Role of Plant Nutrients in Plant Growth and Physiology

  • Nalini Pandey


A mineral element is considered as essential based on the criteria of essentiality given by Arnon (Criteria of essentiality of inorganic micronutrients for plants. In: Wallace T Trace elements and plant physiology. Chronica Botanica, Waltham, pp 31–39, 1954), according to which 16 elements known as mineral nutrients are required for completion of a productive life cycle in plants. These mineral nutrients are carbon, hydrogen, oxygen, nitrogen, phosphorus, potassium, calcium, magnesium, sulphur, iron, manganese, zinc, copper, boron, molybdenum and chlorine. Of these C and at times S are taken up from air as CO2 and SO2, and oxygen and hydrogen are provided as water. The soil is the source for uptake of the other elements by plants. Based on their requirement, these nutrients have been classified as macronutrients (N, P, K, Ca, Mg and S) because they are required at concentrations higher than 1–150 g per kg of plant dry matter and micronutrients (Fe, Zn, Mn, Cu, B, Mo and Cl) which are required at concentration of 0.1–100 mg per kg of plant dry matter. However their requirement per se does not alter their significance for the plant growth and metabolism. The mineral nutrient elements play essential roles such as constituent of cell structures and cell metabolites, in cell osmotic relations and turgor-related processes, energy transfer reactions, enzyme-catalysed reactions and plant reproduction. Plant productivity depends on the efficient discharge of these functions. In this chapter we focus on the main functions of the mineral nutrients that have a bearing on the quantitative and qualitative aspects of crop productivity.


Essential Micronutrient Macronutrient Physiological roles 


  1. Agarwal P, Arora R, Ray S, Singh AK, Singh VP, Takatsuji H, Kapoor S, Tyagi AK (2007) Genomewide identification of C2H2 zinc-finger gene family in rice and their phylogeny and expression analysis. Plant Mol Biol 65(4):467–485CrossRefPubMedGoogle Scholar
  2. Agarwala SC, Chatterjee C, Sharma PN, Sharma CP, Nautiyal N (1979) Pollen development in maize plants subjected to molybdenum deficiency. Can J Bot 57:1946–1950CrossRefGoogle Scholar
  3. Agarwala SC, Sharma PN, Chatterjee C, Sharma CP (1980) Copper deficiency induced changes in wheat anther. Proc Natl Acad Sci (India) B46:172–176Google Scholar
  4. Alban C, Job D, Douce R (2000) Biotin metabolism in plants. Annu Rev Plant Physiol Plant Mol Biol 51:17–47CrossRefPubMedGoogle Scholar
  5. Ali R, Ma W, Lemtiri-Chlieh F, Tsaltas D, Leng Q, von Bodman S, Berkowitz GA (2007) Death don’t have no mercy and neither does calcium: Arabidopsis CYCLIC NUCLEOTIDE GATED CHANNEL2 and innate immunity. Plant Cell 19:1081–1095CrossRefPubMedPubMedCentralGoogle Scholar
  6. Alloway BJ (2004) Zinc in soils and crop nutrition. International Zn Association Publications, Brussels, pp 1–116Google Scholar
  7. Anjum NA, Gill R, Kaushik M, Hasanuzzaman M, Pereira E, Ahmad I, Tuteja N, Gill SS (2015) ATP-sulfurylase, sulfur-compounds, and plant stress tolerance. Front Plant Sci.
  8. Appel HM (1993) Phenolics in ecological interactions. The importance of oxidation. J Chem Ecol 9:1521–1552CrossRefGoogle Scholar
  9. Archana, Pandey N (2015a) Oxidative damage and osmotic stress in periwinkle (Catharanthus roseus L.) subjected to B nutrition. J Global Biosci 4:7–14Google Scholar
  10. Archana, Pandey N (2015b) Boron deficiency induced retardation in pollen-stigma interaction in soyabean plants. Intl J App Pure Sci Agric 1:1421Google Scholar
  11. Archana, Pandey N (2016) Physiological and biochemical effects of boron toxicity in mustard during seedling stage. J Plant Nutr 26:820–827CrossRefGoogle Scholar
  12. Archana, Pandey N, Verma P (2017) Boron deficiency and toxicity and their tolerance in plants: a review. J Global Biosci 6:4958–4965Google Scholar
  13. Ardic M, Sekmen AH, Tokur S, Ozdemir F, Turkan I (2009) Antioxidant response of chickpea plants subjected to boron toxicity. Plant Biol 11:328–338CrossRefPubMedGoogle Scholar
  14. Arnim AG, Deng XW (1993) Ring finger motif of Arabidopsis thaliana COP1 defines a new class of zinc-binding domain. J Biol Chem 268:19626–19631Google Scholar
  15. Auld DS (2001) Zinc coordination sphere in biochemical zinc sites. Biometals 14:271–313CrossRefPubMedGoogle Scholar
  16. Ayre BG, Turgeon R (2004) Graft transmission of a floralstimulant derived from CONSTANS. Plant Physiol 135:2271–2278CrossRefPubMedPubMedCentralGoogle Scholar
  17. Azouaou Z, Souvré A (1993) Effects of copper deficiency on pollen fertility and nucleic acids in the durum wheat anther. Sex Plant Reprod 6:199–204CrossRefGoogle Scholar
  18. Bakker J, Gommers FJ, Smits L, Fuchs A, De Vries FW (1983) Photoactivation of isoflavonoid phytoalexins: involvement of free radicals. Photochem Photobiol 38:323–329CrossRefGoogle Scholar
  19. Barr R, Böttger M, Crane FL (1993) The effect of B on plasma membrane electron transport and associated proton secretion by cultured carrot cells. Biochem Mol Biol Int 31:31–39PubMedPubMedCentralGoogle Scholar
  20. Becana M, Maran JF, Iturbe-Ormaetxe I (1998) Iron dependent oxygen free radical generation in plants subjected to environmental stress: toxicity and antioxidant protection. Plant Soil 201:137–147CrossRefGoogle Scholar
  21. Berg JM, Tymoczko JL, Gatto GJ, Stryer L (2015) DNA, RNA, and the flow of genetic information. In: Biochemistry, 8th edition. Freeman WH and Company, New YorkGoogle Scholar
  22. Berthold DA, Stenmark P (2003) Membrane-bound diiron carboxylate proteins. Annu Rev Plant Biol 54:497–517CrossRefPubMedGoogle Scholar
  23. Bettger WJ, O’Dell BLA (1981) Critical physiological role of Zn in structure and function of biomembranes. Life Sci 28:1425–1438CrossRefPubMedGoogle Scholar
  24. Bielski RL (1973) Phosphate pools, phosphate transport and phosphate availability. Annu Rev Plant Physiol 24:225–252CrossRefGoogle Scholar
