Detection of Exudates Through Local Binary Pattern in Diabetic Retinopathy

  • R. Suma
  • Deepashree Devaraj
  • S. C. Prasanna Kumar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 801)

Abstract

The long term diabetes leads to the retinal vascular disease called diabetic retinopathy (DR). As DR is a progressive disease, it should be diagnosed and treated as soon as possible to prevent the patient from blindness. The lesions like microaneurysms, exudates, hemorrhages and abnormal growth of blood vessels etc. will appear in DR. In this paper, the segmentation and classification of exudates is proposed. Exudates are segmented using modified morphological operation which deals with the intervention of optic disc before the detection of exudates. The feature extraction is done using local binary pattern (LBP) and classified using support vector machine (SVM). The proposed method is tested on DIARETDB0 and DIARETDB1, which are freely available datasets. The method is also evaluated on the hospital images. The average sensitivity, specificity and accuracy of 0.92, 0.82, and 0.95 respectively are obtained.

Keywords

Diabetic retinopathy Microaneurysms Exudates LBP SVM DIARETDB0 DIARETDB1 

References

  1. 1.
    Akram, M.U., Khalid, S., Khan, S.A.: Identification and classification of microaneurysms for early detection of diabetic retinopathy. Pattern Recognit. 46, 107–116 (2013)CrossRefGoogle Scholar
  2. 2.
    Tamilarasi, M., Duraiswamy, K.: Automatic detection of microaneurysms using microstructure and wavelet methods. Sadhana 40, 1185–1203 (2015). Indian Academy of SciencesMathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Saha, R., Chowdhury, A.R., Banerjee, S.: Diabetic retinopathy related lesions detection and classification using machine learning technology. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) ICAISC 2016. LNCS (LNAI), vol. 9693, pp. 734–745. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-39384-1_65Google Scholar
  4. 4.
    Sreejini, K.S., Govindan, V.K.: A review of computer aided detection of anatomical structures and lesions of DR from color retina images. Int. J. Image Graph. Signal Process. 7, 55–69 (2015)CrossRefGoogle Scholar
  5. 5.
    Harangi, B., Hajdu, A.: Automatic exudates detection by fusing multiple active contours and regionwise classification. Comput. Biol. Med. 54, 156–171 (2014)CrossRefGoogle Scholar
  6. 6.
    Lachure, J., Deorankar, A.V., Lachure, S., Gupta, S., Jadhav, R.: Diabetic retinopathy using morphological operations and machine learning. IEEE (2015)Google Scholar
  7. 7.
    Sánchez, C.I., García, M., Mayo, A., López, M.I., Hornero, R.: Retinal image analysis based on mixture models to detect hard exudates. Med. Image Anal. 13, 650–658 (2009)CrossRefGoogle Scholar
  8. 8.
    Amin, J., Sharif, M., Yasmin, M.: A review on recent developments for detection of diabetic retinopathy. Scientifica, Article ID 6838976 (2016)Google Scholar
  9. 9.
    Osareh, A., Shadgar, B., Markham, R.: A computational-intelligence-based approach for detection of exudates in diabetic retinopathy images. IEEE Trans. Inf. Technol. Biomed. 13, 535–545 (2009)CrossRefGoogle Scholar
  10. 10.
    de la Calleja, J., Tecuapetla, L., Auxilio Medina, M., Bárcenas, E., Urbina Nájera, A.B.: LBP and machine learning for diabetic retinopathy detection. In: Corchado, E., Lozano, J.A., Quintián, H., Yin, H. (eds.) IDEAL 2014. LNCS, vol. 8669, pp. 110–117. Springer, Cham (2014).  https://doi.org/10.1007/978-3-319-10840-7_14Google Scholar
  11. 11.
    Krishnan, M.M.R., Laude, A.: An integrated diabetic retinopathy index for the diagnosis of retinopathy using digital fundus image features. J. Med. Imag. Health Inf. 3, 306–313 (2013)CrossRefGoogle Scholar
  12. 12.
    Morales, S., Engan, K., Naranjo, V., Colomer, A.: Retinal disease screening through local binary patterns. IEEE J. Biomed. Health Inf. 21, 184–192 (2015)CrossRefGoogle Scholar
  13. 13.
    Devaraj, D., Prasanna Kumar, S.C.: Robust detection of hard exudates for diagnosis of non-proliferative diabetic retinopathy using integrated approach. In: Abraham, A., Cherukuri, A.K., Madureira, A.M., Muda, A.K. (eds.) SoCPaR 2016. AISC, vol. 614, pp. 525–534. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-60618-7_52CrossRefGoogle Scholar
  14. 14.
    Mamatha, B.V., Srilatha, L.R., Devaraj, D., Prasanna Kumar, S.C.: A survey on different classifiers for medical diagnosis and grading: application to diabetic retinopathy. Int. J. Healthc. Sci. 2, 210–216 (2015)Google Scholar
  15. 15.
    Devaraj, D., Prasanna Kumar, S.C.: Automated diagnosis of diabetic retinopathy using SVM and multiclass SVM. Int. J. Adv. Sci. Tech. Res. 3, 316–323 (2014)Google Scholar
  16. 16.
    Ramya, J., Soundarya, S., Nagoormeeral, A., Revathi, E.: Detection of exudates in color fundus image. Int. J. Innov. Res. Sci. Eng. Technol. 3, 10659–10665 (2014)CrossRefGoogle Scholar
  17. 17.
    Sánchez, C.I., Hornero, R., López, M.I., Aboy, M., Poza, J., Abásolo, D.: A novel automatic image processing algorithm for detection of hard exudates based on retinal image analysis. Med. Eng. Phys. 30, 350–357 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.R.V. College of EngineeringBengaluruIndia

Personalised recommendations