Advertisement

Trace Elements in Abiotic Stress Tolerance

  • Mumtaz Khan
  • Rehan Ahmad
  • Muhammad Daud Khan
  • Muhammad Rizwan
  • Shafaqat Ali
  • Muhammad Jamil Khan
  • Muhammad Azam
  • Ghazala Irum
  • Mirza Nadeem Ahmad
  • Shuijin Zhu
Chapter

Abstract

Trace elements are minutely required elements for normal growth and functioning of biological systems. They perform several intricate roles in complex cellular phenomena including plant protection against stress conditions. The role of various trace elements in enhancing plant’s tolerance to abiotic stresses is multifaceted. At primary level, they are the constituents of cell organelles and membranes and serve as metalloproteins and metal cofactors or activating agents for key ROS scavenging enzymes. At secondary level, they regulate key metabolic pathways involved in gene expression; biosynthesis of proteins, carbohydrates, and lipids; and production of phytohormones which protect plants from ROS-induced injury. The role of some important individual trace elements in enhancing plant’s tolerance to various abiotic stresses is explained here in different plant species.

Keywords

Trace elements Abiotic stresses Tolerance mechanisms Biomolecules Metal cofactors Abiotic stress Micronutrients Oxidative stress Phytohormones Reactive oxygen species Soil fertility 

References

  1. Abedi T, Pakniyat H (2010) Antioxidant enzyme changes in response to drought stress in ten cultivars of oilseed rape (Brassica napus L.) Czech J Genet Plant Breed 46:27–34CrossRefGoogle Scholar
  2. Ali B, Qian P, Jin R, Ali S, Khan M, Aziz R, Tian T, Zhou W (2014) Physiological and ultra-structural changes in Brassica napus seedlings induced by cadmium stress. Biol Plant 58:131–138CrossRefGoogle Scholar
  3. Alpaslan M, Gunes A (2001) Interactive effects of boron and salinity stress on the growth, membrane permeability and mineral composition of tomato and cucumber plants. Plant Soil 236:123–128CrossRefGoogle Scholar
  4. Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ammar WB, Zarrouk M, Nouairi I (2015) Zinc alleviates cadmium effects on growth, membrane lipid biosynthesis and peroxidation in Solanum lycopersicum leaves. Biologia 70:198–207CrossRefGoogle Scholar
  6. Babenko ON, Brychkova G, Sagi M, Alikulov ZA (2015) Molybdenum application enhances adaptation of crested wheatgrass to salinity stress. Acta Physiol Plant 37:14CrossRefGoogle Scholar
  7. Bandeoğlu E, Eyidoğan F, Yücel M, Oktem HA (2004) Antioxidant responses of shoots and roots of lentil to NaCl-salinity stress. Plant Growth Regul 42:69–77CrossRefGoogle Scholar
  8. Bittner F, Mendel R-R (2010) Cell biology of molybdenum. In: Cell biology of metals and nutrients. Springer, Berlin, pp 119–143CrossRefGoogle Scholar
  9. Bonilla I, El-Hamdaoui A, Bolaños L (2004) Boron and calcium increase Pisum sativum seed germination and seedling development under salt stress. Plant Soil 267:97–107CrossRefGoogle Scholar
  10. Braconnier S, Bonneau X (1998) Effects of chlorine deficiency in the field on leaf gas exchanges in the PB121 coconut hybrid. Agronomie 18:563–572CrossRefGoogle Scholar
  11. Brychkova G, Alikulov Z, Fluhr R, Sagi M (2008) A critical role for ureides in dark and senescence-induced purine remobilization is unmasked in the Atxdh1 Arabidopsis mutant. Plant J 54:496–509CrossRefPubMedPubMedCentralGoogle Scholar
