Advertisement

Molecular Approaches to Nutrient Uptake and Cellular Homeostasis in Plants Under Abiotic Stress

  • Gyanendranath Mitra
Chapter

Abstract

Plants suffer from abiotic stress due to several soil- and environment-related factors. They need water and essential plant nutrients to carry out their metabolism and survive. Plant genome regulates expression of different sets of genes to ensure availability of nutrients and water under conditions of stress and maintain their cellular homeostasis. The plasma membranes of root hair cells have several channels, which contain transporter proteins, coded by their specific genes for uptake of water and each of the essential plant nutrients. The transporter proteins involved in water uptake are known as aquaporins (AQPs). Since plants encounter several water stress conditions during its growth period, plant genome has many AQP genes to maintain cellular water homeostasis. Two sets of genes regulate uptake of primary nutrients, nitrogen, phosphorus, and potassium. A set of high-affinity transporters are involved, when their concentration in the growth medium is low, and a set of low-affinity transporters at higher concentrations. There are specific transporters for uptake of secondary and micronutrients both under low- and high-nutrient stress conditions. Plant genome responds to various types of abiotic stresses such as cold, heat, salinity, drought, and oxidative stresses and regulates suitably uptake of nutrients to maintain their cellular homeostasis. Amino acids, plant growth regulators, intermediate metabolites, and the nutrients themselves are involved in induction or repression of transporter-encoding genes as well as posttranscriptional modification of transporter proteins. Transcription factors regulate expression of nutrient stress response genes and control nutrient homeostasis in plants at molecular level. miRNAs are involved in posttranscriptional regulation of gene expression and also in nutrient stress signal transduction pathways. Some of the beneficial elements such as Na and Si play significant roles in abiotic stress tolerance of plants. Heavy metals, which are toxic and have no known function in plant metabolism, are sometimes taken up by ion transporters involved in uptake of essential nutrients from mineral-rich soils. Plants take up radioactive isotopes without any apparent damage to them. Exposure to high nuclear radiations may kill some of the plants but others survive. Abiotic stress caused by climate change has its effect on nutrient uptake by plants.

Keywords

Aquaporins Nutrient transporters Transcription factors miRNA Beneficial elements Radioisotopes Climate change 

Notes

Acknowledgments

The author acknowledges some information overlaps between this chapter and his book Regulation of Nutrient Uptake by Plants: A Biochemical and Molecular Approach, Springer (2015), and the first chapter of the book Essential Plant Nutrients, Springer (2017), to develop the current chapter in its proper sequence.

References

  1. Abdel-Ghany SE, Pilon M (2008) Micro-RNA mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945PubMedPubMedCentralCrossRefGoogle Scholar
  2. Abdel-Ghany SE, Burkhead JL, Gogolin KA, Andres-Colas N, Bodecker JR, Puig S, Peñarrubia L, Pilon M (2005) AtCCS is a functional homolog of the yeast copper chaperone Ces1/Lys7. FEBS Lett 579:2307–2312PubMedCrossRefPubMedCentralGoogle Scholar
  3. Adachi M, Hasegawa T, Fukayama H, Tokida T, Sakai H, Matsunami T, Nakamura H, Sameshima R, Okada M (2014) Soil and water warming accelerates phenology and down regulation of leaf photosynthesis of rice plants grown under free air CO2 enrichment (FACE). Plant Cell Physiol 55(2):370–380PubMedPubMedCentralCrossRefGoogle Scholar
  4. Afzal Z, Howton TC, Sun Y, Mukhtar MS (2016) The role of aquaporins in plant stress responses. J Dev Biol 4:1–22CrossRefGoogle Scholar
  5. Ai P, Sun S, Zhao J, Fan X, Xin W, Guo Q, Yu L, Shen Q, Wu P, Miller AJ, Xu G (2009) Two rice phosphate transporters OsPht1;2 and OsPht1;6, have different functions and kinetic properties in uptake and translocation. Plant J 57:798–809PubMedCrossRefPubMedCentralGoogle Scholar
  6. Alexandersson E, Fraysse L, Sjovall-Larsen S, Gustavsson S, Fellert M, Karlsson M, Johanson U, Kjellbom P (2005) Whole gene family expression and drought stress regulation of aquaporins. Plant Mol Biol 59:469–484PubMedCrossRefPubMedCentralGoogle Scholar
  7. Allen GJ, Chu SP, Harrington CL, Schumacher K, Hoffmann T, Tang YY, Grill E, Schroeder JI (2001) A defined range of guard cell calcium oscillation parameters encode stomatal movement. Nature 411:1053–1057PubMedCrossRefPubMedCentralGoogle Scholar
  8. Andres-Colas N, Sancenon V, Rodriguez-Navarro S, Mayo S, Thiele DJ, Ecker JR, Puig S, Peñarrubia L (2006) The Arabidopsis heavy metal P-type ATPase HMA5 interacts with metallo-chaperons and functions in copper detoxification of roots. Plant J 45:225–236PubMedCrossRefPubMedCentralGoogle Scholar
  9. Anthony DM, Glass D, Britto TD, Kaiser BN et al (2002) The regulation of nitrate and ammonium transporter system in plants. J Expt Bot 53(370):855–864. Inorganic Nitrogen Assimilation Special IssueGoogle Scholar
  10. Aoki M (2012) Cesium contamination in food appears to be on the wane. The Japan Times (News), September 25Google Scholar
  11. Arrivault S, Senger T, Kramer U (2006) The Arabidopsis metal tolerance protein AtMTP3 maintains metal homeostasis by mediating Zn exclusion from the shoot under Fe deficiency and Zn oversupply. Plant J 46:861–879PubMedCrossRefPubMedCentralGoogle Scholar
  12. Assunção AGL, Herrero E, Lin YF, Huettel B, Talukdar S, Samczniak C, Immink RG, Van Eldik M, Fiers M, Schat H, Aarts MG (2010) The Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaption to zinc deficiency. Proc Natl Acad Sci U S A 107:10296–10301PubMedPubMedCentralCrossRefGoogle Scholar
  13. Axelsen KB, Palmgren MG (2001) Inventory of the superfamily of P-type ion pumps in Arabidopsis. Plant Physiol 126:696–706PubMedPubMedCentralCrossRefGoogle Scholar
  14. Baker DE, Senef JP (1995) In: Alloway BJ (ed) Heavy metals in soils. Blackie Academic and Professional, London, pp 179–295CrossRefGoogle Scholar
  15. Bakhshi B, Fard EM, Nikpay N, Ebrahimi ML, Bihamta MR, Mardi M, Salekdeh GH (2016) MicroRNA signatures of drought signaling in rice root. PLoS One 11(6):e0156814PubMedPubMedCentralCrossRefGoogle Scholar
  16. Bari R, Pant BD, Stitt M, Scheible W-R (2006) PHO2, MicroRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiol 141(3):988–999PubMedPubMedCentralCrossRefGoogle Scholar
  17. Basu P, Burgmayer SJN (2011) Pterin chemistry and its relationship to the molybdenum cofactor, Coord. Chem Rev 255(9–10):1016–1038Google Scholar
  18. Baumann O, Walz B, Somlyo AP (1991) Electron probe microanalysis of calcium release and magnesium uptake by endoplasmic reticulum in bee photoreceptors. Proc Natl Acad Sci U S A 88:741–744PubMedPubMedCentralCrossRefGoogle Scholar
  19. Baxter I, Mothukumar B, Park HC, Buchner P, Lahner B, Danku J, Zhao K, Lee J, Hawkesford MJ, Guerinot ML, Salt DE (2008) Variation in molybdenum content across broadly distributed population of Arabidopsis thaliana is controlled by a mitochondrial molybdenum transporter (MOT1). PLoS Genet 4:1–13CrossRefGoogle Scholar
  20. Berg JM, Shi Y (1996) The galvanization of biology: a growing appreciation for the role of zinc. Science 271:1081–1085PubMedPubMedCentralCrossRefGoogle Scholar
  21. Bernard DG, Cheng Y, Zhao Y, Balk J (2009) An allelic mutant series of ATM3 reveals its key role in the biogenesis of cytosolic iron-sulfur proteins in Arabidopsis. Plant Physiol 151:590–602PubMedPubMedCentralCrossRefGoogle Scholar
  22. Bieleski RL (1973) Phosphate pools, phosphate transport, and phosphate availability. Annu Rev Plant Physiol 24:225–252CrossRefGoogle Scholar
  23. Bienert GP, Chaumont F (2014) Aquaporin-facilitated transmembrane diffusion of hydrogen peroxide. Biochim Biophys Acta 1840:1596–1604PubMedPubMedCentralCrossRefGoogle Scholar
  24. Borkert CM, Cox FR, Tucker MR (1998) Zinc and copper toxicity in peanut, soybean, rice and corn in soil mixtures. Commun Soil Sci Plant Anal 29:2991–3005CrossRefGoogle Scholar
  25. Bose J, Babourina O, Rengel Z (2011) Role of magnesium in alleviation of aluminium toxicity in plants. J Exp Bot 62:2251–2264CrossRefPubMedGoogle Scholar
  26. Boudsocq M, Sheen J (2010) Stress signaling II: calcium sensing and signaling. Abiotic stress adaptation in plants. Springer, New Delhi, pp 75–90Google Scholar
  27. Boursiac Y, Chen S, Luu DT, Sorieul M, van den Dries N, Maurel C (2005) Early effects of salinity on water transport in Arabidopsis roots. Molecular and cellular features of aquaporin expression. Plant Physiol 139:790–805PubMedPubMedCentralCrossRefGoogle Scholar
  28. Boutigny S, Sautron E, Finazzi G, Rivassau C (2014) HMA1 and PAA1 two chloroplast envelop P1B-ATPases, play distinct roles in chloroplast copper homeostasis. J Exp Bot 65:1529–1540CrossRefPubMedGoogle Scholar
  29. Braam J (1992) Regulated expression of the calmodulin related TCH genes in cultured Arabidopsis cells: induction by calcium and heat shock. Proc Natl Acad Sci U S A 89:3213–3216PubMedPubMedCentralCrossRefGoogle Scholar
