CrossRefGoogle Scholar
  164. Meena RS, Meena VS, Meena SK, Verma JP (2015e) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561CrossRefGoogle Scholar
  165. Meena RS, Meena VS, Meena SK, Verma JP (2015f) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553CrossRefGoogle Scholar
  166. Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016a) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 1–20.  https://doi.org/10.1007/978-81-322-2776-2_1 CrossRefGoogle Scholar
  167. Meena SK, Rakshit A, Meena VS (2016b) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75Google Scholar
  168. Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016c) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260CrossRefGoogle Scholar
  169. Meena VS, Meena SK, Bisht JK, Pattanayak A (2016d) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691CrossRefGoogle Scholar
  170. Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016e) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4:806–811Google Scholar
  171. Minaxi J, Saxena S, Chandra S, Nain L (2013) Synergistic effect of phosphate solubilizing rhizobacteria and arbuscular mycorrhiza on growth and yield of wheat plants. J Soil Sci Plant Nut 13:511–525Google Scholar
  172. Mitra D, Sharma K, Uniyal N, Chauhan A, Sarkar P (2016) Study on plant hormone (indole-3-acetic acid) producing level and other plant growth promotion ability (pgpa) by Asparagus racemosus rhizobacteria. J Chem Pharm Res 8:995–1002Google Scholar
  173. Mohapatra B, Verma DK, Sen A, Panda BB, Asthie B (2013) Biofertilizers- a gateway of sustainable agriculture. Popular Kheti 1:97–106Google Scholar
  174. Molina-Favero C, Creus CM, Simontacchi M, Puntarulo S, Lamattina L (2008) Aerobic nitric oxide production by Azospirillum brasilense Sp245 and its influence on root architecture in tomato. Mol Plant-Microbe Interact 2:1001–1009CrossRefGoogle Scholar
  175. Mukherjee C, Chowdhury R, Ray K (2015) Phosphorus recycling from an unexplored source by polyphosphate accumulating microalgae and cyanobacteria-a step to phosphorus security in agriculture. Front Microbiol 6:1421PubMedPubMedCentralCrossRefGoogle Scholar
  176. Nehra V, Choudhary M (2015) A review on plant growth promoting rhizobacteria acting as bioinoculants and their biological approach towards the production of sustainable agriculture. J Appl Natl Sci 7:540–556CrossRefGoogle Scholar
  177. Neilands JB (1995) Siderophores: structure and function of microbial iron transport compounds. J Biol Chem 270:26723–26726PubMedPubMedCentralCrossRefGoogle Scholar
  178. Neumann G, George TS, Plassard C (2009) Strategies and methods for studying the rhizosphere-the plant science toolbox. Plant Soil 321:431–456CrossRefGoogle Scholar
  179. Noel TC, Sheng C, Yost CK, Pharis RP, Hynes MF (1996) Rhizobium leguminosarum as a plant growth-promoting rhizobacterium: direct growth promotion of canola and lettuce. Can J Microbiol 42(3):279–283PubMedCrossRefPubMedCentralGoogle Scholar
  180. Noumavo PA, Agbodjato NA, Moussa FB, Adjanohoun A, Moussa LB (2016) Plant growth promoting rhizobacteria: beneficial effects for healthy and sustainable agriculture. Afr J Biotechnol 15:1452–1463CrossRefGoogle Scholar
  181. Pandey P, Maheshwari DK (2007) Two sp. microbial consortium for growth promotion of Cajanus cajan. Curr Sci 92:1137–1142Google Scholar