  12. Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704CrossRefPubMedPubMedCentralGoogle Scholar
  13. Camacho-Cristóbal JJ, González-Fontes A (1999) Boron deficiency causes a drastic decrease in nitrate content and nitrate reductase activity, and increases the content of carbohydrates in leaves from tobacco plants. Planta 209:528–536CrossRefPubMedPubMedCentralGoogle Scholar
  14. Cartes P, Jara A, Pinilla L, Rosas A, Mora ML (2010) Selenium improves the antioxidant ability against aluminium-induced oxidative stress in ryegrass roots. Ann Appl Biol 156:297–307CrossRefGoogle Scholar
  15. Chu J, Yao X, Zhang Z (2010) Responses of wheat seedlings to exogenous selenium supply under cold stress. Biol Trace Elem Res 136:355–363CrossRefPubMedPubMedCentralGoogle Scholar
  16. Cordovilla M, Ligero F, Lluch C (1996) Growth and nitrogen assimilation in nodules in response to nitrate levels in Vicia faba under salt stress. J Exp Bot 47:203–210CrossRefGoogle Scholar
  17. Daud M, Sun Y, Dawood M, Hayat Y, Variath MT, Wu YX, Mishkat U, Najeeb U, Zhu S (2009) Cadmium-induced functional and ultrastructural alterations in roots of two transgenic cotton cultivars. J Hazard Mater 161:463–473CrossRefPubMedPubMedCentralGoogle Scholar
  18. Deák M, Horváth GV, Davletova S, Torok K, Sass L, Vass I, Barna B, Kiraly Z, Dudits D (1999) Plants ectopically expressing the iron binding protein, ferritin, are tolerant to oxidative damage and pathogens. Nat Biotechnol 17:192–196CrossRefPubMedPubMedCentralGoogle Scholar
  19. Demirevska K, Simova-Stoilova L, Fedina I, Georgieva K, Kunert K (2010) Response of oryzacystatin I transformed tobacco plants to drought, heat and light stress. J Agron Crop Sci 196:90–99CrossRefGoogle Scholar
  20. Dennis M, Kolattukudy P (1992) A cobalt-porphyrin enzyme converts a fatty aldehyde to a hydrocarbon and CO. Proc Natl Acad Sci 89:5306–5310CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dordas C (2009) Nonsymbiotic hemoglobins and stress tolerance in plants. Plant Sci 176:433–440CrossRefPubMedGoogle Scholar
  22. Dunlap JR, Binzel ML (1996) NaCI reduces indole-3-acetic acid levels in the roots of tomato plants independent of stress-induced abscisic acid. Plant Physiol 112:379–384CrossRefPubMedPubMedCentralGoogle Scholar
  23. El-Hamdaoui A, Redondo-Nieto M, Rivilla R, Bonilla I, Bolanos L (2003) Effects of boron and calcium nutrition on the establishment of the Rhizobium leguminosarum–pea (Pisum sativum) symbiosis and nodule development under salt stress. Plant Cell Environ 26:1003–1011CrossRefGoogle Scholar
  24. Engvild KC (1986) Chlorine-containing natural compounds in higher plants. Phytochemistry 25:781–791CrossRefGoogle Scholar
  25. Faize M, Burgos L, Faize L, Piqueras A, Nicolas E, Barba-Espin G, Clemente-Moreno MJ, Alcobendas R, Artlip T, Hernandez JA (2011) Involvement of cytosolic ascorbate peroxidase and Cu/Zn-superoxide dismutase for improved tolerance against drought stress. J Exp Bot 62:2599–2613CrossRefPubMedPubMedCentralGoogle Scholar
  26. Gueta-Dahan Y, Yaniv Z, Zilinskas BA, Ben-Hayyim G (1997) Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in citrus. Planta 203:460–469CrossRefPubMedPubMedCentralGoogle Scholar
  27. Hajheidari M, Abdollahian-Noghabi M, Askari H, Heidari M, Sadeghian SY, Ober ES, Hosseini Salekdeh G (2005) Proteome analysis of sugar beet leaves under drought stress. Proteomics 5:950–960CrossRefPubMedPubMedCentralGoogle Scholar