  30. Braam J (2005) In touch: plant responses to mechanical stimuli. New Phytol 165:373–389PubMedCrossRefGoogle Scholar
  31. Bresler E, McNeal BL, Carter DL (1982) Saline and sodic soils-principles-dynamics-modelling, Advanced series in agricultural sciences, vol 10. Springer, BerlinCrossRefGoogle Scholar
  32. Britto DT, Ebrahim-Abdebili, Hamam AM, Coskun D, Kronzucker HJ (2010) 42K analysis of sodium induced potassium efflux in barley: mechanism and relevance to salt tolerance. New Phytol 186:373–384PubMedCrossRefPubMedCentralGoogle Scholar
  33. Brown PH (2006) Nickel. In: Barker AV, Pilbeam DJ (eds) Handbook of plant nutrition. CRC Press Taylor & Francis Group, Boca Raton, pp 395–410CrossRefGoogle Scholar
  34. Brownell PF, Crossland CJ (1972) The requirement of sodium as a micronutrient by species having C4dicarboxylic photosynthetic pathway. Plant Physiol 49:794–797PubMedPubMedCentralCrossRefGoogle Scholar
  35. Buchner P, Stuiver CEE, Westerman S, Wirtz M, Hell R, Hawkesford MJ, de Kok LJ (2004) Regulation of sulfate uptake and expression of sulfate transport genes in Brassica oleracea as affected by atmospheric H2S and pedospheric sulfur nutrition. Plant Physiol 136:3396–3408PubMedPubMedCentralCrossRefGoogle Scholar
  36. Burandt P, Papenbrock J, Schmidt A, Bloem E, Haneklaus S, Schnug E (2001) Genotypical differences in total sulfur contents and cysteine-desulf-hydrase activities in Brassica napus L. Phyton (Horn, Austria) 41:75–86Google Scholar
  37. Busconi M, Bosco CD, Crosatti C, Baldi P, Marie C, Grossi M, Mastrangelo AM, Rizza F, Cattivelli L, Stanca AM (2001) The cold-regulated genes are involved in the physiological response of barley to cold environment. ICL Agric Sci 14:17–27Google Scholar
  38. Cailliatte R, Schikora A, Briat J-F, Marie S, Curie C (2010) High-affinity manganese uptake by the metal transporter NRAMP1 is essential in Arabidopsis growth in low manganese conditions. Plant Cell 22:904–917PubMedPubMedCentralCrossRefGoogle Scholar
  39. Carraretto L, Formentin E, Teardo E, Checchetto V, Tomizioli M, Morosinotto T, Giacometti GM, Finazzi G, Szabó I (2013) A thylakoid located two pore K+ channel controls photosynthetic light utilization in plants. Science 342(6154):114–118PubMedCrossRefPubMedCentralGoogle Scholar
  40. Carvajal M, Cooke DT, Clarkson DT (1996) Response of wheat plants to nutrient deprivation may involve the regulation of water channel function. Planta 199:372CrossRefGoogle Scholar
  41. Casano LM, Gomez LD, Lascano HR, Gonzales CA, Trippi VS (1997) Inactivation and degradation of CuZn-SOD by active oxygen species in wheat chloroplasts exposed to phot-oxidative stress. Plant Cell Physiol 38:433–440PubMedCrossRefPubMedCentralGoogle Scholar
  42. Chaumont F, Barrieu F, Wojcik E, Chrispeels MJ, Jung R (2001) Aquaporins constitute a large and highly diverse protein family in maize. Plant Physiol 125:1206–1215PubMedPubMedCentralCrossRefGoogle Scholar
  43. Chen CZ, Ly XF, Li JY, Yi HY, Gong JM (2012) Arabidopsis NRT1;5 is another essential component in the regulation of nitrate reallocation and stress tolerance. Plant Physiol 159:1582–1590PubMedPubMedCentralCrossRefGoogle Scholar
  44. Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetics perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 55:225–236PubMedCrossRefPubMedCentralGoogle Scholar
  45. Clarkson DT, Carvajal M, Henzler T, Waterhouse RN, Smyth AJ, Cooke DT, Steudle E (2000) Root hydraulic conductance diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot 51:61–70PubMedCrossRefPubMedCentralGoogle Scholar
  46. Combier JP, Frugier F, de Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernié T, Ott T, Gamas P, Crespi M, Niebel A (2006) MtHAP2-1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088PubMedPubMedCentralCrossRefGoogle Scholar
  47. Connolly EL, Fett JP, Guerinot ML (2002) Expression of IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. Plant Cell 14:1347–1357PubMedPubMedCentralCrossRefGoogle Scholar
  48. Crawford NM, Glass ADM (1998) Molecular and physiological aspects of nitrate uptake in plants. Trend Plant Sci Rev 3(10):367–407CrossRefGoogle Scholar
  49. Cui XH, Hao FS, Chen H, Chen J, Wang XC (2008) Expression of the Vicia faba VFPIP1 gene in Arabidopsis thaliana plants improves their drought resistance. J Plant Res 121:207–214PubMedCrossRefPubMedCentralGoogle Scholar
  50. Dai X, Wang Y, Zhang WH (2016) A rice WRKY74, a WRKY transcription factor, modulates tolerance to phosphate starvation in rice. J Exp Bot 67(3):947–960PubMedCrossRefPubMedCentralGoogle Scholar
  51. Daniels MJ, Chrispeels MJ, Yeager M (1999) Projection structure of a plant vacuole membrane aquaporin by electron cryo-crystallography. J Mol Biol 294:1337–1349PubMedCrossRefPubMedCentralGoogle Scholar
  52. Devaiah BN, Nagarajan VK, Raghothama KG (2007) Phosphate homeostasis and root development in Arabidopsis are synchronized by zinc finger transcription factor ZAT6. Plant Physiol 145:147–159PubMedPubMedCentralCrossRefGoogle Scholar
  53. Divol F, Couch D, Conejero G, Roschzttardtz H, Mari S, Curie C (2013) The Arabidopsis YELLOW STRIPE LIKE4 and 6 transporters control iron release from chloroplast. Plant Cell 25:1040–1055PubMedPubMedCentralCrossRefGoogle Scholar
  54. Diwan JJ (2007) Membrane transport, molecular biochemistry-I, Copyright 1998–2007 by Joyce J. Diwan. All rights reservedGoogle Scholar
  55. Dixon NE, Gazzola C, Blakel RL, Zerner YB (1975) Jack bean urease (EC.3.5. 1.5.3.) a metallo-enzyme, a simple biological role for nickel. J Am Chem Soc 97:4131–4133PubMedCrossRefPubMedCentralGoogle Scholar
  56. Doherty CJ, Van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles of Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984PubMedPubMedCentralCrossRefGoogle Scholar
  57. Dong-qing SHI, Yuan Z, Jin-hu MA, Yu-long LI, Jin XU (2013) Identification of zinc deficiency-responsive microRNA in Brassica juncea roots by small RNA sequencing. J Integr Agric 12(11):2036–2044CrossRefGoogle Scholar
  58. Droppa M, Masojidek J, Rozsa Z, Wolak A, Horvath LI, Farkas T, Horváth G (1987) Characteristics of Cu deficiency-induced inhibition of photosynthetic electron transport in spinach chloroplasts. Biochim Biophys Acta 891:75–84CrossRefGoogle Scholar
  59. Dubyak GR (2004) Ion homeostasis, channels and transporters: an update on cellular mechanisms. Adv Physiol Educ 28(1–4):143–154PubMedCrossRefPubMedCentralGoogle Scholar
  60. Duy D, Wanner G, Meda AR, von Wiren N, Soll J, Philippar K (2007) PIC1, an ancient permease in Arabidopsis chloroplasts, mediates iron transport. Plant Cell 19(3):986–1006PubMedPubMedCentralCrossRefGoogle Scholar
  61. Eckholm E (1985) Study finds genetic damage in plants after atomic blast. The New York Times, August 9Google Scholar
  62. Eide D, Broderius M, Fett J, Guerinot ML (1996) A novel iron-regulated metal transporter from plants identified by functional expression in yeast. Proc Natl Acad Sci U S A 93:5624–5628PubMedPubMedCentralCrossRefGoogle Scholar
  63. Epstein E (1994) The anomaly of silicon in plant biology. Proc Natl Acad Sci 91:11–17PubMedPubMedCentralCrossRefGoogle Scholar
  64. Epstein E (1999) Silicon. Annu Rev Plant Physiol Plant Mol Biol 50:641–664CrossRefPubMedGoogle Scholar
  65. Falk KL, Tokuhisa JG, Gershenzon J (2007) The effect of sulfur nutrition on plant glucosinolate content: physiology and molecular mechanism. Plant Biol 9:573–581PubMedCrossRefPubMedCentralGoogle Scholar
  66. Fang ZY, Shao C, Meng YJ, Wu P, Chen M (2009) Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci 176:170–180CrossRefGoogle Scholar
  67. Feng H, Yan M, Li B, Shen Q, Miller AJ, Xu G (2011) Spatial expression and regulation of rice high affinity nitrate transporters by nitrogen and carbon status. J Exp Bot 62:2319–2233PubMedCrossRefPubMedCentralGoogle Scholar
  68. Fernando N, Pannozo J, Tusz M, Norton RM, Fitzgerald GJ, Myers S, Walker C, Stangoulis J, Seneweera S (2012) Wheat grain quality under increasing atmospheric CO2 concentrations in a semi-arid cropping system. J Cereal Sci 56:684–690CrossRefGoogle Scholar
  69. Fixen PE (1993) Crop responses to chloride. Adv Agron 50:107–150CrossRefGoogle Scholar
  70. Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NTAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48:427–439PubMedCrossRefPubMedCentralGoogle Scholar
  71. Flowers TJ, Läuchli A (1983) Sodium versus potassium substitution and compartmentation. In: Lauchli A, Bieleski RI (eds) Inorganic plant nutrition. Springer, Berlin, pp 651–681Google Scholar
  72. Flowers TJ, Hajibagheri MA, Yeo AR (1991) Ion accumulation in the cell walls of rice plants growing under saline conditions: evidence for the Oertli hypothesis. Plant Cell Environ 14:319–325CrossRefGoogle Scholar
  73. Fontes RLF, Cox FR (1995) Effect of sulfur supply on soybean plant exposed to zinc toxicity. J Plant Nutr 18:1893–1906CrossRefGoogle Scholar
  74. Forrest KL, Bhave M (2008) The PIP and TIP aquaporins in wheat form a large and diverse family with unique gene structures and functionally important features. Funct Integr Genomics 8(2):115–133PubMedCrossRefPubMedCentralGoogle Scholar