  182. Panday SC, Choudhary M, Singh S, Meena VS, Mahanta D, Yadav RP, Pattanayak A, Bisht JK (2018) Increasing farmer’s income and water use efficiency as affected by long-term fertilization under a rainfed and supplementary irrigation in a soybean wheat cropping system of Indian mid-Himalaya. Field Crops Res 219:214–221.  https://doi.org/10.1016/j.fcr.2018.02.004 CrossRefGoogle Scholar
  183. Panpatte DG, Jhala YK, Shelat HN, Vyas RV (2016) Pseudomonas fluorescens: a promising biocontrol agent and PGPR for sustainable agriculture. In: Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi, pp 257–270.  https://doi.org/10.1007/978-81-322-2647-5_15 CrossRefGoogle Scholar
  184. Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116Google Scholar
  185. Pastor V, Luna E, Mauch-Mani B, Ton J, Flors V (2013) Primed plants do not forget. Environ Exp Bot 94:46–56CrossRefGoogle Scholar
  186. Penyalver R, Oger P, Lopez MM, Farrand SK (2001) Iron binding compounds from Agrobacterium spp biological control stains agrobacterium rhizogenes K84 produce a hydroxamatesiderophore. Appl Environ Microbiol 67:654–664PubMedPubMedCentralCrossRefGoogle Scholar
  187. Pereira SIA, Castro PL (2014) Phosphate-solubilizing rhizobacteria enhance Zea mays growth in agricultural Pdeficient soils. Ecol Eng 73:526–535CrossRefGoogle Scholar
  188. Phi Q-T, Yu-Mi P, Keyung-Jo S, Choong-Min R (2010) Assessment of root-associated Paenibacillus polymyxa groups on growth promotion and induced systemic resistance in pepper. J Microbiol Biotechnol 20:1605–1613PubMedPubMedCentralGoogle Scholar
  189. Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM (2014) Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375PubMedPubMedCentralCrossRefGoogle Scholar
  190. Pinton R, Varanini Z, Nannipieri P (2001) The rhizosphere as a site of biochemical interactions among soil components, plants and microorganisms. In: Pinton R, Varanini Z, Nannipieri P (eds) The rhizosphere: biochemistry and organic substances at the soil-plant interface. Marcel Dekker, New York, pp 1–17Google Scholar
  191. Plenchette C, Clermont-Dauphin C, Meynard JM, Fortin JA (2005) Managing arbuscular mycorrhizal fungi in cropping systems. Can J Plant Sci 85:31–40CrossRefGoogle Scholar
  192. Prathap M, Ranjitha Kumari BD (2015) A critical review on plant growth promoting rhizobacteria. J Plant Pathol Microb 6:266.  https://doi.org/10.4172/2157-7471.1000266
  193. Porcel R, Zamarreño ÁM, García-Mina JM, Aroca R (2014) Involvement of plant endogenous ABA in Bacillus megaterium PGPR activity in tomato plants. BMC Plant Biol 14:36PubMedPubMedCentralCrossRefGoogle Scholar
  194. Pozo MJ, Verhage A, García-Andrade J, García JM, Azcón-Aguilar C (2009) Priming plant defences against pathogens by arbuscular mycorrhizal fungi. In: AzcónAguilar C, Barea JM, Gianinazzi S, Gianinazzi-Pearson V (eds) Mycorrhizas: functional processes and ecological impacted. Springer, Heidelberg, pp 137–149Google Scholar
  195. Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331.  https://doi.org/10.1007/978-81-322-2776-2_23 CrossRefGoogle Scholar
  196. Prashar P, Kapoor N, Sachdeva S (2013) Rhizosphere: its structure, bacterial diversity and significance. Rev Environ Sci Biotechnol 10:1007Google Scholar
  197. Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125.  https://doi.org/10.1007/978-81-322-2776-2_8 CrossRefGoogle Scholar
  198. Punja ZK, Utkhede RS (2003) Using fungi and yeasts to manage vegetable crop diseases. Trends Biotechnol 21:400–407PubMedPubMedCentralCrossRefGoogle Scholar