  25. Bittner F (2014) Molybdenum metabolism in plants and crosstalk to iron. Front Plant Sci 7:5–10Google Scholar
  26. Blaser-Grill J, Knoppik D, Amberger A, Goldbach H (1989) Influence of boron on the membrane potential in Elodea densa and Helianthus annuus roots and H+ extrusion of suspension cultured Daucus carota cells. Plant Physiol 90:280–284CrossRefPubMedPubMedCentralGoogle Scholar
  27. Bolan NS, Adriano DC, Naidu R (2003) Role of phosphorus in immobilization and bioavailability of heavy metals in the soil-plant system. Rev Environ Contam Toxicol 177:1–14PubMedPubMedCentralGoogle Scholar
  28. Boston R, Vitanan P, Vierling E (1996) Molecular chaperones and protein folding in plants. Plant Mol Biol 32:191–222Google Scholar
  29. Bray TM, Bettger WJ (1990) The physiological role of zinc as an antioxidant. Free Rad Biol Medi 8:281–291CrossRefGoogle Scholar
  30. Bredemeijer GMM (1979) The distribution of peroxidase isoenzymes, chlorogenic acid oxidase and glucose-6-phosphate dehydrogenase in transmitting tissue and cortex of Nicotiana alata styles. Acta Bot Neerl 28:197–203CrossRefGoogle Scholar
  31. Briat JF, Curie C, Gaymard F (2007) Iron utilization and metabolism in plants. Curr Opin Plant Biol 10:276–282CrossRefPubMedGoogle Scholar
  32. Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702CrossRefPubMedGoogle Scholar
  33. Burnel JN (1988) The biochemistry of manganese in plants. In: Graham RD et al (eds) Manganese in soils and plants. Kluwer Academic Publishers, The Netherlands, pp 125–137CrossRefGoogle Scholar
  34. Bush DS (1996) Effect of gibberellic acid and environmental factors on cytosolic calcium in wheat aleurone cells. Planta 199:566–574CrossRefGoogle Scholar
  35. Cairns ALP, Kritzinger JH (1992) The effect of molybdenum on seed dormancy in wheat. Plant Soil 145:295–297CrossRefGoogle Scholar
  36. Cakamk I, Marschner H (1988) Zinc-dependent changes in ESR signals, NADPH-oxidase and plasma membrane permeability in cotton roots. Physiol Plant 73:182–186CrossRefGoogle Scholar
  37. Cakmak I (1994) Activity of ascorbate-dependent H2O2-scavenging enzymes and leaf chlorosis are enhanced in magnesium and potassium deficient leaves, but not in phosphorus deficient leaves. J Exp Bot 45:1259–1266CrossRefGoogle Scholar
  38. Cakmak I (2000) Possible roles of zinc in protecting plant cells from damage by reactive oxygen spices. New Phytol 146:185–205CrossRefGoogle Scholar
  39. Cakmak I (2005) The role of potassium in alleviating detrimental effects of abiotic stresses in plants. J Plant Nutr Soil Sci 168:521–530CrossRefGoogle Scholar
  40. Cakmak I (2013) Magnesium in crop production, food quality and human health. Plant Soil:1–4CrossRefGoogle Scholar
  41. Cakmak I, Kirkby EA (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiol Plant 133:692–704CrossRefPubMedPubMedCentralGoogle Scholar
  42. Cakmak I, Marschner H (1992a) Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase and glutathione reductase in bean leaves. Plant Physiol 98:1222–1227CrossRefPubMedPubMedCentralGoogle Scholar
  43. Cakmak I, Marschner H (1992b) Magnesium deficiency enhances resistance to paraquat toxicity in bean leaves. Plant Cell Environ 15:955–960CrossRefGoogle Scholar
  44. Cakmak I, Marschner H (1993) Effect of zinc nutritional status on activities of superoxide radical and hydrogen peroxide scavenging enzymes in bean leaves. Plant Soil 155(156):127–130CrossRefGoogle Scholar
  45. Cakmak I, Romheld V (1997) Boron-deficiency induced impairments of cellular functions in plants. Plant Soil 193:71–83CrossRefGoogle Scholar
  46. Cakmak I, Hengeler C, Marschner H (1994a) Partitioning of shoot and root dry matter and carbohydrates in bean plants suffering from phosphorus, potassium and magnesium deficiency. J Exp Bot 45:1245–1250CrossRefGoogle Scholar
  47. Cakmak I, Hengeler C, Marschner H (1994b) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. J Exp Bot 45:1251–1257CrossRefGoogle Scholar
  48. Cakmak I, Atli M, Kaya R, Evliya H, Marschner H (1995) Association of high light and Zn deficiency in cold induced leaf chlorosis in grapefruit and mandarin trees. J Plant Physiol 146:355–360CrossRefGoogle Scholar
  49. Cakmak I, Engels C (1999) Role of mineral nutrients in photosynthesis and yield formation. In: Rengel Z (ed) Mineral nutrition of crops: fundamental mechanisms and implications. Haworth Press, New York, pp 141–168Google Scholar
  50. Camacho-Cristóbal JJ, Rexach J, González-Fontes A (2008) Boron in plants: deficiency and toxicity. J Intgr Plant Biol 50:1247–1255CrossRefGoogle Scholar
  51. Campbell WH (1999) Nitrate reductase structure, function and regulation: bridging the gap between biochemistry and physiology. Annu Rev Plant Physiol Plant Mol Biol 50:277–303CrossRefPubMedGoogle Scholar
  52. Candan N, Tarhan L (2003) The correlation between antioxidant enzyme activities and lipid peroxidation levels in Mentha pulegium organs grown in Ca2+, Mg2+, Cu2+, Zn2+ and Mn2+ stress conditions. Plant Sci 163:769–779CrossRefGoogle Scholar
  53. Carter C, Thornburg RW (2000) Tobacco nectarin. I. Purification and characterization as a germin-like, manganese superoxide dismutase implicated in the defense of floral reproductive tissues. J Biol Chem 275:36726–36733CrossRefPubMedGoogle Scholar
  54. Carter C, Thornburg RW (2004) Is the nectar redox cycle a floral defense against microbial attack? Trends Plant Sci 9:320–324CrossRefPubMedGoogle Scholar
  55. Cervilla LM, Blasco B, Rìos JJ, Romero L, Ruiz JM (2007) Oxidative stress and antioxidants in tomato (Solanum lycopersicum) plants subjected to boron toxicity. Ann Bot 100:747–756CrossRefPubMedPubMedCentralGoogle Scholar
  56. Chandra N, Pandey N (2014a) Sulfur stress induced antioxidative responses in leaves of Triticum aestivum L. Acta Physiol Plant 36:2079–2089CrossRefGoogle Scholar
  57. Chandra N, Pandey N (2014b) Antioxidant status of Vigna mungo L. in response to sulfur nutrition. Chinese J Biol 3:1–9CrossRefGoogle Scholar