  75. Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690PubMedPubMedCentralCrossRefGoogle Scholar
  76. Franco-Zorrilla JM, Gonzalez F, Bustos R, Linhares F, Leyva A, Paz-Ares J (2004) Thetranscriptional control of plant responses to phosphate limitation. J Exp Bot 55:285–293PubMedCrossRefPubMedCentralGoogle Scholar
  77. Fu Y, Jarboe LR, Dickerson JA (2011) Reconstructing genome-wide regulatory network of E. coli using transcriptome data and predicted transcription factor activities. BMC Bioinforma 12:233CrossRefGoogle Scholar
  78. Fujii H, Chiou TJ, Lin SI, Aung K, Zhu JK (2005) A miRNA involved in phosphate starvation-response in Arabidopsis. Curr Biol 15:2038–2943PubMedCrossRefPubMedCentralGoogle Scholar
  79. Gallardo K, Courty PE, Signor CL, Wipf D, Vernoud V (2014) Sulfate transporters in plant’s response to drought and salinity: regulation and possible functions. Front Plant Sci 5:580PubMedPubMedCentralCrossRefGoogle Scholar
  80. Galon Y, Aloni R, Nachmias D, Snir O, Feldmesser E, Scrase-Field S, Boyce JM, Bouché N, Knight MR, Fromm H (2010) Calmodulin-binding transcription activator1 mediates auxin signaling and responds to stresses in Arabidopsis. Planta 232:165–172PubMedCrossRefPubMedCentralGoogle Scholar
  81. Gao N, Su Y, Min J, Shen W, Shi W (2010) Transgenic tomato over-expressing athmiRNA399d has enhanced phosphorus accumulation through increased acid phosphatase and proton secretion as well as phosphate transporter. Plant Soil 334:123–136CrossRefGoogle Scholar
  82. Garciadeblas B, Senn ME, Banulelos MA, Rodiriguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801PubMedPubMedCentralCrossRefGoogle Scholar
  83. Garcia-Molina A, Xing S, Huijser P (2014) A conserved KIN17 curved DNA-binding domain protein assembles with Squamosa promoter-binding protein like7 to adapt Arabidopsis growth and development to limiting copper availability. Plant Physiol 164(2):828–840PubMedCrossRefPubMedCentralGoogle Scholar
  84. Geberta M, Meschenmosera K, Svidovab S, Weghuberb J, Schweyen R, Eifler K, Lenz H, Weyand K, Knoop V (2009) A root- expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low Mg2+ environments. Plant Cell 21(12):4018–4030CrossRefGoogle Scholar
  85. Ghosh M, Shen J, Rosen BP (1999) Pathway of As (III) detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:5001–5006PubMedPubMedCentralCrossRefGoogle Scholar
  86. Gielen H, Remans T, Vangronsveld J, Cuypers A (2012) MicroRNA in metal stress: specific roles or secondary responses? Int J Mol Sci 13(2):15826–15847PubMedPubMedCentralCrossRefGoogle Scholar
  87. Gierth M, Maser P (2007) Potassium transporters in plants- involvement in K+ acquisition, redistribution and homeostasis. FEBS Lett 581(12):2348–2356PubMedCrossRefPubMedCentralGoogle Scholar
  88. Gilroy S, Bethke PC, Jones RL (1993) Calcium homeostasis in plants. J Cell Sci 106:453–456PubMedPubMedCentralGoogle Scholar
  89. Giri A, Heckathorn S, Mishra S, Krause C (2017) Heat stress decreases levels of nutrient uptake and assimilation proteins in tomato roots. Plants 6:6PubMedCentralCrossRefGoogle Scholar
  90. Gloser V, Zwieniecki MA, Orians CM, Holbrook NM (2007) Dynamic changes in root hydraulic properties in response to nitrate availability. J Exp Bot 58:2409–2415PubMedCrossRefPubMedCentralGoogle Scholar
  91. Goldstein AH, Baertlein DA, McDaniel RG (1988) Phosphate starvation inducible metabolism in Lycopersicon esculentum I. Excretion of acid phosphatase by tomato plants and suspension cultured cell. Plant Physiol 87:711–715PubMedPubMedCentralCrossRefGoogle Scholar
  92. Graham MA, Ramirez M, Valdes-Lopez O, Lara M, Tesfaye M, Vance CP, Hernandez G (2006) Identification of candidate phosphorus stress induced genes in Phaseolus vulgaris through cluster analysis across several plant species. Funct Plant Biol 33:787–797CrossRefGoogle Scholar
  93. Grennan AK (2011) Metallothioneins, a diverse protein family. Plant Physiol 155:1750–1751PubMedPubMedCentralCrossRefGoogle Scholar
  94. Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochem Biophys Acta 1763:595–608PubMedCrossRefPubMedCentralGoogle Scholar
  95. Gueldry O, Lazard M, Delort F, Dauplais M, Grigoras I, Blanquet S, Plateau P (2003) YCF1p-dependent Hg(II) detoxification in Saccharomyces cerevisiae. Eur J Biochem 270:2486–2496PubMedCrossRefPubMedCentralGoogle Scholar
  96. Guest C, Schulze D, Thompson I, Huber D (2002) Correlating manganese X-ray near- edge structure spectra with extractable soil manganese. Soil Sci Soc Am J 66:1172–1181CrossRefGoogle Scholar
  97. Gunshin H, Mackenzie B, Berger UV, Gunshin Y, Romero MF, Boron WF, Nussberger S, Gollan JL, Hediger MA (1997) Cloning and characterization of a mammalian proton-coupled metal-ion transporter. Nature 388:482–488PubMedCrossRefPubMedCentralGoogle Scholar
  98. Guo B, Jin Y, Wussler C, Blancaflor EB, Motes CM, Versaw WK (2008) Functional analysis of the Arabidopsis PHT4 family of intracellular phosphate transporter. New Phytol 177:889–898PubMedCrossRefPubMedCentralGoogle Scholar
  99. Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11PubMedCrossRefPubMedCentralGoogle Scholar
  100. Hall JL, Williams LE (2003) Transitional meta transporter in plants. J Exp Bot 54(393):2601–2613PubMedCrossRefPubMedCentralGoogle Scholar
  101. Halliwell B, Gutteridge JMC (1984) Oxygen toxicity, oxygen radicals, transitional metals and diseases. Biochem J 219:1–14PubMedPubMedCentralCrossRefGoogle Scholar
  102. Hammond JP, Broadle MR, White PJ (2004) Genetic response to phosphorus deficiency. Ann Bot 94(3):323–332PubMedPubMedCentralCrossRefGoogle Scholar
  103. Hanikenne M, Motte P, Wu MCS, Wang T, Loppes R, Matagne RF (2005) A mitochondrial half size ABC transporter is involved in Cd tolerance in Chlamydomonas reinhardtii. Plant Cell Environ 28(7):863–873CrossRefGoogle Scholar
  104. Haro R, Banuelos MA, Senn ME, Berrero-Gil J, Rodriguez-Navarro A (2005) HKT1 mediates sodium uniport in roots: pitfalls in the expression of HKT1 in yeast. Plant Physiol 139:1495–1506PubMedPubMedCentralCrossRefGoogle Scholar
  105. Haro R, Banuelos MA, Rodriguez-Navrro A (2010) High-affinity sodium uptake in land plants. Plant Cell Physiol 51(1):68–79PubMedCrossRefPubMedCentralGoogle Scholar
  106. Harper JF, Harmon A (2005) Plants, symbiosis and parasites: a calcium signaling connection. Nat Rev Mol Cell Biol 6:555–566PubMedCrossRefPubMedCentralGoogle Scholar
  107. Hasanuzzaman M, Hossain MA, Teixeira da Silva JA, Fujita M (2012) Plant responses and tolerance to abiotic oxidative stress: antioxidant defense is a key factor. In: Bandi V, Shanker AK, Shanker C, Mandapaka M (eds) Crop stress and its management: perspectives and strategies. Springer, Berlin, pp 261–316CrossRefGoogle Scholar
  108. Hasanuzzaman M, Nahar K, Alam MM, Roychowdhury R, Fujita M (2013) Physiological, biochemical, and molecular mechanisms of heat stress tolerance in plants. Int J Mol Sci 14:9643–9684PubMedPubMedCentralCrossRefGoogle Scholar
  109. Hawkesford MJ (2000) Plant responses to sulphur deficiency and the genetic manipulation of sulphate transporters to improve S-utilization efficiency. J Exp Bot 51(342):131–138PubMedCrossRefPubMedCentralGoogle Scholar
  110. Hayashi H, Ishikawa-Sakurai J, Murari-Hatano M, Arifa A, Uemura M (2015) Aquaporins in developing rice grains. Biosci Biotechnol Biochem 79(9):1422–1429PubMedCrossRefPubMedCentralGoogle Scholar
  111. He L, Hannon GJ (2004) MicroRNA: small RNA with a big role in gene regulation. Nat Rev Genet 5:522–531PubMedCrossRefGoogle Scholar
  112. Heneriques FS (1989) Effects of copper deficiency on photosynthetic apparatus of sugar beet (Beta vulgaris L.). J Plant Physiol 135:453–458CrossRefGoogle Scholar
  113. Hepler PK (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17(8):2142–2155PubMedPubMedCentralCrossRefGoogle Scholar
  114. Heuwinkel H, Kirkby EA, Le Bot J, Marschner H (1992) Phosphate deficiency enhances molybdenum uptake by tomato plants. J Plant Nutr 15:549–568CrossRefGoogle Scholar
  115. Himelblau E, Mira H, Lin SJ, Culotta VC, Penarrubia L, Amasino RM (1998) Identification of functional homolog of the yeast copper homeostasis gene ATX1 from the Arabidopsis. Plant Physiol 117:1227–1234PubMedPubMedCentralCrossRefGoogle Scholar
  116. Hirschi KD, Zhen R-G, Cunningham KW, Rea PA, Fink GR (1996) CAX1, an H+/Ca2+ antiporter from Arabidopsis. Proc Natl Acad Sci U S A 93:8782–8786PubMedPubMedCentralCrossRefGoogle Scholar
  117. Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GI (2000) Expression of Arabidopsis CAX2 in tobacco altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–134PubMedPubMedCentralCrossRefGoogle Scholar
  118. Ho C-H, Lin S-H, Hu H-C, Tsay Y-F (2009) CHL1 functions as a nitrate sensor in plants. Cell 138(6):1184–1194PubMedCrossRefGoogle Scholar
  119. Hooijmaijers C, Rhee JY, Kwak KJ, Chung GC, Horie T, Katsuhara M, Kang H (2012) Hydrogen peroxide permeability of plasma membrane aquaporins of Arabidopsis thaliana. J Plant Res 125:147–153PubMedCrossRefPubMedCentralGoogle Scholar
  120. Horie T, Yoshida K, Nakayama H, Yamada K, Oki S, Shinmyo A (2001) Two types of HKT transporters with different properties of Na+ and K+ transporters in Oryza sativa. Plant J 27:129–138PubMedCrossRefGoogle Scholar