  199. Qi J, Aiuchi D, Tani M, Asano S, Koike M (2016) potential of entomopathogenic Bacillus thuringiensis as plant growth promoting rhizobacteria and biological control agents for tomato Fusarium wilt. Int J Environ Agric Res 2(6):55–63Google Scholar
  200. Raaijmakers JM, Bonsal RF, Weller DM (1999) Effect of population density of Psedomonas fluorescens on production of 2, 4- diacetylphloroglucinol producing bacteria isolated from themaize rhizosphere. Appl Environ Microbiol 66:948–955Google Scholar
  201. Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59.  https://doi.org/10.1007/978-81-322-2776-2_4 CrossRefGoogle Scholar
  202. Rajendiran S, Coumar MV, Kundu S, Dotaniya ML, Rao AS (2012) Role of phytolith occluded carbon of crop plants for enhancing soil carbon sequestration in agro-ecosystems. Curr Sci 103(8):911–920Google Scholar
  203. Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253.  https://doi.org/10.1007/978-81-322-2776-2_17 CrossRefGoogle Scholar
  204. Reyes I, Bernier L, Simard RR, Antoun H (1999) Effect of nitrogen source on the solubilization of different inorganic phosphates by an isolate of Penicillium rugulosum and two UV-induced mutants. FEMS Microbiol Ecol 28:281–290CrossRefGoogle Scholar
  205. Reyes I, Bernier L, Antoun H (2002) Rock phosphate solubilization and colonization of maize rizosphere by wild and genetically modified strains of Penicillium rugulosum. Microb Ecol 44:39–48PubMedCrossRefPubMedCentralGoogle Scholar
  206. Riefler M, Novak O, Strnad M, Schmülling T (2006) Arabidopsis cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and cytokinin metabolism. Plant Cell 18:40–54CrossRefGoogle Scholar
  207. Rillig MC, Caldwell BA, HAB W, Sollins P (2007) Role of proteins in soil carbon and nitrogen storage: controls of persistence. Biogeochemistry 85:25–44CrossRefGoogle Scholar
  208. Rodríguez H, Fraga R (1999) Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol Adv 17:319–339PubMedCrossRefPubMedCentralGoogle Scholar
  209. Rodríguez H, Fraga R, Gonzalez T, Bashan Y (2006) Genetics of phosphate solubilization and its potential applications for improving plant growth-promoting bacteria. Plant Soil 287:15–21CrossRefGoogle Scholar
  210. Ramachandran K, Srinivasan V, Hamza S, Anandaraj M (2007) Phosphate solubilizing bacteria isolated from the rhizosphere soil and its growth promotion on black pepper (Piper nigrum L) cuttings. Dev Plant Soil Sci 102:324–331Google Scholar
  211. Rout JW, Katznelson H (1961) A study of the bacteria on the root surface and in the rhizosphere soil of crop plants. J Appl Bacteriol 24:164–171CrossRefGoogle Scholar
  212. Roy-Bolduc A, Hijri M (2011) The use of mycorrhizae to enhance phosphorus uptake: a way out the phosphorus crisis. J Biofertil Biopestici 2:104Google Scholar
  213. Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556PubMedPubMedCentralCrossRefGoogle Scholar
  214. Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136.  https://doi.org/10.1007/978-81-322-2776-2_9 CrossRefGoogle Scholar
  215. Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from indo-gangetic plains of India. Biocatal Agric Biotechnol 7:202–209.  https://doi.org/10.1016/j.bcab.2016.06.007 CrossRefGoogle Scholar
  216. Saharan BS, Nehra V (2011) Plant growth promoting Rhizobacteria: a critical review. Life Sci Med Res 21:1–30Google Scholar
  217. Sahgal M, Johri BN (2003) The changing face of rhizobial systematics. Curr Sci 84:43–48Google Scholar