  28. Hajiboland R, Farhanghi F (2011) Effect of low boron supply in turnip plants under drought stress. Biol Plant 55:775–778CrossRefGoogle Scholar
  29. Hajiboland R, Bastani S, Rad SB (2011) Effect of light intensity on photosynthesis and antioxidant defense in boron deficient tea plants. Acta Biol Szeg 55:265–272Google Scholar
  30. Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients (Cu, Zn, Mn, Fe, Ni, Mo, B, Cl). Curr Opin Plant Biol 12:259–266CrossRefPubMedPubMedCentralGoogle Scholar
  31. Harrison MD, Jones CE, Dameron CT (1999) Copper chaperones: function, structure and copper-binding properties. J Biol Inorg Chem 4:145–153CrossRefPubMedPubMedCentralGoogle Scholar
  32. Harrison MD, Jones CE, Solioz M, Dameron CT (2000) Intracellular copper routing: the role of copper chaperones. Trends Biochem Sci 25:29–32CrossRefPubMedPubMedCentralGoogle Scholar
  33. Hasanuzzaman M, Fujita M (2011) Selenium pretreatment upregulates the antioxidant defense and methylglyoxal detoxification system and confers enhanced tolerance to drought stress in rapeseed seedlings. Biol Trace Elem Res 143:1758–1776CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hasanuzzaman M, Nahar K, Alam MM, Fujita M (2014) Modulation of antioxidant machinery and the methylglyoxal detoxification system in selenium supplemented Brassica napus seedlings confers tolerance to high temperature stress. Biol Trace Elem Res 161:297–307CrossRefPubMedPubMedCentralGoogle Scholar
  35. Hernandez J, Olmos E, Corpas FJ, Sevilla F, Del Rio LA (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167CrossRefGoogle Scholar
  36. Hider RC, Kong X (2013) Iron speciation in the cytosol: an overview. Dalton Trans 42:3220–3229CrossRefPubMedGoogle Scholar
  37. Jacobo-Velazquez DA, Martinez-Hernandez GB, Rodriguez S, Cao CM, Cisneros-Zevallos L (2011) Plants as biofactories: physiological role of reactive oxygen species on the accumulation of phenolic antioxidants in carrot tissue under wounding and hyperoxia stress. J Agric Food Chem 59:6583–6593CrossRefPubMedGoogle Scholar
  38. Jaleel CA, Manivannan P, Sankar B, Kishorekumar A, Gopi R, Somasundaram R, Panneerselvam R (2007) Induction of drought stress tolerance by ketoconazole in Catharanthus roseus is mediated by enhanced antioxidant potentials and secondary metabolite accumulation. Colloids Surf B: Biointerfaces 60:201–206CrossRefPubMedGoogle Scholar
  39. Jiang M, Zhang J (2001) Effect of abscisic acid on active oxygen species, antioxidative defence system and oxidative damage in leaves of maize seedlings. Plant Cell Physiol 42:1265–1273CrossRefPubMedGoogle Scholar
  40. Kabata-Pendias A (2010) Trace elements in soils and plants. CRC Press, Boca RatonCrossRefGoogle Scholar
  41. Karim M, Zhang YQ, Zhao RR, Chen XP, Zhang FS, Zou CQ (2012) Alleviation of drought stress in winter wheat by late foliar application of zinc, boron, and manganese. J Plant Nutr Soil Sci 175:142–151CrossRefGoogle Scholar
  42. Khan M, Khan MD, Ali B, Muhammad N, Zhu SJ (2014) Differential physiological and ultrastructural responses of cottonseeds under Pb toxicity. Pol J Environ Stud 23:2063–2070CrossRefGoogle Scholar