  121. Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx component into K+ starved roots for growth. EMBO J 26:3003–3014PubMedPubMedCentralCrossRefGoogle Scholar
  122. Huffman DL, O’Halloran TV (2001) Function, structure and mechanism of intracellular copper trafficking proteins. Annu Rev Biochem 70:677–701PubMedPubMedCentralCrossRefGoogle Scholar
  123. Imsande J, Touraine B (1994) N demand and regulation of nitrate uptake. Plant Physiol 105:3–7PubMedPubMedCentralCrossRefGoogle Scholar
  124. Ishikawa-Sakurai J, Hayashi H, Murai-Hatano M (2014) Nitrogen availability affects hydraulic conductivity of rice roots, possibly through changes in aquaporin gene expression. Plant Soil 379:389CrossRefGoogle Scholar
  125. Ishimaru Y, Takahashi R, Bashir K, Shimo H, Senoura T, Sugimoto K, Ono K, Yano M, Ishikawa S, Arao T, Nakanishi H (2012) Characterising the role of rice NRAMP5 in manganese, iron and cadmium transport. Sci Rep 2:286PubMedPubMedCentralCrossRefGoogle Scholar
  126. Jeong D-H, Park S, Zhai J, Gurazada SGR, Paoli ED, Meyers BC, Green PJ (2011) Massive analysis of rice small RNAs: mechanistic implications of regulated microRNAs and variants for differential target RNA cleavage. Plant Cell 23(12):4185–4207PubMedPubMedCentralCrossRefGoogle Scholar
  127. Jia H, Pardob JM, Batellic G, Van Oostend MJ, Bressane RA, Lia X (2013) The salt overly sensitive (SOS) pathway: established and emerging role. Mol Plant 6(2):275–286CrossRefGoogle Scholar
  128. Jiang J, Ma S, Ye N, Jiang M, Cao J, Zhang J (2017) WRKY transcription factors in plant response to stress. J Integr Plant Biol 54(2):86–107CrossRefGoogle Scholar
  129. Johanson U, Karlsson M, Johanson I, Gustavsson S, Siovall S, Fraysse L, Weig AR, Kjellbom P (2001) The complete set of genes encoding major intrinsic proteins in Arabidopsis provides framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiol 126:1358–1369PubMedPubMedCentralCrossRefGoogle Scholar
  130. Kalyanaraman SB, Sivagurunathan P (1993) Effect of cadmium, copper and zinc on the growth of black gram. J Plant Nutr 16:2029–2042CrossRefGoogle Scholar
  131. Kannan S, Ramani S (1978) Studies on molybdenum absorption and transport in bean and rice. Plant Physiol 62(2):179–181PubMedPubMedCentralCrossRefGoogle Scholar
  132. Kaplan B, Davydov O, Knight H, Galon Y, Knight MR, Fluhr R, Fromm H (2006) Rapid transcriptome changes induced by cytosolic Ca2+ transients reveal ABRE-related sequences as Ca2+-responsive cis elements in Arabidopsis. Plant Cell 18:2733–2748PubMedPubMedCentralCrossRefGoogle Scholar
  133. Kataoka T, Hayashi N, Yamaya T, Takahashi H (2004a) Root-to-shoot transport of sulfate in Arabidopsis: evidence for role of SULTR3;5 as a component of low-affinity sulfate transport system in the root vasculature. Plant Physiol 136:4198–4204PubMedPubMedCentralCrossRefGoogle Scholar
  134. Kataoka T, Watanabe-Takahashi A, Hayashi N, Ohnishi M, Mimura T, Buchner P, Hawkesford MJ, Yamaya T, Takahashi H (2004b) Vacuolar sulfate transporters are essential determinants controlling internal distribution of sulfate in Arabidopsis. Plant Cell 16:2693–2704PubMedPubMedCentralCrossRefGoogle Scholar
  135. Katsuhara M, Akiyama Y, Koshio K, Shibasaka M, Kasamo K (2002) Functional analysis of water channel in barley roots. Plant Cell Physiol 43:885–893PubMedCrossRefGoogle Scholar
  136. Kavalchuk I, Abramov V, Pogribny I, Kovalchuk O (2004) Molecular aspects of plant adaptation to life in the Chernobyl zone. Plant Physiol 135:357–363CrossRefGoogle Scholar
  137. Kawashima CG, Yoshimoto N, Maruyama-Nakashita A, Tsuchiya YN, Saito K, Takahashi H, Dalmay T (2009) Sulphur starvation induces the expression of microRNA395 and one of its target genes but in different cell types. Plant J 57(2):313–321PubMedCrossRefGoogle Scholar
  138. Kim EJ, Kwak JM, Uozumi N, Schroeder JI (1998) AtKUP1: an Arabidopsis gene encoding high affinity potassium transporter activity. Plant Cell 10:51–62PubMedPubMedCentralCrossRefGoogle Scholar
  139. Kim SA, Punshon T, Lanzirotti A, Li L, Alonso JM, Ecker JR, Kaplan J, Guerinot ML (2006) Localisation of iron in Arabidopsis seed requires the vacuolar membrane transporter VIT1. Science 314:12951298Google Scholar
  140. Kim BG, Waadt R, Cheong YH, Pandey GK, Dominiguez-Solis JR, Schültke S, Lee SC, Kudla J, Luan S (2007) The calcium sensor CBL10 mediates salts tolerance by regulating ion homeostasis in Arabidopsis. Plant J 52:473–484PubMedPubMedCentralCrossRefGoogle Scholar
  141. Kobayashi T, Suzuki M, Inoue H, Itai RN, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2005) Expression of iron-acquisition-related genes in iron-deficient rice is coordinately induced by partially conserved iron-deficiency-responsive elements. J Exp Bot 56(415):1305–1316PubMedCrossRefGoogle Scholar
  142. Kong WW, Yang ZM (2010) Identification of iron-deficiency responsive microRNA genes and cis-elements in Arabidopsis. Plant Physiol Biochem 48:153–159PubMedCrossRefGoogle Scholar
  143. Krapp A, David LC, Chardin C, Girin T, Marmagne A, Leprince AS, Chaillou S, Ferrario-Méry S, Meyer C, Daniel-Vedele F (2014) Nitrate transport and signalling in Arabidopsis. J Exp Bot 65(3):789–798PubMedCrossRefGoogle Scholar
  144. Kreps JA, Wu Y, Chang HS, Zhu T, Wang X, Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic and cold stress. Plant Physiol 130:2129–2141PubMedPubMedCentralCrossRefGoogle Scholar
  145. Kronzucker HJ, Szczerba MW, Moazami-Goudarzi M, Britto DT (2006) The cytosolic Na+/K+ ratio does not explain salinity induced growth impairment in barley- a dual tracer study using 42K and 24Na. Plant Cell Environ 29:2228–2237PubMedCrossRefGoogle Scholar
  146. Kudla J, Batistic O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22:541–563PubMedPubMedCentralCrossRefGoogle Scholar
  147. Kuo H-F, Chiou TJ (2011) The role of microRNA in phosphorus deficiency signaling. Plant Physiol 156(3):1016–1024PubMedPubMedCentralCrossRefGoogle Scholar
  148. Kupper H, Kupper F, Spiller M (1996) Environmental relevance of heavy metal-substituted chlorophylls using the example of water plants. J Exp Bot 47:259–266CrossRefGoogle Scholar
  149. Kupper H, Kupper F, Spiller M (1998) In situ detection of heavy metal substituted chlorophylls in water plants. Photosynth Res 58:123–133CrossRefGoogle Scholar
  150. Kushnir S, Babiychuk E, Storozhenko S, Davey MW, Papenbrock J, De Rycke R, Engler G, Stephan UW, Lange H, Kispal G, Lill R (2001) A mutation of the ABC transporter Sta1 leads to dwarfism and chlorosis in the Arabidopsis mutant starik. Plant Cell 13:89–100PubMedPubMedCentralCrossRefGoogle Scholar
  151. Langmeier M, Ginsburg S, Matile P (1993) Chlorophyll breakdown in senescent leaves- demonstration of Mg-dechelatase activity. Physiol Plant 89:347–353CrossRefGoogle Scholar
  152. Lanquar V, Lelievre F, Bolte S, Hamès C, Alcon C, Neumann D, Vansuyt G, Curie C, Schröder A, Krämer U, Barbier-Brygoo H (2005) Mobilization of vacuolar iron by AtNRAMP3 and AtNRAMP4 is essential for seed germination on low iron. EMBO J 24:4041–4051PubMedPubMedCentralCrossRefGoogle Scholar
  153. Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role of HKT1 in sodium uptake by wheat roots. Plant J 32:139–149PubMedPubMedCentralCrossRefGoogle Scholar
  154. Leaky ADB, Ainsworth EA, Bernacchi CJ, Rogers A, Long SP, Ort DR (2009) Elevated CO2 effects on plant carbon, nitrogen, and water relations: six important lessons from FACE. J Exp Bot 60(10):2859–2876.  https://doi.org/10.1093/jxb/erp096 CrossRefGoogle Scholar
  155. Leigh RA, Wyn-Jones RG (1986) Cellular compartmentation in plant nutrition: the selective cytoplasm and the promiscuous vacuole. In: Tinker B, Lauchli A (eds) Advances in plant nutrition 2. Praeger Scientific., New York, New York, pp 249–279Google Scholar
  156. Lelandais-Briere C, Sorin C, Declerck M, Benslimane A, Crespi M, Hartmann C (2010) Small RNA diversity in plants and its impact on development. Curr Genomics 11(1):14–23PubMedPubMedCentralCrossRefGoogle Scholar
  157. Lemtiri-Chlieh F, MacRobbie EA, Webb AA, Manison NF, Brownlee C, Skepper JN, Chen J, Prestwich GD, Brearley CA (2003) Inositol hexakiphosphate mobilzes an endomembrane store of calcium in guard cells. Proc Natl Acad Sci U S A 100:10091–10095PubMedPubMedCentralCrossRefGoogle Scholar
  158. Lewis S, Handy RD, Cordi B, Billinghurst Z, Depledge MH (1999) Stress proteins (HSPs): methods of detection and their use as an environmental biomarker. Ecotoxicology 8:351–368CrossRefGoogle Scholar
  159. Li L, Tutone AF, Drummond RSM, Gardner RC, Luan S (2001) A novel family of magnesium transport genes in Arabidopsis. Plant Cell 13:2761–2775PubMedPubMedCentralCrossRefGoogle Scholar
  160. Li W, Wang Y, Okamoto M, Crawford NM, Siddiqui MY, Glass ADM (2007) Dissection of the ATNRT2;1, ATNRT2;2 inducible high affinity nitrate transporter gene cluster. Plant Physiol 143:425–433PubMedPubMedCentralCrossRefGoogle Scholar
  161. Li JY, Fu YL, Pike SM, Bao J, Tian W, Zhang Y, Chen CZ, Zhang Y, Li HM, Huang J, Li LG (2010) The Arabidopsis nitrate transporter NRT1;8 functions in nitrate removal from the xylem sap and mediates cadmium tolerance. Plant Cell 22:1633–1646PubMedPubMedCentralCrossRefGoogle Scholar