  218. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648CrossRefGoogle Scholar
  219. Sang-Mo K, Radhakrishnan R, Khan AL, Min-Ji K, Jae-Man P, Bo-Ra K, Dong-Hyun S, In-Jung L (2014) Gibberellin secreting rhizobacterium, Pseudomonas putida H-2-3 modulates the hormonal and stress physiology of soybean to improve the plant growth under saline and drought conditions. Plant Physiol Biochem 84:115–124CrossRefGoogle Scholar
  220. Santi C, Bogusz D, Franche C (2013) Biological nitrogen fixation in non-legume plants. Ann Bot 10:1–25Google Scholar
  221. Saravanan D, Radhakrishnan M, Balagurunathan R (2016) Isolation of plant growth promoting substance producing bacteria from Niligiri hills with special reference to phosphatase enzyme. J Chem Pharm Res 8:698–703Google Scholar
  222. Schuhegger R, Ihring A, Gantner S, Bahnweg G, Knappe C, Vogg G, Hutzler P, Schmid M, Van Breusegem F, Eberl L, Hartmann A, Langebartels C (2006) Induction of systemic resistance in tomato by N-acyl-L-homoserine lactoneproducing Rhizosphere bacteria. Plant Cell Environ 29:909–918PubMedCrossRefPubMedCentralGoogle Scholar
  223. Segarra G, Van der Ent S, Trillas I, Pieterse CMJ (2009) MYB72, a node of convergence in induced systemic resistance triggered by a fungal and a bacterial beneficial microbe. Plant Biol 11:90–96PubMedCrossRefPubMedCentralGoogle Scholar
  224. Sessitsch A, Kuffner M, Kidd PS, Vangronsveld J, Wenzel WW, Fallmann K, Puschenreiter M (2013) The role of plant associated bacteria in the mobilization and phytoextraction of trace elements in contaminated soils. Soil Biol Biochem 60:182–194PubMedPubMedCentralCrossRefGoogle Scholar
  225. Sharma YT, Rai N (2015) Isolation of plant hormone (indole-3-acetic acid) producing rhizobacteria and study on their effects on tomato (Lycopersicum esculentum) seedling. Int J Pharmtech Res 7:099–107Google Scholar
  226. Sharma SK, Johri BN, Ramesh A, Joshi OP, Prasad SVS (2011) Selection of plant growth-promoting pseudomonas spp. that enhanced productivity of soybean-wheat cropping system in Central India. J Microbiol Biotechnol 21:1127–1142PubMedCrossRefPubMedCentralGoogle Scholar
  227. Sharma BS, Sayyed ZR, Trivedi HM, Gobi AT (2013) Phosphate solubilizing microbes: sustainable approach for managing phosphorus deficiency in agricultural soils. Springer Plus 2:587PubMedPubMedCentralCrossRefGoogle Scholar
  228. Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219.  https://doi.org/10.1007/978-81-322-2776-2_15 CrossRefGoogle Scholar
  229. Sheng XF, Xia JJ (2006) Improvement of rape (Brassica napus) plant growth and cadmium uptake by cadmium resistant bacteria. Chemophore 64:1036–1042CrossRefGoogle Scholar
  230. Shilev (2013) Soil rhizobacteria regulating the uptake of nutrients and undesirable elements by plants. In: Arora NK (ed) Plant microbe symbiosis: fundamentals and advances. Springer, New Delhi, pp 147–150CrossRefGoogle Scholar
  231. Shintu PV, Jayaram KM (2015) Phosphate solubilising bacteria (Bacillus polymyxa)—an effective approach to mitigate drought in tomato (Lycopersicon esculentum). Trop Plant Res 2:17–22Google Scholar
  232. Shoresh M, Harman GE, Mastouri F (2010) Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21–43PubMedPubMedCentralCrossRefGoogle Scholar
  233. Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234.  https://doi.org/10.1007/978-81-322-2776-2_16 CrossRefGoogle Scholar