  58. Chandra N, Pandey N (2016) Role of sulfur nutrition in plant and seed metabolism of Glycine max L. J Plant Nutr 39:1103–1111CrossRefGoogle Scholar
  59. Chapple C (1998) Molecular genetic analysis of plant cytochrome P450-dependent monooxygenases. Ann Rev Plant Physiol Plant Mol Biol 49:311–343CrossRefGoogle Scholar
  60. Chatterjee C, Nautiyal N (2001) Molybdenum stress affects viability and vigour of wheat seeds. J Plant Nutr 24:1377–1386CrossRefGoogle Scholar
  61. Chaudhary MI, Adu-Gyamfi JJ, Saneoka H, Nguyen NT, Suwa R, Kanai S, El-Shemy HA, Lightfoot DA, Fujita K (2008) The effect of phosphorus deficiency on nutrient uptake, nitrogen fixation and photosynthetic rate in mashbean, mungbean and soybean. Acta Physiol Plant 30:537–544CrossRefGoogle Scholar
  62. Chen EL, Chen YA, Chen LM, Liu ZH (2002a) Effect of copper on peroxidase activity and lignin content in Raphanus sativus. Plant Physiol Biochem 40:439–444CrossRefGoogle Scholar
  63. Chen ZH, Walker RP, Acheson RM, Leegood RC (2002b) Phosphoenolpyruvate carboxykinase assayed at physiological concentrations of metal ions has a high affinity for CO2. Plant Physiol 128:160–164CrossRefPubMedPubMedCentralGoogle Scholar
  64. Chen YF, Wang Y, Wu WH (2008) Membrane transporters for nitrogen, phosphate and potassium uptake in plants. J Integr Plant Biol 50:835–848CrossRefPubMedGoogle Scholar
  65. Choi Y, Gehring M, Johnson L, Hannon M, Harada JJ (2002) DEMETER, a DNA glycosylase domain protein, is required for endosperm gene imprinting and seed viability in Arabidopsis. Cell 110:33–42CrossRefPubMedGoogle Scholar
  66. Clarkson DT, Hanson JB (1980) Mineral nutrition of higher plants. Ann Rev Plant Physiol 31:239–298CrossRefGoogle Scholar
  67. Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneins: roles in heavy metal detoxification and homeostasis. Annu Rev Plant Biol 53:159–182CrossRefPubMedGoogle Scholar
  68. Coetzer LA, Robbertse PJ (1987) Pollen biology of Persea americana Fuerte. S Afr Avocado Growth Assoc Yearb 10:43–45Google Scholar
  69. Colasanti J, Yuan Z, Sundaresan V (1998) The indeterminate gene encodes a zinc finger protein and regulates a leaf-generated signal required for the transition to flowering in maize. Cell 93:593–603CrossRefPubMedGoogle Scholar
  70. Coleman JE (1992) Zinc proteins, enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem 61:897–946CrossRefPubMedGoogle Scholar
  71. Cowan JA (2002) Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals 15:225–235CrossRefPubMedGoogle Scholar
  72. Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Ann Rev Physiol Plant Physiol Plant Mol Biol 48:355–381CrossRefGoogle Scholar
  73. Curie C, Briat JF (2003) Iron transport and signalling in plants. Ann Rev Plant Biol 54:183–206CrossRefGoogle Scholar
  74. Dafni A, Maues MM (1998) A rapid and simple procedure to determine stigma receptivity. Sex Plant Reprod 11:177–180CrossRefGoogle Scholar
  75. Davies JN, Adams P, Winsor GW (1978) Bud development and flowering of Chrysanthemum morifolium in relation to some enzyme activities and to the copper, iron and manganese status. Commun Soil Sci Plant Anal 9:249–264CrossRefGoogle Scholar
  76. Del Río LA, Sandalio LM, Yanez J, Gomez M (1985) Induction of a manganese-containing superoxide dismutase in leaves of Pisum sativum L. by high nutrient levels of zinc and manganese. J Inorg Biochem 24:25–34CrossRefGoogle Scholar
  77. Dell B (1981) Male sterility and anther wall structure in copper-deficient plants. Ann Bot (London) 48:599–608CrossRefGoogle Scholar
  78. Delledonne M, Xia YJ, Dixon RA, Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394:585–588CrossRefPubMedGoogle Scholar
  79. Delmas F, Seveno M, Northey JGB, Hernould M, Lerouge P, McCourt P, Chevalier C (2008) The synthesis of the rhamnogalacturonan II component 3-deoxy-D-manno-2-octulosonic acid (Kdo) is required for pollen tube growth and elongation. J Exp Bot 59:2639–2647CrossRefPubMedPubMedCentralGoogle Scholar
  80. Devi BSR, Kim YJ, Selvi SK, Gayathri S, Altanzul K, Parvin S, Yang DU, Lee OR, Lee S, Yang DC (2012) Influence of potassium nitrate on antioxidant level and secondary metabolite genes under cold stress in Panax ginseng. Russ J Plant Physiol 59:318–325CrossRefGoogle Scholar
  81. Dhakre G, Griffiths R, Hancock J, Neill S (1994) Ananlysis of phenolics and boron in the stigma of seedless Campis grandiflora K. Schum. Indian J Exp Biol 32:816–818Google Scholar
  82. Do HM, Hong JK, Jung HW, Kim SH, Ham JH, Hwang BK (2003) Expression of peroxidase-like genes, H2O2 production, and peroxidase activity during the hypersensitive response to Xanthomonas campestris pv. vesicatoria in Capsicum annuum. Mol Plant-Microbe Inter 16:196–205CrossRefGoogle Scholar
  83. Donnini S, Dell’Orto M, Zocchi G (2011) Oxidative stress responses and root lignification induced by Fe deficiency conditions in pear and quince genotypes. Tree Physiol 31:102–113CrossRefPubMedGoogle Scholar
  84. Droux M (2004) Sulfur assimilation and the role of sulfur in plant metabolism: a survey. Photosynth Res 79:331–348CrossRefPubMedGoogle Scholar
  85. El-Shintinawy F (1999) Structural and functional damage caused by boron deficiency in sunflower leaves. Photosynthetica 36:565–572CrossRefGoogle Scholar
  86. Esfandiari E, Shokrpour M, Alavi-Kia S (2010) Effect of Mg deficiency on antioxidant enzymes activities and lipid peroxidation. J Agric Sci 2:131–136Google Scholar
  87. Evans DE, Briars SA, Williams LE (1991) Active calcium transport by plant cell membranes. J Exp Bot 42:285–303CrossRefGoogle Scholar
  88. Fang Z, Shao C, Meng Y, Wu P, Chen M (2009) Phosphate signaling in Arabidopsis and Oryza sativa. Plant Sci 176:170–180CrossRefGoogle Scholar
  89. Feussner I, Wasternack C (2002) The lipoxygenase pathway. Ann Rev Plant Biol 53:275–297CrossRefGoogle Scholar
  90. Freeden AL, Raab TK, Rao IM, Terry N (1990) Effects ofphosphorus nutrition on photosynthesis in Glycine max (L.) Merr. Planta 181:399–405CrossRefGoogle Scholar