  162. Li P, Song A, Li Z, Fan F, Liang Y (2012) Silicon ameliorates manganese toxicity by regulating manganese transport and antioxidant reaction in rice (Oryza sativa L.). Plant Soil 354(1):407–419CrossRefGoogle Scholar
  163. Li G, Tillard P, Gojon A, Maurel C (2016) Dual regulation of root hydraulic conductivity and plasma membrane aquaporins by plant nitrate accumulation and high-affinity nitrate transporter NRT2.1. Plant Cell Physiol 57(4):733–742PubMedCrossRefPubMedCentralGoogle Scholar
  164. Liang G, Yang F, Yu D (2010) MicroRNA395 mediates regulation of sulfate accumulation and allocation in Arabidopsis thaliana. Plant J 62:1046–1057PubMedGoogle Scholar
  165. Liang G, He H, Yu D (2012) Identification of nitrogen starvation responsive microRNAs in Arabidopsis thaliana. PLoS One 7(11):e48951PubMedPubMedCentralCrossRefGoogle Scholar
  166. Lin CM, Koh S, Stacey G, Yu SM, Lin TY, Tsay YF (2000) Cloning and functional characterization of a constitutively expressed nitrate transporter gene OsNRT1, from rice. Plant Physiol 122:379–388PubMedPubMedCentralCrossRefGoogle Scholar
  167. Lin WY, Lin SI, Chou TJ (2009) Molecular regulators of phosphate homeostasis in plants. J Exp Bot 60(5):1427–1438PubMedCrossRefGoogle Scholar
  168. Lindhauer MG (1985) Influence of potassium nutrition and drought on water relations and growth of sunflower (Helianthus-annus L.). J Plant Nutr Soil Sci 148:654–669Google Scholar
  169. Little DY, Rao H, Oliva S, Daniel-Vedele F, Krapp A, Malamy JE (2005) The putative high-affinity nitrate transporter NRT2.1 represses lateral root initiation in response to nutritional cues. Proc Natl Acad Sci U S A 102:13693–13698PubMedPubMedCentralCrossRefGoogle Scholar
  170. Liu KH, Huang CY, Tsay YF (1999) CHL1 is a dual-affinity nitrate transporter of Arabidopsis involved in multiple phases of nitrate uptake. Plant Cell 11:865–874PubMedPubMedCentralCrossRefGoogle Scholar
  171. Liu HY, Sun WN, Su WA, Tang ZC (2006) Co-regulation of water channels and potassium channels in rice. Physiol Plant 128:58–69CrossRefGoogle Scholar
  172. Liu HT, Li GL, Chang H, Sun DY, Zhou RG, Li B (2007) Calmodulin-binding protein phosphatase PP7 is involved in thermotolerance in Arabidopsis. Plant Cell Environ 30:156–164PubMedCrossRefPubMedCentralGoogle Scholar
  173. Liu F, Chang XJ, Ye Y, Xie WB, Wu P, Lian XM (2011) Comprehensive sequence analysis and whole life cycle expression profile analysis of the phosphate transporter gene family in rice. Mol Plant 4(6):1105–1122PubMedCrossRefPubMedCentralGoogle Scholar
  174. Liu G, Simone EH, Li Y (2012) Nickel nutrition in plants, HS1191, Extension Service, Institute of Food and Agricultural Sciences, University of FloridaGoogle Scholar
  175. Lu SY, Li YC, Guo ZF, Li BS, Li MQ (1993) Enhancement of drought resistance of rice seedlings by calcium. Chin J Rice 13:161–164Google Scholar
  176. Lynch JP (2011) Root phenes for enhanced soil exploration and phosphorus acquisition: tools for future crops. Plant Physiol 156(3):1041–1046PubMedPubMedCentralCrossRefGoogle Scholar
  177. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stress. Soil Sci Plant Nutr 50:11–18CrossRefGoogle Scholar
  178. Ma JF, Shinada T, Matsuda C, Nomoto K (1995) Biosynthesis of phytosiderophores, mugineic acids, associated with methionine cycling. J Biol Chem 270:16549–16554PubMedCrossRefPubMedCentralGoogle Scholar
  179. Ma JF, Miyake Y, Takahashi E (2001) Silicon as a beneficial element for crop plants. In (ed) Silicon in agricultureGoogle Scholar
  180. Ma CL, Qi YP, Liang WW, Yang LT, Lu YB, Guo P, Ye X, Chen LS (2016) MicroRNA regulatory mechanisms on Citrus sinensis leaves to magnesium-deficiency. Front Plant Sci 7:201.  https://doi.org/10.3389/fpls.2016.00201 CrossRefPubMedPubMedCentralGoogle Scholar
  181. Mahajan S, Pandey GK, Tuteja N (2008) Calcium- and salt-stress signaling in plants: shedding light on SOS pathway. Arch Biochem Biophys 471:146–158PubMedCrossRefPubMedCentralGoogle Scholar
  182. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, LondonGoogle Scholar
  183. Maruyama K, Sakuma Y, Kasuga M, Ito Y, Seki M, Goda H, Shimada Y, Yoshida S, Shinozaki K, Yamaguchi-Shinozaki K (2004) Identification of cold-inducible downstream genes of the Arabidopsis DREB1A/CBF3 transcriptional factor using two microarray systems. Plant J 38:982–993PubMedCrossRefPubMedCentralGoogle Scholar
  184. Maruyama-Nakashita A, Nakamura Y, Yamaya T, Takahashi H (2004) Regulation of high affinity sulphate transporters in plants: towards systematic analysis of sulphur signaling and regulation. J Exp Bot 55:1843–1849PubMedCrossRefPubMedCentralGoogle Scholar
  185. Maser P, Thomine S, Schoeder JI, Ward JM, Hirschi K, Sze H, Talke IN, Amtmann A, Maathuis FJ, Sanders D, Harper JF (2001) Phylogenetic relationship within cation transporter families of Arabidopsis. Plant Physiol 126:1646–1667PubMedPubMedCentralCrossRefGoogle Scholar
  186. Maser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of Na+ transporter AtHKT1. FEBS Lett 531:157–161PubMedCrossRefPubMedCentralGoogle Scholar
  187. Matsumoto H (2000) Cell biology of aluminum toxicity and tolerance in higher plants. Int Rev Cytol 200:1–46PubMedCrossRefPubMedCentralGoogle Scholar
  188. Maurel C, Boursiac Y, Luu DT, Santoni V, Shahzad Z, Verdoucq L (2015) Aquaporins in plants. Physiol Rev 95(4):1321–1358PubMedPubMedCentralCrossRefGoogle Scholar
  189. Mei H, Cheng NH, Zhao J, Park S, Escareno RA, Pittman JK, Hirschi KD (2009) Root development under metal stress in Arabidopsis thaliana requires the H+/cation antiporter CAX4. New Phytol 183:95–105PubMedCrossRefPubMedCentralGoogle Scholar
  190. Mickelbart MV, Hasegawa PM, Bailey-Serres J (2015) Genetic mechanisms of abiotic stress tolerance that translate to crop yield stability. Nat Rev Genet 16:237–251PubMedCrossRefPubMedCentralGoogle Scholar
  191. Millaleo R, Reyes-Diaz M, Ivanov AG, Mora ML, Alberdi M (2010) Manganese is essential and toxic element in plants: transport, accumulation and resistance mechanisms. J Soil Sci Plant Nutr 10(4):470–481CrossRefGoogle Scholar
  192. Miller AJ, Smith SJ (1996) Nitrate transport and compartmentation in cereal root cells. J Exp Bot 47:843–854CrossRefGoogle Scholar
  193. Mills RF, Peaston KA, Runions J, Williams LE (2012) HvHMA2, a P(1B)-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. PLoS One 7(8):e4260CrossRefGoogle Scholar
  194. Milner MJ, Seamon J, Craft F, Kochian LV (2013) Transport properties of members of ZIP family in plants and their role in Zn and Mn homeostasis. J Exp Bot 64(1):369–381PubMedPubMedCentralCrossRefGoogle Scholar
  195. Mitra GN (2006) Nutrient management of crops in soils of Orissa. IFFCO, IndiaGoogle Scholar
  196. Mitra GN (2015) Regulation of nutrient uptake by plants – a biochemical and molecular approach. Springer, IndiaGoogle Scholar
  197. Mitra GN (2017) Essential plant nutrients and recent concept of their uptake in essential plant nutrients, uptake, use efficiency, and management. Springer, pp 3–36CrossRefGoogle Scholar
  198. Mitra GN, Sahu SK, Nayak RK (2009) Characterization of iron toxic soils of Orissa and ameliorating effects of potassium on iron toxicity. In: Proceedings of the IPI-OUAT-IPNI International Symposium, Bhubaneswar, Orissa, India, Vol-I: Invited Papers, p 215Google Scholar
  199. Miwa K, Fujiwara T (2010) Boron transport in plants: co-ordinated regulation of transporters. Ann Bot 105(7):1103–1108PubMedPubMedCentralCrossRefGoogle Scholar
  200. Monroy AF, Labbe E, Dhindsa RS (1997) Low temperature perception in plants: effects of cold on protein phosphorylation in cell free extracts. FEBS Lett 410:206–209PubMedCrossRefPubMedCentralGoogle Scholar
  201. Monshausen GB, Bibikova TN, Weisenseel MH, Gilory S (2009) Ca2+ regulates reactive oxygen species production and pH during mechano-sensing in Arabidopsis roots. Plant Cell 21:2341–2356PubMedPubMedCentralCrossRefGoogle Scholar
  202. Moomaw AS, Maguire ME (2008) The unique nature of Mg2+ channels. Physiology (Bethesda) 23:275–285Google Scholar
  203. Morrissey J, Baxter IR, Lee J, Li L, Lahner B, Grotz N, Kapln J, Salt DE, Guerinot ML (2009) The ferro-protein metal efflux proteins function in iron and cobalt homeostasis in Arabidopsis. Plant Cell 21(10):3326–3338Google Scholar
  204. Morrissey I, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567PubMedPubMedCentralCrossRefGoogle Scholar
  205. Mukherjee I, Campbell NH, Ash JS, Connolly EL (2006) Expression profiling of the Arabidopsis Ferric chelate reductase (FRO) gene family reveals differential regulation by iron and copper. Planta 223:1178–1190PubMedCrossRefPubMedCentralGoogle Scholar
  206. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250PubMedPubMedCentralCrossRefGoogle Scholar
  207. Munns R, Tester M (2008) Mechanism of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefGoogle Scholar
  208. Nagano AJ, Sato Y, Mihara M, Antonio BA, Motoyama R, Itoh H, Nagamura Y, Izawa T (2012) Deciphering and prediction of transcriptome dynamics under fluctuating field conditions. Cell 151:1358–1369PubMedCrossRefPubMedCentralGoogle Scholar