  234. Shukla M, Patel RH, Verma R, Deewan P, Dotaniya ML (2013) Effect of bio-organics and chemical fertilizers on growth and yield of chickpea (Cicer arietinum L.) under middle Gujarat conditions. Vegetos 26:183–187Google Scholar
  235. Siddiqui ZA (2006) PGPR: Prospective biocontrol agents of plant pathogens. In: Siddiqui ZA (ed) PGPR: biocontrol and biofertilization. Springer, Dordrecht, pp 111–142Google Scholar
  236. Silva VN, Silva LESF, Figueiredo MVB (2006) Atuaçäo de rizo’bios com rizobacte’rias promotoras de crescimento em plantas na cultura do caupi (Vigna unguiculata L. Walp). Acta Sci Agron 28:407–412Google Scholar
  237. Simonetti E, Pin Viso N, Montecchia M, Zilli C, Balestrasse K, Carmona M (2015) Evaluation of native bacteria and manganese phosphite for alternative control of charcoal root. Microbiol Res 180:40–48Google Scholar
  238. Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185.  https://doi.org/10.1007/978-81-322-2776-2_13 CrossRefGoogle Scholar
  239. Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99.  https://doi.org/10.5958/2229-4473.2015.00012.9 CrossRefGoogle Scholar
  240. Singh DP et al (eds) (2016) Microbial inoculants in sustainable agricultural productivity. Springer, New Delhi. https://doi.org/10.1007/978-81-322-2647-5_15 Google Scholar
  241. Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016a) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134.  https://doi.org/10.1007/978-981-10-2558-7_4 CrossRefGoogle Scholar
  242. Singh JS, Kumar A, Rai AN, Singh DP (2016b) Cyanobacteria: a precious bio-resource in agriculture, ecosystem, and environmental sustainability. Front Microbiol 7:529PubMedPubMedCentralGoogle Scholar
  243. Skirycz A, Inze D (2010) More from less: plant growth under limited water. Curr Opin Biotechnol 21:197–203PubMedCrossRefPubMedCentralGoogle Scholar
  244. Smith SE, Read DJAP (2008) Mycorrhizal symbiosis. Academic, LondonGoogle Scholar
  245. Smith SE, Smith Smith FA, Jakobsen I (2003) Mycorrhizal fungi can dominate phosphate supply to plants irrespective of growth responses. Plant Physiol 133:16–20PubMedPubMedCentralCrossRefGoogle Scholar
  246. Sokolova MG, Akimova GP, Vaishlia OB (2011) Effect of phytohormones synthesized by rhizosphere bacteria on plants. Prikl Biokhim Mikrobiol 47:302–307PubMedPubMedCentralGoogle Scholar
  247. Souza R, Beneduzi A, Ambrosini A, Costa PB, Meyer J, Vargas LK, Schoenfeld R, Passaglia LMP (2013) The effect of plant growth-promoting rhizobacteria on the growth of rice (Oryza sativa L.) cropped in southern Brazilian fields. Plant Soil 366:585–603CrossRefGoogle Scholar
  248. Souza R, Meyer J, Schoenfeld R, Costa PB, Passaglia LMP (2014) Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann Microbiol 65:951–964CrossRefGoogle Scholar
  249. Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419PubMedPubMedCentralCrossRefGoogle Scholar
  250. Spaepen S, Vanderleyden J (2011) Auxin and plant-microbe interactions. Cold Spring Harb Perspect Biol 3:a001438PubMedPubMedCentralCrossRefGoogle Scholar
  251. Stephen J, Jisha MS, Shabanamol S, Rishad KS (2015) Growth enhancement of rice (Oryza sativa) by phosphate solubilizing Gluconacetobacter sp. (MTCC 8368) and Burkholderia sp. (MTCC 8369) under greenhouse conditions. Biotech 5:831–837Google Scholar
  252. Suhag M (2016) Potential of biofertilizers to replace chemical fertilizers. Int Adv Res J Sci Eng Technol 3:163–167Google Scholar