  91. Fridovich I (1995) Superoxide radical and superoxide dismutases. Annu Rev Biochem 64:97–112CrossRefPubMedGoogle Scholar
  92. Fujita K, Kai Y, Takayanagi M, El-Shemy H, Adu-Gyamfi JJ, Mohapatra PK (2004) Genotypic variability of pigeon pea in distribution of photosynthetic carbon at low phosphorus level. Plant Sci 166:641–649CrossRefGoogle Scholar
  93. Furuyama T, Dzelzkalns VA (1991) A novel calcium binding protein is expressed in Brassica pistils and anthers late in flower development. Plant Mol Biol 39:729–737CrossRefGoogle Scholar
  94. Garg OK, Sharma AN, Kona GRSS (1979) Effect of boron on the pollen vitality and yield of rice plants (Oryza sativa L. var.Jaya). Plant Soil 52:591–594CrossRefGoogle Scholar
  95. Gerber J, Lill R (2002) Biogenesis of iron-sulfur proteins in eukaryotes: components, mechanism and pathology. Mitochondrion 2:71–86CrossRefPubMedGoogle Scholar
  96. Gill SS, Anjum NA, Hasanuzzaman M, Gil R, Trivedi DK, Ahmad I et al (2013) Glutathione and glutathione reductase: a boon in disguise for plant abiotic stress defense operations. Plant Physiol Biochem 70:204–212CrossRefPubMedGoogle Scholar
  97. Gniazdowska A, Szal B, Rychter AM (1999) The effect of phosphate deficiency on membrane phospholipids composition of beal (Phaseolus vulgaris L.) rotos. Acta Physiol Plant 21:263–269CrossRefGoogle Scholar
  98. González Benlloch M, Arquero O, Fournier JM, Barranco D, Benlloch M (2008) K+ starvation inhibits water-stress-induced stomatal closure. J Plant Physiol 165:623–630CrossRefGoogle Scholar
  99. Graham RD (1975) Male sterility in wheat plants deficient in copper. Nature 254:514–515CrossRefGoogle Scholar
  100. Grant JJ, Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124:21–29CrossRefPubMedPubMedCentralGoogle Scholar
  101. Graves CJ, Sutcliffe JF (1974) An effect of copper deficiency on the initiation and development of flower buds of Chrysanthemum morifolium grown in solution culture. Ann Bot 38:729–738CrossRefGoogle Scholar
  102. Grossman A, Takahashi H (2001) Macronutrient utilization by photosynthetic eukaryotes and the fabric of interactions. Ann Rev Plant Physiol Plant Mol Biol 52:163–210CrossRefGoogle Scholar
  103. Hafsi C, Debez A, Abdelly C (2014) Potassium deficiency in plants: effects and signaling cascades. Acta Physiol Plant 36:1055–1070CrossRefGoogle Scholar
  104. Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicine, 4th edn. Oxford University Press, OxfordGoogle Scholar
  105. Hanstein SM, Felle HH (2002) CO2-triggered chloride release from guard cells in intact fava bean leaves. Kinetics of the onset of stomatal closure. Plant Physiol 130:940–950CrossRefPubMedPubMedCentralGoogle Scholar
  106. Hasegawa PM, Bressnan RA (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499CrossRefPubMedGoogle Scholar
  107. Haslett BS, Reid RJ, Rengel Z (2001) Zinc mobility in wheat: uptake and distribution of zinc applied to leaves or roots. Ann Bot 87:379–386CrossRefGoogle Scholar
  108. Hatch MD (1987) C4 photosynthesis: a unique blend of modified biochemistry, anatomy and ultrastructure. Biochim Biophys Acta 893:81–106CrossRefGoogle Scholar
  109. Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530CrossRefPubMedPubMedCentralGoogle Scholar
  110. Heplar P (2005) Calcium: a central regulator of plant growth and development. Plant Cell 17:2142–2155CrossRefGoogle Scholar
  111. Hermans C, Verbruggen N (2005) Physiological characterization of Mg deficiency in Arabidopsis thaliana. J Exp Bot 56:2153–2161CrossRefPubMedGoogle Scholar
  112. Hermans C, Johnson GN, Strasser RJ, Verbruggen N (2004) Physiological characterization of magnesium deficiency in sugar beet: acclimation to low magnesium differentially affects photosystems I and II. Planta 220:344–355CrossRefPubMedPubMedCentralGoogle Scholar
  113. Hermans C, Bourgis F, Faucher M, Strasser RJ, Delrot S, Verbruggen N (2005) Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta 220:541–549CrossRefPubMedGoogle Scholar
  114. Hermans C, Hammond JP, White PJ, Verbruggen N (2006) How do plants respond to nutrient shortage by biomass allocation. Trends Plant Sci 11:610–617CrossRefPubMedPubMedCentralGoogle Scholar
  115. Hernandez I, Munne-Bosch S (2015) Linking phosphorus availability with photo-oxidative stress in plants. J Exp Bot 66:2889–2900CrossRefPubMedGoogle Scholar
  116. Herrmann KM (1995) The shikimate pathway: early steps in the biosynthesis of aromatic compounds. Plant Cell 7:909–919CrossRefGoogle Scholar
  117. Heslop-Harrison JS, Roger BJ (1986) Chloride and potassium ions and turgidity in the grass stigma. J Plant Physiol 124:55–60CrossRefGoogle Scholar
  118. Hetherington AM, Brownlee C (2004) The generation of Ca (2+) signals in plants. Ann Rev Plant Biol 55:401–427CrossRefGoogle Scholar
  119. Hille R (1996) The mononuclear molybdenum enzymes. Chem Rev 96:2757–2816CrossRefPubMedPubMedCentralGoogle Scholar
  120. Hiscock SJ, Bown D, Gurr SJ, Dickinson HG (2002) Serine esterases are required for pollen tube penetration of the stigma in Brassica. Sex Plant Reprod 1:65–74CrossRefGoogle Scholar
  121. Hoganson CW, Casey PA, Hansson Ö (1993) Flash photolysis studies of manganese-depleted photosystem II: evidence for binding of Mn2+ and other transition metal-ions. Biochem Biophys Acta 1057:399–406Google Scholar
  122. Hosy E, Vavasseur A, Mouline K, Dreyer I, Gaymard F (2003) The Arabidopsis outward K? Channel GORK is involved in regulation of stomatal movements and plant transpiration. Proc Natl Acad Sci U S A 100:5549–5554CrossRefPubMedPubMedCentralGoogle Scholar
  123. Huang L, Dell B, Bell RW (2000) Effects of boron deficiency on anther development and floret fertility in wheat (Triticum aestivum L. ‘Wilgoyne’). Ann Bot 85:493–500CrossRefGoogle Scholar
  124. Huang ZA, Jiang DA, Yang Y, Sun JW, Jin SH (2004) Effects of nitrogen deficiency on gas exchange, chlorophyll fluorescence, and antioxidant enzymes in leaves of rice plants. Photosynthetica 42:357–364CrossRefGoogle Scholar