  209. Nevo Y, Nelson N (2006) The NRAMP family of metal ion transporters. Biochim Biophys Acta 1763:609–620PubMedCrossRefPubMedCentralGoogle Scholar
  210. Nguyen MX, Moon S, Jung KH (2013) Genome-wide expression analysis of rice aquaporin genes and development of a functional gene network mediated by aquaporin expression in roots. Planta 238(4):669–681PubMedCrossRefGoogle Scholar
  211. Nilsson L, Muller R, Nielson TH (2007) Increased expression of the MYB-related transcription factor, PHR 1, leads to enhanced phosphate uptake in Arabidopsis thaliana. Plant Cell Environ 30:1499–1512PubMedCrossRefGoogle Scholar
  212. Nishida S, Tsuzuki C, Kato A, Aisu A, Yoshida J, Mizuno T (2011) AtIRT1, the primary iron uptake transporter in the root, mediates excess nickel accumulation in Arabidopsis thaliana. Plant Cell Physiol 52(8):1433–1442PubMedCrossRefPubMedCentralGoogle Scholar
  213. O’Halloran TV, Culotta VC (2000) Metal chaperones: an intracellular shuttle service for metal ions. J Biol Chem 275:25057–25060PubMedCrossRefGoogle Scholar
  214. Ohama N, Kusakabe K, Mizoi J, Zhao H, Kidokoro S, Koizumi S, Takahashi F, Ishida T, Yanagisawa S, Shinozaki K, Yamaguchi-Shinozaki K (2016) The transcriptional cascade in the heat stress response of Arabidopsis is strictly regulated at the level of transcription factor expression. Plant Cell 28:181–201PubMedGoogle Scholar
  215. Olsen KM, Wendel JF (2013) Crop plants as models for understanding plant adaptation and diversification. Front Plant Sci 4:290PubMedPubMedCentralCrossRefGoogle Scholar
  216. Orsel M, Filleur S, Fraisier V, Daniel-Vedele F (2002) Nitrate transport in plants: which gene and which control? J Exp Bot 53(370):825–833PubMedCrossRefPubMedCentralGoogle Scholar
  217. Page V, Feller U (2005) Selective transport of zinc, manganese, nickel, cobalt and cadmium in the root system and transfer to the leaves in young wheat plants. Ann Bot 96:425–434PubMedPubMedCentralCrossRefGoogle Scholar
  218. Page V, Weisskop L, Feller U (2006) Heavy metals in white lupin: uptake root-to-shoot transfer and redistribution within the plant. New Phytol 171:329–341PubMedCrossRefPubMedCentralGoogle Scholar
  219. Papenbrock J, Mock HP, Tanaka R, Kruse E, Grimm B (2000) Role of magnesium chelatase activity in the early steps of the tetrapyrrole biosynthetic pathway. Plant Physiol 122:1161–1169PubMedPubMedCentralCrossRefGoogle Scholar
  220. Park J, Song WY, Ko D, Eom Y, Hansen TH, Schiller M, Lee TG, Martinoia E, Lee Y (2012) The phytochelatin transporters AtABCC1 and AtABCC2 mediate tolerance to cadmium and mercury. Plant J 69(2):278–288PubMedCrossRefGoogle Scholar
  221. Pedas P, Ytting CK, Fuglsang AT, Jahn TP, Schjoerring JK, Husted S (2008) Manganese efficiency in barley: identification and characterisation of the metal ion transporter HvIRT1. Plant Physiol 148:455–466PubMedPubMedCentralCrossRefGoogle Scholar
  222. Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin HX, Luan S, Mäser P (2006) Nomenclature of HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374CrossRefPubMedGoogle Scholar
  223. Plaxton WC, Podesta FE (2006) The functional organization and control of plant respiration. Crit Rev Plant Sci 25:159–198CrossRefGoogle Scholar
  224. Plaxton WC, Tran HT (2011) Metabolic adaptations of phosphate-starved plants. Plant Physiol 156:1006–1015PubMedPubMedCentralCrossRefGoogle Scholar
  225. Pleith C, Hansen UP, Knight H, Knight MR (1999) Temperature sensing by plants: the primary characteristics of signal perception and calcium response. Plant J 18:491–497CrossRefGoogle Scholar
  226. Plessis A, Hafemeister C, Wilkins O, Gonzaga ZJ, Meyer RS, Pires I, Müller C, Septiningsih EM, Bonneau R, Purugganan M (2015) Multiple abiotic stimuli are integrated in the regulation of rice gene expression under field conditions. eLife. pii: e08411.Google Scholar
  227. Poirier Y, Bucher M (2002) Phosphate transport and homeostasis in Arabidopsis. In: Somerville CR, Meyerowitz EM (eds) The Arabidopsis book. Am Soc Plant Biol, Rockville, pp 1–35Google Scholar
  228. Pokhrel R, McConnell IL, Brudvig GW (2011) Chloride regulation of enzyme turnover: application to the role of chloride in photosystem II. Biochemistry 50(4):2725–2734PubMedCrossRefPubMedCentralGoogle Scholar
  229. Polisensky DH, Braam J (1996) Cold-shock regulation of the Arabidopsis TCH genes and the effects of modulating intracellular calcium levels. Plant Physiol 111:1271–1279PubMedPubMedCentralCrossRefGoogle Scholar
  230. Prak S, Hem S, Boudet J, Viennois G, Sommer N, Rossignol M, Maurel C, Santoni V (2008) Multiple phosphorylations in the C-terminal tail of plant plasma membrane aquaporins. Role of sub-cellular trafficking of AtPIP2;1 in response to salt stress. Mol Cell Proteomics 7:1019–1030PubMedCrossRefGoogle Scholar
  231. Premachandra GS, Saneoka H, Ogata S (1991) Cell membrane stability and leaf water relations as affected by potassium nutrition of water-stressed maize. J Exp Bot 42:739–745CrossRefGoogle Scholar
  232. Prosser IM, Massonneau A, Smyth AJ, Waterhouse RN, Forde BG, Clarkson DT (2006) Nitrate assimilation in the forage legume Lotus japonicus L. Planta 223:821.  https://doi.org/10.1007/s00425-005-0124-9 CrossRefPubMedGoogle Scholar
  233. Quaggiotti S, Ruperti B, Borsa P, Destro T, Malagoli M (2003) Expression of a putative high-affinity NO3 transporter and of an H + -ATPase in relation to whole plant nitrate transport physiology in two maize genotypes differently responsive to low nitrogen availability. J Exp Bot 54(384):1023–1031PubMedCrossRefGoogle Scholar
  234. Quigley F, Rosenberg JM, Shachar-Hill Y, Bohnert HJ (2002) From genome to function: the Arabidopsis aquaporins. Genome Biol 3(1):res0001.1–res0001.17Google Scholar
  235. Rainer H (2012) Ion channels in plants. Physiol Rev 92(4):1777–1811CrossRefGoogle Scholar
  236. Reddy ASN, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell J 23(6):2010–2032CrossRefGoogle Scholar
  237. Reichman SM (2002) The response of plants to metal toxicity: a review focusing on copper, manganese and zinc, Occasional paper no. 14. Australian Minerals and Energy Research Foundation, MelbourneGoogle Scholar
  238. Reichmann JL, Heard J, Martin G, Reuber L, Jiang CZ, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110CrossRefGoogle Scholar
  239. Reid R (2007) Identification of boron transporter genes likely to be responsible for tolerance to boron toxicity in wheat and barley. Plant Cell Physiol 48:1673–1678PubMedCrossRefPubMedCentralGoogle Scholar
  240. Reid R, Fitxpstrick K (2009) Influence of leaf tolerance mechanisms and rain on boron toxicity in barley and wheat. Plant Physiol 15(1):413–420CrossRefGoogle Scholar
  241. Remans T, Opdenakker K, Guisez Y, Carleer R, Schat H, Vangronsveld J, Cuypers A (2012) Exposure of Arabidopsis thaliana to excess Zn reveals a Zn-specific oxidative stress signature. Environ Exp Bot 84:61–71CrossRefGoogle Scholar
  242. Ren BB, Wang M, Chen YP, Sun GM, Li Y, Shen QR, Guo SW (2015) Water absorption is affected by the nitrogen supply to rice plants. Plant Soil 396:397–410CrossRefGoogle Scholar
  243. Rengel Z, Robinson DL (1989) Competitive aluminum ion inhibition of net magnesium ion uptake by intact Lolium multiflorum roots. Plant Physiol 91:1407–1413PubMedPubMedCentralCrossRefGoogle Scholar
  244. Rodriguez-Navarro A, Rubio F (2006) High-affinity potassium and sodium transport system in plants. J Exp Bot 57:1149–1160PubMedCrossRefGoogle Scholar
  245. Romheld V, Kirkby EA (2010) Research on potassium in agriculture: needs and prospects. Plant Soil 335:155–180CrossRefGoogle Scholar
  246. Roux B, Berneche S, Egwolf B, Lev B, Noskov SY, Rowley CN, Yu H (2011) Ion selectivity in channels and transporters. J Gen Physiol 137(5):415–426PubMedPubMedCentralCrossRefGoogle Scholar
  247. Rubio V, Linhares F, Solano R, Martin AC, Iglesias J, Leyva A, Paz-Ares J (2001) A conserved MYB transcription factor involved in phosphate starvation signaling both in vascular plants and unicellular algae. Genes Dev 15:2122–2133PubMedPubMedCentralCrossRefGoogle Scholar
  248. Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold and high salinity stress conditions. Plant Physiol 136:2734–2746PubMedPubMedCentralCrossRefGoogle Scholar
  249. Sakurai J, Ishikawa F, Yamaguchi T, Uemura M, Maeshima M (2005) Identification of 33 rice aquaporins and analysis of their expr3ssion and function. Plant Cell 46:1568–1577CrossRefGoogle Scholar
  250. Sancenon V, Puig S, Mira H, Thiele DJ, Penarubia L (2003) Identification of copper transporter family in Arabidopsis thaliana. Plant Mol Biol 51:577–587PubMedPubMedCentralCrossRefGoogle Scholar
  251. Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell 14:S401–S417PubMedPubMedCentralCrossRefGoogle Scholar
  252. Schaaf G, Ludewig U, Erenoglu BE, Mori S, Kitahara T, von Wiren N (2004) ZmYS1 functioned as a proton-coupled symporter for phytosiderophore and nicotianamine-chelated metals. J Biol Chem 279:9091PubMedCrossRefGoogle Scholar
  253. Schachtman DP (2000) Molecular insights into the structure and function of plant K+ transport mechanisms. Biochim Biophys Acta 1465:127–139PubMedCrossRefGoogle Scholar