  253. Sultana S, Hossian MM, Kubota M, Hyakumachi M (2009) Induction of systemic resistance in Arabidopsis thaliana in response to a culture filtrate from a plant growth-promotingfungus, Phoma sp. GS8-3. Plant Biol 11:97–104PubMedCrossRefPubMedCentralGoogle Scholar
  254. Sundaram VM, Kathiresan D, Eswaran S, Sankaralingam S, Balakan B, Harinathan B (2016) Phosphate solubilization and phytohormones production by rhizosphere microorganisms. Advan Agric Biol 5:5–13Google Scholar
  255. Sureshbabu K, Amaresan N, Kumar K (2016) Amazing multiple function properties of plant growth promoting rhizobacteria in the rhizosphere soil. Int J Curr Microbiol App Sci 5:661–683CrossRefGoogle Scholar
  256. Szilagyi-Zecchin VJ, Ikeda AC, Hungria M, Adamoski D, KavaCordeiro V, Glienke C, Galli-Terasawa LV (2014) Identification and characterization of endophytic bacteria from corn (Zea mays L.) roots with biotechnological potential in agriculture. AMB Express 4:2–9CrossRefGoogle Scholar
  257. Teale WD, Paponov IA, Palme K (2006) Auxin in action: signalling, transport and the control of plant growth and development. Nat Rev Mol Cell Biol 7:847–859PubMedCrossRefPubMedCentralGoogle Scholar
  258. Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325.  https://doi.org/10.1007/978-81-322-2776-2_22 CrossRefGoogle Scholar
  259. Timmusk S, Nicander B, Granhall U, Tillberg E (1999) Cytokinin production by Paenibacillus polymyxa. Soil Biol Biochem 31:1847–1852CrossRefGoogle Scholar
  260. Timmusk S, Islam A, Abd El D, Lucian C, Tanilas T, Kannaste A (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harshenvironments: enhanced biomass production and reduced emissions of stressvolatiles. PLoS One 9:1–13CrossRefGoogle Scholar
  261. Tortora ML, Díaz-Ricci JC, Pedraza RO (2011) Azospirillum brasilense siderophores with antifungal activity against Colletotrichum acutatum. Arch Microbiol 193:275–286PubMedCrossRefPubMedCentralGoogle Scholar
  262. Vansuyt G, Robin A, Briat JF, Curie C, Lemanceau P (2007) Iron acquisition from Fe-pyoverdine by Arabidopsis thaliana. Mol Plant-Microbe Interact 20:441–447PubMedCrossRefPubMedCentralGoogle Scholar
  263. Vassilev N, Vassileva M, Azcon R, Medina A (2001) Preparation of gel-entrapped mycorrhizal inoculum in the presence or absence of Yarrowia lypolytica. Biotechnol Lett 23:907–909.Google Scholar
  264. Varma A, Bakshi M, Lou B, Hartmann A, Ralf Oelmueller R (2012) Piriformospora indica: a novel plant growth-promoting mycorrhizal fungus. Agric Res 1:117–131CrossRefGoogle Scholar
  265. Vazquez P, Holguin G, Puente ME, Lopez-Cortes A, Bashan Y (2000) Phosphate-solubilizing microorganisms associated with the rhizosphere of mangroves in a semiarid coastal lagoon. Bio Fertil Soils 30:460–468CrossRefGoogle Scholar
  266. Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110.  https://doi.org/10.1007/978-81-322-2776-2_7 CrossRefGoogle Scholar
  267. Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Ind J Agric Sci 84(8):914–919Google Scholar
  268. Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015a) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794CrossRefGoogle Scholar
  269. Verma JP, Jaiswa DK, Meena VS, Meena RS (2015b) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547CrossRefGoogle Scholar
  270. Vessey JK (2003) Plant growth-promoting rhizobacteria as biofertilizers. Plant Soil 255:571–586CrossRefGoogle Scholar