  125. Huber DM, Graham RD (1999) The role of nutrition in crop resistance and tolerance to diseases. In: Rengel Z (ed) Mineral nutrition of crops. Fundamental mechanisms and implications. Haworth Press, New York, pp 169–204Google Scholar
  126. Ishii T, Matsunaga T, Pellerin P, O’Neill MA, Darvill AG, Albersheim P (1999) The plant cell wall polysaccharide rhamnogalacturonan II self-assembles into a covalently cross linked dimer. J Biol Chem 274:13098–13104CrossRefPubMedGoogle Scholar
  127. Ishizuka J (1982) Characteristics of molybdenum absorption and translocation in soybean plants. Soil Sci Plant Nutr 28:63–78CrossRefGoogle Scholar
  128. Iturbe-Ormaetxe I, Moran JF, Arrese-Igor C, Gogorcena Y, Klucas RV, Becana M (1995) Activated oxygen and antioxidant defenses in iron-deficient pea plants. Plant Cell Environ 18:421–429CrossRefGoogle Scholar
  129. Iwai H, Hokura M, Oishi M, Chida H, Ishii T, Sakai S, Satoh S (2006) The gene responsible for borate cross-linking of pectin rhamnogalacturonan-II is required for plant reproductive tissue development and fertilization. Proc Natl Acad Sci U S A 103:16592–16597CrossRefPubMedPubMedCentralGoogle Scholar
  130. Jacob C, Anwar A (2008) The chemistry behind redox regulation with a focus on sulphur redox systems. Physiol Plant 133:469–480CrossRefPubMedGoogle Scholar
  131. Jewell AW, Murry BG, Alloway BJ (1988) Light and electron microscopic studies on pollen developments in barley (Hordeum vulgare L.) grown under copper-sufficient and deficient conditions. Plant Cell Environ 11:237–281CrossRefGoogle Scholar
  132. Jiang Y, Miles PW (1993) Generation of H2O2 during enzymic oxidation of catechin. Phytochemistry 33:29–34CrossRefGoogle Scholar
  133. Jung JY, Shin R, Schachtman DP (2009) Ethylene mediates response and tolerance to potassium deprivation in Arabidopsis. Plant Cell 21:607–621CrossRefPubMedPubMedCentralGoogle Scholar
  134. Juszczuk I, Malusa E, Rychter AM (2001) Oxidative stress during phosphate deficiency in roots of bean plants (Phaseolus vulgaris L.). J Plant Physiol 158:1299–1305CrossRefGoogle Scholar
  135. Kanai S, Moghaieb RE, El-Shemy HA, Panigrahi R, Mohapatra PK, Ito J, Nguyen NT, Saneoka H, Fujita K (2011) Potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Sci 180:368–374CrossRefPubMedGoogle Scholar
  136. Kandlbinder A, Finkmeier I, Wormuth D, Hanitzsch M, Dietz KJ (2004) The antioxidant status of photosynthesizing leaves under nutrient deficiency: redox regulation, gene expression and antioxidant activity in Arabidopsis thaliana. Physiol Plant 120:63–73CrossRefPubMedGoogle Scholar
  137. Kapoor S, Takatsuji H (2006) Silencing of an anther-specific zinc-finger gene, MEZ1, causes aberrant meiosis and pollen abortion in petunia. Plant Mol Biol 61:415–430CrossRefPubMedGoogle Scholar
  138. Kapoor S, Kobayashi A, Takatsuji H (2002) Silencing of the tapetum-specific zinc finger gene TAZ1 causes premature degeneration of tapetum and pollen abortion in Petunia. Plant Cell 14:2353–2367CrossRefPubMedPubMedCentralGoogle Scholar
  139. Kapoor D, Sharma R, Handa N, Kaur H, Rattan A, Yadav P, Gautam V, Kaur R, Bhardwaj (2015) Redox homeostasis in plants under abiotic stress: role of electron carriers, energy metabolism mediators and proteinaceous thiols. Fron Environ Sci 3:1–12Google Scholar
  140. Karabal E, Yucel M, Oktem H (2003) Antioxidant responses of tolerant and sensitive barley cultivars to boron toxicity. Plant Sci 164:925–933CrossRefGoogle Scholar
  141. Katoh S (1977) Plastocyanin. In: Trebst A, Avrton M (eds) Encyclopedia of plant physiology photosynthesis. Springer-Verlag, Berlin, pp 247–252Google Scholar
  142. Kausar S, Faizan S, Haneef I (2017) Nitrogen level affects growth and reactive oxygen scavenging of fenugreek irrigated with wastewater. Tropical Plant Res 4:210–224CrossRefGoogle Scholar
  143. Kende H (1993) Ethylene biosynthesis. Ann Rev Plant Physiol Plant Mol Biol 44:283–307CrossRefGoogle Scholar
  144. Kim MJ, Ciani S, Schachtman DP (2010) A peroxidase contributes to ROS production during Arabidopsis root response to potassium deficiency. Mol Plant 3:420–427CrossRefPubMedPubMedCentralGoogle Scholar
  145. Kirkby EA, LeBot J, Adamowicz S, Römheld V (2009) Nitrogen in physiology-an agronomic perspective and implications for the use of different nitrogen forms. International Fertiliser Society, CambridgeGoogle Scholar
  146. Knight H (2000) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195:269–324CrossRefPubMedPubMedCentralGoogle Scholar
  147. Kobayashi M, Matoh T (2004) Boron nutrition of cultured tobacco BX-2 cells. IV. Genes induced under low B supply. J Exp Bot 55:1441–1443CrossRefPubMedPubMedCentralGoogle Scholar
  148. Kobayashi A, Sakamoto A, Kubo K, Rybka Z, Kanno Y, Takatsuji H (1998) Seven Zn–finger transcription factors are expressed sequentially during the development of anther in petunia. Plant J 13:571–576CrossRefPubMedPubMedCentralGoogle Scholar
  149. Kovacik J, Klejdus B (2014) Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition. Food Chem 142:334–341CrossRefPubMedPubMedCentralGoogle Scholar
  150. Kovacik J, Klejdus B, Backor M (2009) Nitric oxide signals ROS scavenger-mediated enhancement of PAL activity in nitrogendeficient Matricaria chamomilla roots: side effects of scavengers. Free Radic Biol Med 46:1686–1693CrossRefPubMedPubMedCentralGoogle Scholar
  151. Kovacik J, Klejdus B, Babula P, Jarosova M (2014) Variation of antioxidants and secondary metabolites in nitrogen-deficient barley plants. J Plant Physiol 171:260–268CrossRefPubMedPubMedCentralGoogle Scholar
  152. Kröniger W, Remenberg H, Tadvos MH, Polle A (1995) Purfication and properties of manganese superoxide dismutase from Norway spruce (Picea abies L. Karst). Plant Cell Physiol 36:191–196Google Scholar
  153. Kubigsteltig I, Laudert D, Weiler EW (1999) Structure and regulation of the Arabidopsis thaliana allene oxide synthase gene. Planta 208:463–471CrossRefPubMedGoogle Scholar