  43. Koshiba T, Saito E, Ono N, Yamamoto N, Sato M (1996) Purification and properties of flavin-and molybdenum-containing aldehyde oxidase from coleoptiles of maize. Plant Physiol 110:781–789CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lam HK, Scott A, Erin LM, John JR (2015) Evidence that chlorinated auxin is restricted to the Fabaceae but not to the Fabeae. Plant Physiol 168:798–803CrossRefPubMedPubMedCentralGoogle Scholar
  45. Leydecker M-T, Moureaux T, Kraepiel Y, Schnorr K, Caboche M (1995) Molybdenum cofactor mutants, specifically impaired in xanthine dehydrogenase activity and abscisic acid biosynthesis, simultaneously overexpress nitrate reductase. Plant Physiol 107:1427–1431CrossRefPubMedPubMedCentralGoogle Scholar
  46. Lin L, Zhou W, Dai H, Cao F, Zhang G, Wu F (2012) Selenium reduces cadmium uptake and mitigates cadmium toxicity in rice. J Hazard Mater 235:343–351CrossRefPubMedPubMedCentralGoogle Scholar
  47. Lu K, Li L, Zheng X, Zhang Z, Mou T, Hu Z (2008) Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. J Genet 87:305–310CrossRefPubMedPubMedCentralGoogle Scholar
  48. Lutts S, Kinet J, Bouharmont J (1996) NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann Bot 78:389–398CrossRefGoogle Scholar
  49. Maksymiec W (1998) Effect of copper on cellular processes in higher plants. Photosynthetica 34:321–342CrossRefGoogle Scholar
  50. Manas D, Chakravarty A, Pal S, Bhattacharya A (2014) Influence of foliar applications of chelator and micronutrients on antioxidants in green chilli. Int J Nutr Metab 6:18–27CrossRefGoogle Scholar
  51. Marschner H (1995) Mineral nutrition of higher plants. Academic, LondonGoogle Scholar
  52. Mendel RR (2009) Cell biology of molybdenum. Biofactors 35:429–434CrossRefPubMedPubMedCentralGoogle Scholar
  53. Mendel RR, Bittner F (2006) Cell biology of molybdenum. Biochim Biophys Acta 1763:621–635CrossRefPubMedPubMedCentralGoogle Scholar
  54. Myouga F, Hosoda C, Umezawa T, Iizumi H, Kuromori T, Motohashi R, Shono Y, Nagata N, Ikeuchi M, Shinozaki K (2008) A heterocomplex of iron superoxide dismutases defends chloroplast nucleoids against oxidative stress and is essential for chloroplast development in Arabidopsis. Plant Cell 20:3148–3162CrossRefPubMedPubMedCentralGoogle Scholar
  55. Oven M, Grill E, Golan-Goldhirsh A, Kutchan TM, Zenk MH (2002) Increase of free cysteine and citric acid in plant cells exposed to cobalt ions. Phytochemistry 60:467–474CrossRefPubMedPubMedCentralGoogle Scholar
  56. Ozturk M, Sakcali S, Gucel S, Tombuloglu H (2010) Boron and plants. In: Ashraf M, Ozturk M, Ahmad MSA (eds) Plant adaptation and phytoremediation. Springer Netherlands, Dordrecht, pp 275–311CrossRefGoogle Scholar
  57. Peng HY, Qi YP, Lee J, Yang LT, Guo P, Jiang HX, Chen LS (2015) Proteomic analysis of Citrus sinensis roots and leaves in response to long-term magnesium-deficiency. BMC Genomics 16:253CrossRefPubMedPubMedCentralGoogle Scholar
  58. Perl-Treves R, Galun E (1991) The tomato Cu, Zn superoxide dismutase genes are developmentally regulated and respond to light and stress. Plant Mol Biol 17:745–760CrossRefPubMedPubMedCentralGoogle Scholar
  59. Pilon M (2011) Moving copper in plants. New Phytol 192:305–307CrossRefPubMedPubMedCentralGoogle Scholar
  60. Pilon-Smits EA (2015) Selenium in plants. In: Progress in botany. Springer, Vancouver, pp 93–107Google Scholar
  61. Poletti S, Gruissem W, Sautter C (2004) The nutritional fortification of cereals. Curr Opin Biotechnol 15:162–165CrossRefPubMedGoogle Scholar