  254. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53(372):1351–1365PubMedGoogle Scholar
  255. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M (2002) Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high salinity stresses using a full-length cDNA microarray. Plant J 31:279–292PubMedCrossRefGoogle Scholar
  256. Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–323PubMedCrossRefGoogle Scholar
  257. Shikanai T, Muller-Moule P, Munekage Y, Niyogi KK, Pilon M (2003) PAAI, a P-type ATPase of Arabidopsis functions in copper transport in chloroplast. Plant Cell 15:1333–1346PubMedPubMedCentralCrossRefGoogle Scholar
  258. Shinmachi F, Buchner P, Stroud JL, Parmar S, Zhao FJ, McGrath SP, Hawkesford MJ (2010) Influence of sulfur deficiency on the expression of specific sulfate transporter and the distribution of sulfur, selenium and molybdenum in wheat. Plant Physiol 153(1):327–336PubMedPubMedCentralCrossRefGoogle Scholar
  259. Shriram V, Kumar V, Devarumath RM, Khare TS, Wani SH (2016) MicroRNAs as potential targets for abiotic stress tolerance in plants. Front Plant Sci 7:817PubMedPubMedCentralCrossRefGoogle Scholar
  260. Song WY, Zhang ZB, Shao HB, Guo XL, Cao HX, Zhao HB, Fu ZY, Hu XJ (2008) Relationship between calcium decoding elements and plant abiotic stress resistance. Int J Biol Sci 4:116–125PubMedPubMedCentralCrossRefGoogle Scholar
  261. Sonoda Y, Ikeda A, Saiki S, von Wiren N, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;1-1; 3) in rice. Plant Cell Physiol 44(7):726–733PubMedCrossRefGoogle Scholar
  262. Sperandio MVL, Santos LA, de Araujo OJL, Braga RP, Coelho CP, de Matos NE, Fernandes MS, de Souza SR (2014) Response of nitrate transporters and PM H+-ATPase expression to nitrogen flush on two upland rice varieties contrasting in nitrate uptake kinetics. Aust J Crop Sci 8(4):568–576Google Scholar
  263. Stefanovic A, Ribot C, Rouached H, Wang Y, Chong J, Belbahri L, Delessert S, Poirier Y (2007) Members of the PHO1 gene family show limited functional redundancy in phosphate transfer to the shoot, and are regulated by phosphate deficiency via distinct pathways. Plant J 50:982–994PubMedCrossRefGoogle Scholar
  264. Subbarao GV, Ito O, Berry WL, Wheeler RM (2003) Sodium: a functional plant nutrient. Crit Rev Plant Sci 22:391–416Google Scholar
  265. Subrahmanyam K, Verma RK, Naqvi AA, Singh DV (1992) Effect of forms of Sulphur on yield and quality of seed, oil and alkaloids of opium poppy (Papaver somniferum L.). Acta Horticult 306:431–435CrossRefGoogle Scholar
  266. Suenaga A, Moriya K, Sonoda Y, Ikeda A, von Wiren N, Hayakawa T, Yamaguchi J, Yamaya T (2003) Constitutive expression of a novel-type ammonium transporter OsAMT2 in rice plants. Plant Cell Physiol 44:206–211PubMedCrossRefGoogle Scholar
  267. Suga S, Kamatsu S, Maeshima M (2002) Aquaporin isoforms responsive to salt and water stresses and phytohormones in radish seedlings. Plant Cell Physiol 43:1229–1237PubMedCrossRefGoogle Scholar
  268. Sunkar R, Kapoor A, Zhun JK (2006) Post transcriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065PubMedPubMedCentralCrossRefGoogle Scholar
  269. Suzuki M, Takahashi M, Tsukamoto T, Watanabe S, Matsuhashi S, Yazaki J, Kishimoto N, Kikuchi S, Nakanishi H, Mori S, Nishizawa NK (2006) Biosynthesis and secretion of mugineic acid family of phytosiderophores in zinc deficient barley. Plant J 48:85–97PubMedCrossRefGoogle Scholar
  270. Suzuki M, Tsukamoto Y, Inoue H, Watanabe S, Matsuhashi S, Takahashi M, Nakanishi H, Mori S, Nishizawa NK (2008) Deoxymugineic acid increases Zn translocation in Zn-deficient rice plants. Plant Mol Biol 66:609–617PubMedPubMedCentralCrossRefGoogle Scholar
  271. Takano J, Wada M, Ludewig U, Schaaf G, Von Wirén N, Fujiwara T (2006) The Arabidopsis major intrinsic protein NIP5;1 is essential for efficient boron uptake and plant development under boron limitation. Plant Cell 18:1498–1501PubMedPubMedCentralCrossRefGoogle Scholar
  272. Tan K, Keltjens WG, Findenegg GR (1991) Role of magnesium in combination with liming in alleviating aid soil stress with the aluminum-sensitive sorghum genotype CV323. Plant Soil 136:65–72CrossRefGoogle Scholar
  273. Tanaka M, Wallace IS, Takano J, Roberts DM, Fujiiwara T (2008) NIP6;1 is a boric acid channel for preferential transport of boron to growing shoot tissues in Arabidopsis. Plant Cell 20(10):2860–2875PubMedPubMedCentralCrossRefGoogle Scholar
  274. Tang Z, Sadka A, Morishige DT, Muller JE (2001) Homeodomain leucine zipper proteins bind to the phosphate response domain of the soybean VspB tripartite promoter. Plant Physiol 125:797–809PubMedPubMedCentralCrossRefGoogle Scholar
  275. Teakle NL, Tyerman SD (2009) Mechanism of Cl (-) transport contributing to salt tolerance. Plant Cell Environ 33(4):566–589PubMedCrossRefPubMedCentralGoogle Scholar
  276. Teakle NL, Flowers T, Real D, Colmer T (2007) Lotus tenuis tolerates the interactive effects of salinity and water logging by ‘excluding’ Na+ and Cl- from the xylem. J Exp Bot 58:2169–2180PubMedPubMedCentralCrossRefGoogle Scholar
  277. Tesfaye M, Liu J, Allan DL, Vance CP (2007) Genomic and genetic control of phosphate stress in legumes. Plant Physiol 144:594–603PubMedPubMedCentralCrossRefGoogle Scholar
  278. The Nobel Prize in Chemistry (2003) The Royal Swedish Academy of Sciences, Information for the public, 8 October 2003Google Scholar
  279. Tӧrnroth-Horsefield S, Wang Y, Hedfalk K, Johanson U, Karlsson M, Tajkhorshid E, Neutze R, Kjellbom P (2006) Structural mechanism of plant aquaporin gating. Nature 439:688–694.  https://doi.org/10.1038/nature0431 CrossRefGoogle Scholar
  280. Trevisan S, Borsa P, Botton A, Varotto S, Malagoli M, Ruperti B, Quaggiotti S (2008) Expression of two maize putative nitrate transporters in response to nitrate and sugar availability. Plant Biol (Stuttg) 10:462–475CrossRefGoogle Scholar
  281. Tsay YF, Chiu CC, Tsai CB, Ho CH, Hsu PK (2007) Nitrate transporters and peptide transporters. FEBS Lett 581:2290–2300PubMedCrossRefPubMedCentralGoogle Scholar
  282. TSI (2008) Sulphur in Indian agriculture. The Sulphur Institute, Washington, DCGoogle Scholar
  283. Tsukada H, Hasegawa H, Hisamatsu S, Yamasaki S (2002) Rice uptake and distribution of radioactive 137Cs and !33Cs and K from soil. Environ Pollut 117:403–409PubMedCrossRefGoogle Scholar
  284. Tsutsui T, Yamaji N, Ma JF (2011) Identification of a Cis-acting element of ART1, a C2H2 type zinc finger transcription factor for aluminum tolerance in rice. Plant Physiol 156(2):925–931PubMedPubMedCentralCrossRefGoogle Scholar
  285. Tuberosa R, Giuliani S, Parry MAJ, Araus JL (2007) Improving water use efficiency in Mediterranean agriculture: what limits the adoption of new technologies? Ann Appl Biol 2:157–162CrossRefGoogle Scholar
  286. Tuteja N (2007) Mechanism of high salinity tolerance in plants. Methods Enzymol 428:419–438PubMedCrossRefPubMedCentralGoogle Scholar
  287. Ullrich C, Novacky A (1990) Extra inter cellular pH and membrane potential change induced by K+ and Cl-, H2PO4 and NO3 uptake and fusicoccin in root hairs of Limnobium stoloniferum. Plant Physiol 131:1561–1567CrossRefGoogle Scholar
  288. Uozumi N, Kim EJ, Rubio F, Yamaguchi T, Muto S, Tsuboi A, Bakker EP, Nakamura T, Schroeder JI (2000) The Arabidopsis HKT1 gene homolog mediates inward Na+ currents in Xenopus laevis oocytes and Na+ uptake in Saccharomyces cerevisae. Plant Physiol 122:1249–1259PubMedPubMedCentralCrossRefGoogle Scholar
  289. Valdes-Lopez O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, Hernández G (2010) MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187:805–818PubMedCrossRefPubMedCentralGoogle Scholar
  290. van Der Luit AH, Olivari C, Haley A, Knight MR, Trewavas AJ (1999) Distinct calcium signaling pathways regulate calmodulin gene expression in tobacco. Plant Physiol 121:705–714PubMedCentralCrossRefGoogle Scholar
  291. van Der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnens AN, Schat H, Verkleij JAC, PJJ H (1999) Over-expression of a novel Arabidopsis gene related to putative zinc-transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055PubMedPubMedCentralCrossRefGoogle Scholar
  292. Vance CP, Uhde-Stone C, Allan DL (2003) Phosphorus acquisition and use: critical adaptation by plants for securing a nonrenewable resource. New Phytol 157:423–447CrossRefGoogle Scholar
  293. Venkatesh J, Yu TW, Gaston D, Park SW (2015) Molecular evolution and functional diversity of X-intrinsic protein gene in plants. Mol Gen Genomics 290:443–460CrossRefGoogle Scholar
  294. Versaw WK, Harrison MJ (2002) A chloroplast phosphate transporter, PHT2;1, influences allocation of phosphate within the plant and phosphate-starvation responses. Plant Cell 14:1751–1766PubMedPubMedCentralCrossRefGoogle Scholar
  295. Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Brait JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233PubMedPubMedCentralCrossRefGoogle Scholar
  296. Very A-A, Sentenac H (2002) Cation channels in the Arabidopsis plasma membrane. Trends Plant Sci 7:168–175PubMedCrossRefPubMedCentralGoogle Scholar
  297. Vierling E (1991) The roles of heat shock proteins in plants. Annu Rev Plant Physiol Plant Mol Biol 42:579–620CrossRefGoogle Scholar