  154. Kubo K, Sakamoto A, Kobayashi A, Rybka Z, Kanno Y, Nakagawa H, Nishino T, Takatsuji H (1998) Cys2/His2 zinc-finger protein family of petunia: evolution and general mechanism of targetsequence recognition. Nucleic Acids Res 26:608–616CrossRefPubMedPubMedCentralGoogle Scholar
  155. Kurepa J, Van Montagu M, Inze D (1997) Expression of sodCp and sodB genes in Nicotiana tabacum: effects of light and copper excess. J Exp Bot 48:2007–2014CrossRefGoogle Scholar
  156. Laing W, Greer D, Sun O, Beets P, Lowe A, Payn T (2000) Physiological impacts of Mg deficiency in Pinus radiata: growth and photosynthesis. New Phytol 146:47–57CrossRefGoogle Scholar
  157. Lamattina L, Garcia-Mata C, Graziano M, Pagnussat G (2003) Nitric oxide: the versatility of an extensive signal molecule. Ann Rev Plant Biol 54:109–136CrossRefGoogle Scholar
  158. Lappartient AG, Touraine B (1997) Glutathione-mediated regulation of ATP sulfurylase activity, SO4 2− uptake and oxidative stress response in intact canola roots. Plant Physiol 114:177–183CrossRefPubMedPubMedCentralGoogle Scholar
  159. Lee M, Shin K, Kim Y, Suh J, Gu YY, Kim MR et al (2005) Induction of Thioredoxin is required for nodule development to reduce reactive oxygen species levels in soybean roots. Plant Physiol 139:1881–1889CrossRefPubMedPubMedCentralGoogle Scholar
  160. Leustek T, Martin MN, Bick JA, Davies JP (2000) Pathways and regulation of sulfur metabolism revealed through molecular and genetic studies. Ann Rev Plant Physiol Plant Mol Biol 51:141–165CrossRefGoogle Scholar
  161. Lillig CH, Potamitou A, Schwenn JD, Vlamis-Gardikas A, Holmgren A (2003) Redox regulation of 3′-phosphoadenylyl sulfate reductase from Escherichia coli by glutathione and glutaredoxins. J Biol Chem 278:22325–22330CrossRefPubMedGoogle Scholar
  162. Liu P, Yang YA (2000) Effects of molybdenum and boron on membrane on lipid peroxidation and endogenous protective systems of soybean leaves. Acta Bot Sin 42:461–466Google Scholar
  163. Liu HY, Sun WN, Su WA, Tang ZC (2006) Co-regulation of water channels and potassium channels in rice. Physiol Plant 128:58–69CrossRefGoogle Scholar
  164. Loomis WD, Durst RW (1992) Chemistry and biology of boron. Biol Factors 3:229–239Google Scholar
  165. Lukaszewski KM, Blevins DG (1996) Root growth inhibition in boron deficient or aluminium-stressed squash plants may be a result of impaired ascorbate metabolism. Plant Physiol 112:1–6CrossRefGoogle Scholar
  166. Lunde C, Zygadlo A, Simonsen HT, Nielsen PL, Blennow A, Haldrup A (2008) Sulfur starvation in rice: the effect on photosynthesis, carbohydrate metabolism, and oxidative stress protective pathways. Physiol Plant 134:508–521CrossRefPubMedPubMedCentralGoogle Scholar
  167. Luo M, Bilodeau P, Koltunow A, Dennis ES, Peacock WJ, Chaudhury AM (1999) Genes controlling fertilization-independent seed development in Arabidopsis thaliana. Proc Natl Acad Sci U S A 96:296–301CrossRefPubMedPubMedCentralGoogle Scholar
  168. Ma W, Berkowitz GA (2011) Cyclic nucleotide gated channel and Ca2+-mediated signal transduction during plant senescence signaling. Plant Signal Behav 6:413–415CrossRefPubMedPubMedCentralGoogle Scholar
  169. Maathuis FJ (2009) Physiological functions of mineral macronutrients. Curr Opin Plant Biol 12:250–258CrossRefPubMedPubMedCentralGoogle Scholar
  170. Mahasuk P, Kullik AS, Iqbal CM, Möllers C (2017) Effect of boron on microspore embryogenesis and direct embryo to plant conversion in Brassica napus (L.). Plant Cell Tissue Organ Cult 130:443–447CrossRefGoogle Scholar
  171. Maret W (2005) Zinc coordination environment in protein determine Zn function. J Trace Elem Med Biol 17:7–12CrossRefGoogle Scholar
  172. Marschner H (1995) Mineral nutrition of higher plants. Academic, LondonGoogle Scholar
  173. Marschner H (2012) Marschner’s mineral nutrition of plants. Academic, LondonGoogle Scholar
  174. Marschner H, Cakmak I (1989) High light intensity enhances chlorosis and necrosis in leaves of zinc, potassium and magnesium deficient bean (Phaseolus vulgaris) plants. J Plant Physiol 134:308–315CrossRefGoogle Scholar
  175. Marschner H, Kirkby EA, Cakmak I (1996) Effect of mineral nutritional status on shoot-root partitioning of photoassimilates and cycling of mineral nutrients. J Exp Bot 47:1255–1263CrossRefPubMedPubMedCentralGoogle Scholar
  176. Martinis DD, Mariani C (1999) Silencing gene expression of ethylene-forming enzyme results in a reversible inhibition of ovule development in transgenic tobacco plants. Plant Cell 11:1061–1071CrossRefPubMedPubMedCentralGoogle Scholar
  177. McInnis SM, Emery DC, Porter R, Desikan R, Hancock JT, Hiscock SJ (2006) The role of stigma peroxidases in flowering plants: insights from further characterization of a stigma-specific peroxidase (SSP) from Senecio squalidus (Asteraceae). J Exp Bot 57:1835–1846CrossRefPubMedPubMedCentralGoogle Scholar
  178. Mendel RR (2007) Biology of the molybdenum cofactor. J Exp Bot 58:2289–2296CrossRefPubMedPubMedCentralGoogle Scholar
  179. Mendel RR, Hänsch R (2002) Molybdoenzymes and molybdenum cofactor in plants. J Exp Bot 53:1689–1698CrossRefPubMedGoogle Scholar
  180. Mengel K (2001) Principles of plant nutrition, 5th edn. Kluwer Academic Publishers, Dordrecht, pp 481–509Google Scholar
  181. Mengel K, Kirkby EA (2002) Principles of plant nutrition. Kluwer Academic Publishers, The NetherlandsGoogle Scholar
  182. Merchant S, Dreyfuss BW (1998) Posttranslational assembly of photosynthetic metalloproteins. Ann Rev Plant Physiol Plant Mol Biol 49:25–51CrossRefGoogle Scholar
  183. Mikkelsen MD, Petersen BL, Olsen CE, Halkier BA (2002) Biosynthesis and metabolic engineering of glucosinolates. Amino Acids 22:279–295CrossRefPubMedPubMedCentralGoogle Scholar
  184. Millenaar FF, Benschop JJ, Wagner AM, Lambers H (1996) The role of alternate oxidase in stabilizing the in vitro reduction state of the ubiquinone pool and the activation state of the alternate oxidase. Plant Physiol 118:599–607CrossRefGoogle Scholar