  62. Prashanth S, Sadhasivam V, Parida A (2008) Over expression of cytosolic copper/zinc superoxide dismutase from a mangrove plant Avicennia marina in indica rice var Pusa Basmati-1 confers abiotic stress tolerance. Transgenic Res 17:281–291CrossRefPubMedGoogle Scholar
  63. Rompel A, Andrews JC, Cinco RM, Wemple MW, Christou G, Law NA, Pecoraro VL, Sauer K, Yachandra VK, Klein MP (1997) Chlorine K-edge X-ray absorption spectroscopy as a probe of chlorine− manganese bonding: model systems with relevance to the oxygen evolving complex in photosystem II. J Am Chem Soc 119:4465–4470CrossRefGoogle Scholar
  64. Saidi I, Chtourou Y, Djebali W (2014) Selenium alleviates cadmium toxicity by preventing oxidative stress in sunflower (Helianthus annuus) seedlings. J Plant Physiol 171:85–91CrossRefPubMedGoogle Scholar
  65. Santos CX, Anjos EI, Augusto O (1999) Uric acid oxidation by peroxynitrite: multiple reactions, free radical formation, and amplification of lipid oxidation. Arch Biochem Biophys 372:285–294CrossRefPubMedGoogle Scholar
  66. Sauer P, Frebort I (2003) Molybdenum cofactor-containing oxidoreductase family in plants. Biol Plant 46:481–490CrossRefGoogle Scholar
  67. Senge M, Dörnemann D, Senger H (1988) The chlorinated chlorophyll RC I, a preparation artefact. FEBS Lett 234:215–217CrossRefGoogle Scholar
  68. Silva IR, Smyth TJ, Israel DW, Rufty TW (2001) Altered aluminum inhibition of soybean root elongation in the presence of magnesium. Plant Soil 230:223–230CrossRefGoogle Scholar
  69. Sreenivasulu N, Grimm B, Wobus U, Weschke W (2000) Differential response of antioxidant compounds to salinity stress in salt-tolerant and salt-sensitive seedlings of foxtail millet (Setaria italica). Physiol Plant 109:435–442CrossRefGoogle Scholar
  70. Stiles W (2013) Trace elements in plants. Cambridge University Press, New YorkGoogle Scholar
  71. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065CrossRefPubMedPubMedCentralGoogle Scholar
  72. Tanaka Y, Hibino T, Hayashi Y, Tanaka A, Kishitani S, Takabe T, Yokota S (1999) Salt tolerance of transgenic rice overexpressing yeast mitochondrial Mn-SOD in chloroplasts. Plant Sci 148:131–138CrossRefGoogle Scholar
  73. Tewari RK, Kumar P, Sharma PN, Bisht SS (2002) Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Sci 162:381–388CrossRefGoogle Scholar
  74. Tewari RK, Kumar P, Sharma PN (2006) Magnesium deficiency induced oxidative stress and antioxidant responses in mulberry plants. Sci Hortic 108:7–14CrossRefGoogle Scholar
  75. Tsuzuki T, Takahashi K, Tomiyama M, Inoue SI, Kinoshita T (2013) Overexpression of the Mg-chelatase H subunit in guard cells confers drought tolerance via promotion of stomatal closure in Arabidopsis thaliana. Front Plant Sci 4:440.  https://doi.org/10.3389/fpls.2013.00440 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Van Breusegem F, Slooten L, Stassart JM, Botterman J, Moens T, Van Montagu M, Inze D (1999a) Effects of overproduction of tobacco MnSOD in maize chloroplasts on foliar tolerance to cold and oxidative stress. J Exp Bot 50:71–78CrossRefGoogle Scholar
  77. Van Breusegem F, Slooten L, Stassart JM, Moens T, Botterman J, Van Montagu M, Inze D (1999b) Overproduction of Arabidopsis thaliana FeSOD confers oxidative stress tolerance to transgenic maize. Plant Cell Physiol 40:515–523CrossRefPubMedPubMedCentralGoogle Scholar