  298. Vogel JT, Zarka DG, Van Buskirk HA, Fowler SG, Thomashow MF (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211CrossRefPubMedGoogle Scholar
  299. Walch-Liu P, Forde BG (2008) Nitrate signaling mediated by the NRT1;1 nitrate transporter antagonizes L-glutamate-induced changes in root architecture. Plant J 54(5):820–828. Epub 2008 Feb 7PubMedCrossRefPubMedCentralGoogle Scholar
  300. Walker CJ, Weinstein JD (1991) Further characterization of magnesium chelatase in isolated developing cucumber chloroplasts – substrate specificity, regulation, intactness, and ATP requirements. Plant Physiol 95:1189–1196PubMedPubMedCentralCrossRefGoogle Scholar
  301. Walley JW, Dehesh K (2010) Molecular mechanisms regulating rapid stress signaling networks in Arabidopsis. J Integr Biol 52:354–359CrossRefGoogle Scholar
  302. Walley JW, Coughlan S, Hudson ME, Covington MF, Kaspi R, Banu G, Harmer SL, Dehesh K (2007) Mechanical stress induces biotic and abiotic stress responses via a novel cis-element. PLoS Genet 3:1800–1812PubMedCrossRefPubMedCentralGoogle Scholar
  303. Wang YH, Garvin DF, Kochian LV (2001) Nitrate-induced genes in tomato roots. Array analysis reveals novel genes that may play a role in nitrogen nutrition. Plant Physiol 127:345–359PubMedPubMedCentralCrossRefGoogle Scholar
  304. Wang Y, Stass A, Horst WJ (2004) Apoplastic binding of aluminium is involved in silicon induced amelioration of aluminium toxicity in maize. Plant Physiol 136(3):3762–3770PubMedPubMedCentralCrossRefGoogle Scholar
  305. Wang YJ, Yu JN, Chen T, Zhang ZG, Hao YJ, Zhang JS, Chen SY (2005) Functional analysis of a putative Ca2+ channel gene TaTPC1 from wheat. J Exp Bot 56:3051–3060PubMedCrossRefPubMedCentralGoogle Scholar
  306. Wang M, Zheng Q, Shen Q, Guo S (2013a) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390PubMedPubMedCentralCrossRefGoogle Scholar
  307. Wang Y, Zhang C, Hao Q, Sha A, Zhou R, Zhou X, Yuan L (2013b) Elucidation of miRNAs mediated responses to low nitrogen stress by deep sequencing of two soybean genotypes. PLoS One 8:e67423PubMedPubMedCentralCrossRefGoogle Scholar
  308. Wasaki J, Shinano T, Onishi K, Yonetani R, Yazaki J, Fujii F, Shimbo K, Ishikawa M, Shimatani Z, Nagata Y, Hashimoto A (2006) Transcriptonomic analysis indicates putative metabolic changes caused by manipulation of phosphorus availability in rice leaves. J Exp Bot 57(9):2049–2059PubMedCrossRefPubMedCentralGoogle Scholar
  309. Wheeler DM, Power IL (1995) Comparison of plant uptake and plant toxicity of various ions in wheat. Plant Soil 172:167–173CrossRefGoogle Scholar
  310. White PJ (2001) The pathway of calcium movement to the xylem. J Exp Bot 52:891–899PubMedCrossRefGoogle Scholar
  311. White PJ (2003) Calcium in plants. Ann Bot 92(4):487–511PubMedPubMedCentralCrossRefGoogle Scholar
  312. White PJ, Broadly MR (2000) Mechanism of Caesium uptake by plants. New Phytol 147:241–256CrossRefGoogle Scholar
  313. White P, Karley A (2010) Potassium. In: Hell R, Mendel RR (eds) Cell biology of metals and nutrients. Springer, Berlin, pp 199–224CrossRefGoogle Scholar
  314. Wiesenberger G, Steinleitner K, Malli R, Graier WF, Vormann J, Schweyen RJ, Stadler JA (2007) Mg2+ deprivation elicits rapid Ca2+ uptake and activates Ca2+/calcineurin signaling in Saccharomyces cerevisiae. Eukaryot Cell 6:592–599PubMedPubMedCentralCrossRefGoogle Scholar
  315. Wilkins O, Hafemeister C, Plessis A, Holloway-Phillips MM, Pham GM, Nicotra AB, Gregorio GB, Jagadish K, Septiningsih EM, Bonneau R, Purugganan MD (2016) EGRINs (environmental gene regulatory influence networks) in rice that functions in the response to water deficit and agricultural environments. Plant Cell 28(10):2365–2384PubMedPubMedCentralCrossRefGoogle Scholar
  316. Williams LE, Mills RF (2005) P1B ATPase-an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502PubMedCrossRefPubMedCentralGoogle Scholar
  317. Woods WG (1996) Review of possible boron speciation relating to its essentiality. J Trace Elem Exp Med 9:153–163CrossRefGoogle Scholar
  318. World Nuclear Association (2015) Nuclear radiation and health effects, Retrieved from world-nuclear.org. LondonGoogle Scholar
  319. Xu G, Magen H, Tarchtizky J, Kafkafi U (2000) Advances in chloride nutrition. Adv Agron 68:96–150Google Scholar
  320. Xu Z, Zhong S, Li X, Li W, Rothstein SJ, Zhang S, Bi Y, Xie C (2011) Genome wide identification of microRNAs in response to low nitrate availability in maize leaves and roots. PLoS One 6(11):e28009PubMedPubMedCentralCrossRefGoogle Scholar
  321. Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Ann Rev Plant Biol 57:781–803CrossRefGoogle Scholar
  322. Yamaji N, Mitatni N, Ma JF (2008) A transporter regulating silicon distribution in rice shoot. Plant Cell 20:1381–1389PubMedPubMedCentralCrossRefGoogle Scholar
  323. Yamaji N, Huang CF, Nagao S, Yano M, Sato Y, Nagamura Y, Ma JF (2009) A zinc-finger transcription factor ART1 regulates multiple genes implicated in aluminum tolerance in rice. Plant Cell 21:3339–3349PubMedPubMedCentralCrossRefGoogle Scholar
  324. Yamaji N, Chiba Y, Mitatni-Ueno N, Ma JF (2012) Functional characterisation of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol 160(3):1491–1497PubMedPubMedCentralCrossRefGoogle Scholar
  325. Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanai T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361PubMedPubMedCentralCrossRefGoogle Scholar
  326. Yasunari TJ, Stohl A, Hayans RS, Burkhart JF, Eckhardt S, Yasunari T (2011) Cesium-137 deposition and contamination of Japanese soils due to Fukushima nuclear accident. Proc Natl Acad Sci U S A 108:19530–19534PubMedPubMedCentralCrossRefGoogle Scholar
  327. Yi K, Wu Z, Zhou J, Du L, Guo L, Wu Y, Wu P (2005) OsPTF1, a novel transcription factor involved in tolerance to phosphate starvation in rice. Plant Physiol 138:2087–2096PubMedPubMedCentralCrossRefGoogle Scholar
  328. Yong Z, Kotur Z, Glass ADM (2010) Characterization of an intact two-component high-affinity nitrate transporter from Arabidopsis roots. Plant J 63:739–748PubMedCrossRefGoogle Scholar
  329. Yoo JH, Park CY, Kim JC, Do Heo W, Cheong MS, Park HC, Kim MC, Moon BC, Choi MS, Kang YH, Lee JH (2005) Direct interaction of a divergent CaM isoform and the transcription factor, MYB2, enhances salt tolerance in Arabidopsis. J Biol Chem 280:3697–3706PubMedCrossRefGoogle Scholar
  330. Yruela I (2009) Copper in plants: acquisition, transport and interactions. Funct Plant Biol 36(5):409–430CrossRefGoogle Scholar
  331. Yue X, Zhao XY, Fei YK, Zhang X (2012) Correlation of aquaporins and transmembrane solute transporters revealed by genome-wide analysis in developing maize leaf. Comp Funct Genom 2012:546930. 14ppCrossRefGoogle Scholar
  332. Zhang H-X, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768PubMedPubMedCentralCrossRefGoogle Scholar
  333. Zhang WJ, Zhang J, Liu F, Li GM, Guan JF (2001) The relationship between Ca2+ and drought resistance in plants. Chin Bull Bo 18:473–478Google Scholar
  334. Zhang DY, Ali Z, Wang CB, Xu L, Yi JX, Xu ZL, Liu XQ, He XL, Huang YH, Khan IA, Trethowan RM, Ma HX (2014) Genome-wide sequence characterization and expression analysis of major intrinsic proteins in soybean (Glycine max L.). PLoS One 9(1):10.1371Google Scholar
  335. Zhao XQ, Shen RF (2013) Interactive regulation of nitrogen and aluminum in rice. Plant Signal Behav 8(6):e24355PubMedPubMedCentralCrossRefGoogle Scholar
  336. Zhao F, Bilsborrow PE, Evans EJ, Syers JK (1993) Sulphur turnover in the developing pods of single and double low varieties of oilseed rape (Brassica napus L.). J Sci Food Agric 62:111–119CrossRefGoogle Scholar
  337. Zhao FJ, Hawkesford MJ, McGrath SP (1999) Sulphur assimilation and effects on yield and quality of wheat. J Cereal Sci 30(1):1–17CrossRefGoogle Scholar
  338. Zhao FJ, McGrath SP, Kawkesford MJ (2001) Sulphur nutrition and the Sulphur cycle institute of arable crops. Rothamsted Experimental Station 2000–2001Google Scholar
  339. Zhao FJ, Fortune S, Barbosa VL, McGrath SP, Stobart R, Bilsborrow PE, Booth EJ, Brown A, Robson P (2006) Effects of Sulphur on yield and malting quality of barley. J Cereal Sci 43:369–377CrossRefGoogle Scholar
  340. Zhao M, Ding H, Zhu J-K, Zhang F, Li W-X (2011) Involvement of miR169 in the nitrogen-starvation responses in Arabidopsis. New Phytol 190(4):906–915PubMedPubMedCentralCrossRefGoogle Scholar
  341. Zhou J, Jiao F, Wu Z, Li Y, Wang X, He X, Zhong W, Wu P (2008) OsPHR2 is involved in phosphate-starvation signaling and excessive phosphate accumulation in shoots of plants. Plant Physiol 146:1673–1686PubMedPubMedCentralCrossRefGoogle Scholar
  342. Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS One 7(12):e52439PubMedPubMedCentralCrossRefGoogle Scholar
  343. Zong H, Liu EE, Guo ZF, Li MQ (2000) Enhancement of drought resistance of rice seedlings. J S Chin Agric Univ 21:63–65Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Gyanendranath Mitra
    • 1
  1. 1.Faculty of Agriculture, Department of Soil Science and Agricultural ChemistryOrissa University of Agriculture and Technology (OUAT)BhubaneswarIndia

Personalised recommendations