  185. Möllers C (2017) Effect of boron on microspore embryogenesis and direct embryo to plant conversion in Brassica napus (L.). Plant Cell Tissue Organ Cult 130:443–447CrossRefGoogle Scholar
  186. Munday R, Munday JS, Munday CM (2003) Comparative effects of mono-, di-, tri-, and tetrasulfides derived from plants of the Allium family: redox cycling in vitro and hemolytic activity and Phase 2 enzyme induction in vivo. Free Radic Biol Med 34:1200–1211CrossRefPubMedPubMedCentralGoogle Scholar
  187. Nahed G, Abd El-Aziz B, Laila K (2007) Influence of tyrosine and zinc on growth, flowering and chemical constituents of Salvia farinacea. Plants J App Sci Res 3:1479–1489Google Scholar
  188. Nakagawa H, Jiang CJ, Sakakibara H, Kojima M, Honda I, Ajisaka H, Nishijima T, Koshioka M, Homma T, Mander LN, Takatsuji H (2005) Over expression of a petunia Zn-finger gene alters cytokinin metabolism and plant forms. Plant J 41:512–523CrossRefPubMedGoogle Scholar
  189. Ng CK, McAinsh MR (2003) Encoding specificity in plant calcium signalling: hot-spotting the ups and downs and waves. Ann Bot 92:477–485CrossRefPubMedPubMedCentralGoogle Scholar
  190. Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Ann Rev Plant Physiol Plant Mol Biol 49:249–279CrossRefGoogle Scholar
  191. O’Neill MA, Ishii T, Albersheim P, Darvill AG (2004) Rhamnogalacturonan II: structure and function of a borate cross-linked cell wall pectic polysaccharide. Ann Rev Plant Biol 55:109–139CrossRefGoogle Scholar
  192. Ogawa K, Kanematsu S, Takabe K, Asada K (1995) Attachment of Cu-Zn superoxide dismutase to thylakoid membranes at the site of superoxide generation (PSI) in spinach chloroplasts: detection by immuno-gold labeling after rapid freezing and substitution method. Plant Cell Physiol 36:565–573Google Scholar
  193. Oguchi K, Tanaka N, Komatsu S, Akao S (2004) Methylmalonatesemialdehyde dehydrogenase is induced in auxin-stimulated and zinc-stimulated root formation in rice. Plant Cell Rep 22:848–858CrossRefPubMedGoogle Scholar
  194. Palmgren MG (2001) Regulation of plasma membrane H+-ATPase activity. Physiol Plant 83:314–323CrossRefGoogle Scholar
  195. Pandey N (2010a) Role of micronutrients in reproductive physiology of plants. Plant Stress 4:1–13Google Scholar
  196. Pandey N (2010b) Zinc in plants- an overview. J Plant Biol 37:1–22Google Scholar
  197. Pandey N (2013) Update on boron – physiological responses and homeostasis in plants. In: Hemantaranjan (ed) A nutrio-physiological and molecular interventions for crop improvement under changing climate, vol 14. Scientific Publishers, Jodhpur, pp 28–73Google Scholar
  198. Pandey N, Archana (2013a) Antioxidant responses and water status in Brassica seedlings subjected to boron stress. Acta Physiol Plant 35:697–706CrossRefGoogle Scholar
  199. Pandey N, Archana (2013b) Membrane damage in an oxygen-free radical-dependent manner induced via boron deficiency and toxicity in maize. Plant Stress 7:45–51Google Scholar
  200. Pandey N, Gupta B (2013) The impact of foliar boron sprays on reproductive biology and seed quality of black gram. J Trace Elem Med Biol 27:58–64CrossRefPubMedGoogle Scholar
  201. Pandey N, Sharma CP (1999) Effect of varying copper levels on safflower. Proc Natl Acad Sci India 69(B)1:67–73Google Scholar
  202. Pandey N, Gupta M, Sharma CP (1995) Ultrastructural changes in pollen grains of green gram subjected to copper deficiency. Geophytology 25:147–150Google Scholar
  203. Pandey N, Sharma CP (1996) Copper effect on photosynthesis and transpiration in safflower. Indian J Exp Biol 34:821–822PubMedPubMedCentralGoogle Scholar
  204. Pandey N, Pathak GC, Singh AK, Sharma CP (2002) Enzymic changes in response to zinc nutrition. J Plant Physiol 159:1151–1153CrossRefGoogle Scholar
  205. Pandey N, Singh AK, Pathak GC, Sharma CP (2002) Effect of zinc on antioxidant response in maize (Zea mays L.) leaves. Indian J Exp Biol 40:954–956Google Scholar
  206. Pandey N, Pathak GC, Sharma CP (2006) Zinc is critically required for pollen function and fertilization in lentil. J Trace Elem Med Biol 20:89–96CrossRefPubMedGoogle Scholar
  207. Pandey N, Pathak GC, Sharma CP (2009) Impairment in reproductive development is a major factor limiting reproductive yield of black gram under zinc deficiency. Biol Plant 53:723–727CrossRefGoogle Scholar
  208. Pandey N, Gupta B, Pathak GC (2012) Antioxidant responses of pea (Pisum sativum L.) genotypes to zinc deficiency. Russ J Plant Physiol 59:225–231CrossRefGoogle Scholar
  209. Pandey N, Gupta B, Pathak GC (2013) Enhanced yield and nutritional enrichment of seeds of Pisum sativum L. through foliar application of zinc. Sci Hortic 164:74–83CrossRefGoogle Scholar
  210. Pathak GC, Pandey N, Sharma CP (2005) Zinc regulation of antioxidant defense in green gram (Vigna radiata L.). J Plant Biol 32:211–216Google Scholar
  211. Pathak GC, Pandey DK, Gupta B, Pandey N (2009) Zinc homeostasis is critical for optimized antioxidant defense in faba bean. Indian J Plant Physiol 14:60–66Google Scholar
  212. Pfeffer H, Dannel F, Römheld V (1998) Are there connections between phenol metabolism, ascorbate metabolism and membrane integrity in leaves of boron- deficient sunflower plants? Physiol Plant 104:479–485CrossRefGoogle Scholar
  213. Pilbeam DJ, Kirkby EA (1983) The physiological role of boron in plants. J Plant Nutr 6:563–582CrossRefGoogle Scholar
  214. Prabhu AS, Fageria NK, Huber DM (2007) Potassium nutrition and plant diseases. In: Datnoff LE, Elmer WH, Huber DM (eds) Mineral nutrition and plant disease. Am Phytopathol Soc, Saint Paul, pp 57–78Google Scholar
  215. Presscott AG, John P (1996) Dioxygenases: molecular structure and role in plant metabolism. Ann Rev Plant Physiol Plant Mol Biol 47:245–271CrossRefGoogle Scholar