  78. Van Camp W, Willekens H, Bowler C, Van Montagu M, Inze D, Reupold-Popp P, Sandermann JH, Langebartels C (1994) Elevated levels of superoxide dismutase protect transgenic plants against ozone damage. Nat Biotechnol 12:165–168CrossRefGoogle Scholar
  79. Van Camp W, Capiau K, Van Montagu M, Inze D, Slooten L (1996) Enhancement of oxidative stress tolerance in transgenic tobacco plants overproducing Fe-superoxide dismutase in chloroplasts. Plant Physiol 112:1703–1714CrossRefPubMedPubMedCentralGoogle Scholar
  80. Ventura Y, Wuddineh WA, Ephrath Y (2010) Molybdenum as an essential element for improving total yield in seawater-grown Salicornia europaea L. Sci Hortic 126:395–401CrossRefGoogle Scholar
  81. Walton DC, Yi L (1995) Abscisic acid biosynthesis and metabolism. In: Plant hormones. Springer, Berlin, pp 140–157CrossRefGoogle Scholar
  82. Wang W, Vinocur B, Altman A (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218:1–14CrossRefPubMedPubMedCentralGoogle Scholar
  83. Wang Y, Ying Y, Chen J, Wang X (2004) Transgenic Arabidopsis overexpressing Mn-SOD enhanced salt-tolerance. Plant Sci 167:671–677CrossRefGoogle Scholar
  84. Wang FZ, Wang QB, Kwon SY, Kwak SS, Su WA (2005) Enhanced drought tolerance of transgenic rice plants expressing a pea manganese superoxide dismutase. J Plant Physiol 162:465–472CrossRefPubMedPubMedCentralGoogle Scholar
  85. Weissenborn DL, Denbow CJ, Laine M, Lang SS, Yang Z, Yu X, Cramer CL (1995) HMG-GoA reductase and terpenoid phytoalexins: molecular specialization within a complex pathway. Physiol Plant 93:393–400CrossRefGoogle Scholar
  86. Yang Z, Wu Y, Li Y, Ling HQ, Chu C (2009) OsMT1a, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Mol Biol 70:219–229CrossRefPubMedPubMedCentralGoogle Scholar
  87. Yao X, Chu J, Wang G (2009) Effects of selenium on wheat seedlings under drought stress. Biol Trace Elem Res 130:283–290CrossRefPubMedPubMedCentralGoogle Scholar
  88. Yavas I, Unay A (2016) Effects of zinc and salicylic acid on wheat under drought stress. J Anim Plant Sci 26:1012–1018Google Scholar
  89. Yesbergenova Z, Yang G, Oron E, Soffer D, Fluhr R, Sagi M (2005) The plant Mo-hydroxylases aldehyde oxidase and xanthine dehydrogenase have distinct reactive oxygen species signatures and are induced by drought and abscisic acid. Plant J 42:862–876CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Mumtaz Khan
    • 1
    • 2
  • Rehan Ahmad
    • 2
  • Muhammad Daud Khan
    • 3
  • Muhammad Rizwan
    • 4
  • Shafaqat Ali
    • 4
    • 5
  • Muhammad Jamil Khan
    • 2
  • Muhammad Azam
    • 6
  • Ghazala Irum
    • 7
  • Mirza Nadeem Ahmad
    • 8
  • Shuijin Zhu
    • 1
  1. 1.Department of Agronomy, College of Agriculture & BiotechnologyZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Department of Soil & Environmental SciencesGomal UniversityDera Ismail KhanPakistan
  3. 3.Department of Biotechnology & Genetic EngineeringKUSTKohatPakistan
  4. 4.Department of Environmental Sciences and EngineeringGovernment College UniversityFaisalabadPakistan
  5. 5.Key Laboratory of Soil Environment and Pollution RemediationInstitute of Soil Science, Chinese Academy of SciencesNanjingChina
  6. 6.Department of HorticultureUniversity of AgricultureFaisalabadPakistan
  7. 7.National Center of Excellence in Physical ChemistryUniversity of PeshawarPeshawarPakistan
  8. 8.Department of Applied ChemistryGovernment College UniversityFaisalabadPakistan

Personalised recommendations