  271. Vidyalakshmi R, Paranthaman R, Bhakyaraj R (2009) Sulphur oxidizing bacteria and pulse nutrition – a review. World J Agric Sci 5:270–278Google Scholar
  272. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL (2008) Trichoderma-plant-pathogen interactions. Soil Biol Biochem 40:1–10CrossRefGoogle Scholar
  273. Vurukonda SSKP, Vardharajula S, Shrivastava M, Skz A (2016) Enhancement of drought stress tolerance in crops by plant growth promoting rhizobacteria. Microbiol Res 184:13–24PubMedCrossRefPubMedCentralGoogle Scholar
  274. Wahid F, Sharif M, Steinkellner S, Khan MA, Marwat KB, Khan SA (2016) Inoculation of arbuscular mycorrhizal fungi and phosphate solubilizing bacteria in the presence of rock phosphate improves phosphorus uptake and growth of maize. Pak J Bot 48:739–747Google Scholar
  275. Wahyudi AT, Astuti RP, Widyawati A, Meryandini A, Nawangsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth for promoting Rhizobacteria. J Microbiol Antimicrob 3:34–40Google Scholar
  276. Werner T, Motyka V, Laucou V, Smets R, Van Onckelen H, Schmülling T (2003) Cytokinin-deficient transgenic Arabidopsis plants show multiple developmental alterations indicating opposite functions of cytokinins in the regulation of shoot and root meristem activity. Plant Cell 15:2532–2550CrossRefGoogle Scholar
  277. Wu SC, Cao ZH, Li ZG, Cheung KC, Wong MH (2005) Effects of biofertilizer containing N-fixer, P and K solubilizers and AM fungi on maize growth: a greenhouse trial. Geoderma 125:155–166CrossRefGoogle Scholar
  278. Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201.  https://doi.org/10.1007/978-81-322-2776-2_14 CrossRefGoogle Scholar
  279. Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170.  https://doi.org/10.1007/978-81-322-2776-2_12 CrossRefGoogle Scholar
  280. Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42.  https://doi.org/10.1007/978-81-322-2776-2_3 CrossRefGoogle Scholar
  281. Zahid M, Abbasi MK, Hameed S, Rahim N (2015) Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front Microbiol 6:207PubMedPubMedCentralCrossRefGoogle Scholar
  282. Zahir A, Arshad M, Frankenberger WT Jr (2004) Plant growth promoting Rhizobacteria: applications and perspectives in agriculture. Adv Agron 81:97–168CrossRefGoogle Scholar
  283. Zahir ZA, Munir A, Asghar HN, Shahroona B, Arshad M (2008) Effectiveness ofrhizobacteria containing ACC-deaminase for growth promotion of peas (P.sativum) under drought conditions. J Microbiol Biotechnol 18:958–963PubMedPubMedCentralGoogle Scholar
  284. Zak DR, Pregitzer KS, King JS, Holmes WE (2000) Elevated atmospheric CO2, fine roots and the response of soil microorganism: a review and hypothesis. New Phytol 147:201–222CrossRefGoogle Scholar
  285. Zamioudis C, Pieterse CMJ (2012) Modulation of host immunity by beneficial microbes. Mol Plant-Microbe Interact 25:139–150PubMedCrossRefPubMedCentralGoogle Scholar
  286. Zhao H, Li M, Fang K, Chen W, Wang J (2012) In silico insights into the symbiotic nitrogen fixation in sinorhizobium melilotivia metabolic reconstruction. PLoS One 7:e31287PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mahipal Choudhary
    • 1
  • Prakash Chand Ghasal
    • 2
  • Ram Prakash Yadav
    • 1
  • Vijay Singh Meena
    • 1
    Email author
  • Tilak Mondal
    • 1
  • J. K. Bisht
    • 1
  1. 1.ICAR-Vivekananda Institute of Hill AgricultureAlmoraIndia
  2. 2.ICAR-Indian Institute of Farming Systems Research, ModipuramMeerutIndia

Personalised recommendations