  216. Prigge MJ, Wagner DR (2001) The Arabidopsis SERRATE gene encodes a zinc-finger protein required for normal shoot development. Plant Cell 13:1263–1279CrossRefPubMedPubMedCentralGoogle Scholar
  217. Puemans JE, Van Damme EJM (1995) Lectins as plant defense proteins. Plant Physiol 109:347–352CrossRefGoogle Scholar
  218. Purvis AC (1997) Role of the alternative oxidase in limiting superoxide production by plant mitochondria. Physiol Plant 100:165–170CrossRefGoogle Scholar
  219. Putterill J, Robson F, Lee K, Simon R, Coupland G (1995) The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80:847–857CrossRefPubMedGoogle Scholar
  220. Raghothama KG (1999) Phosphate acquisition. Ann Rev Plant Physiol Plant Mol Biol 50:665–693CrossRefGoogle Scholar
  221. Raineri AM, Cartagna A, Baldan B, Soldatini GF (2001) Iron deficiency affects peroxidase isoforms in sunflower. J Exp Bot 52:25–35CrossRefGoogle Scholar
  222. Rauser WE (1995) Phytochelatins and related peptides. Structure, biosynthesis, and function. Plant Physiol 109:1141–1149CrossRefPubMedPubMedCentralGoogle Scholar
  223. Raven JA, Evans MCW, Korb RE (1999) The role of trace metals in photosynthetic electron transport in O2-evolving organisms. Photosynth Res 60:111–149CrossRefGoogle Scholar
  224. Rawson HM, Nappakoonwong RN (1996) In: Rawson HM, Shubedi DK (eds) Sterility in wheat in subtropical Asia: extant causes and solutions. ACIAR, CanberraGoogle Scholar
  225. Rea G, Metoui O, Infantino A, Federico R, Angelini R (2002) Copper amine oxidase expression in defense responses to wounding and Ascochyta radiei invasion. Plant Physiol 128:865–875CrossRefPubMedPubMedCentralGoogle Scholar
  226. Reddy VS, Ali GS, Reddy ASN (2002) Genes encoding calmodulin-binding proteins in the Arabidopsis genome. J Biol Chem 277:9840–9852CrossRefPubMedGoogle Scholar
  227. Reinhardt D, Mandel T, Kuhlemeier C (2000) Auxin regulates the initiation and radial position of plant lateral organs. Plant Cell 12:507–518CrossRefPubMedPubMedCentralGoogle Scholar
  228. Rengel Z (1995) Carbonic anhydrase activity in leaves of wheat genotypes differing in zinc deficiency. J Plant Physiol 147:251–256CrossRefGoogle Scholar
  229. Rengel Z (1999) Mineral nutrition of crops- fundamental mechanisms and implications. Food Products Press, The Haworth Press, New YorkGoogle Scholar
  230. Rerkasem B, Loneragan JF (1994) Boron deficiency in two wheat genotypes in a warm, subtropical region. Agron J 86:887–890CrossRefGoogle Scholar
  231. Rerkasem B, Lordkaew S, Dell B (1997) Boron requirement for reproductive development in wheat. In: Ando T, Fujita K, Mae T, Matsumoto H, Mori S, Sekiya J (eds) Plant nutrition for sustainable food production and environment. Kluwer Academic Publishers, Dordrecht, pp 69–73CrossRefGoogle Scholar
  232. Reuter DJ, Robson AD, Loneragen JF, Tranthim-Fryer DJ (1981) Copper nutrition of subterranean clover (Trifolium subterranium L. cv. Seaton Park) II. Effects of copper supply on distribution of copper and the diagnosis of copper deficiency by plant analysis. Aust J Agric Res 32:267–282CrossRefGoogle Scholar
  233. Riga P, Anza M, Garbisu C (2005) Suitability of the antioxidative system as marker of magnesium deficiency in Capsicum annuum L. plants under controlled conditions. Plant Growth Regul 46:51–59CrossRefGoogle Scholar
  234. Robbertse PJ, Lock JJ, Stoffbey E, Coetzer LA (1990) Effect of boron on directionality of pollen tube growth in Petunia and Agapanthus. South Afr J Bot 56:487–492CrossRefGoogle Scholar
  235. Rognes SE (1980) Anion regulation of lupin asparagine synthetase: chloride activation of the glutamine-utilizing reactions. Phytochemistry 19:2287–2293CrossRefGoogle Scholar
  236. Romeis T, Piedras P, Jones JD (2000) Resistance gene dependent activation of a calcium- dependent protein kinase in the plant defense response. Plant Cell 12:803–816CrossRefPubMedPubMedCentralGoogle Scholar
  237. Rout GR, Sahoo S (2015) Role of iron in plant growth and metabolism. Rev Agri Sci 3:1–24Google Scholar
  238. Rufty TW, Huber SC, Volk RJ (1988) Alterations in leaf carbohydrate metabolism in response to nitrogen stress. Plant Physiol 88:725–730CrossRefPubMedPubMedCentralGoogle Scholar
  239. Rychter AM, Rao IM (2005) Role of phosphorus in photosynthetic carbon metabolism. In: Pessarakli M (ed) Handbook of photosynthesis, 2nd edn. Marcel Dekker, New York, pp 123–148Google Scholar
  240. Saad RB, Zouari N, Ramdhan WB, Azaza J, Meynard D, Guiderdoni E, Hassairi A (2010) Improved drought and salt stress tolerance in transgenic tobacco overexpressing a novel A20/AN1 zinc-finger “AlSAP” gene isolated from the halophyte grass Aeluropus littoralis. Plant Mol Biol 72:171–190CrossRefPubMedGoogle Scholar
  241. Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327CrossRefPubMedGoogle Scholar
  242. Sakai H, Medrano LJ, Meyerowitz EM (1995) Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378:199–203CrossRefPubMedGoogle Scholar
  243. Salama ZA, El-Fouly MM, Lazova G, Popova LP (2006) Carboxylating enzymes and carbonic anhydrase functions were suppressed by zinc deficiency in maize and chickpea plants. Acta Physiol Plant 28:445–451CrossRefGoogle Scholar
  244. Sanchez E, Soto JM, Garcia PC, Lopez-Lefebre LR, Rivero RM, Ruiz JM, Romero L (2000) Phenolic and oxidative metabolism as bioindicators of nitrogen deficiency in French bean plants (Phaseolus vulgaris L. cv. Strike). Plant Biol 2:272–277CrossRefGoogle Scholar
  245. Sanda S, Leustek T, Theisen MJ, Garavito RM, Benning C (2001) Recombinant Arabidopsis SQD1 converts UDPglucose and sulfite to the sulfolipid head group precursor UDP sulfoquinovose in vitro. J Biol Chem 276:3941–3946CrossRefPubMedGoogle Scholar
  246. Sauer P, Frebort I (2003) Molybdenum cofactor-containing oxidoreductase family in plants. Biol Plant 46:481–490CrossRefGoogle Scholar
  247. Schrümann P, Jacquot JP (2000) Plant thioredoxin systems revisited. Ann Rev Plant Physiol Plant Mol Biol 51:371–400CrossRefGoogle Scholar
  248. Schwarz G, Mendel RR, Ribbe MW (2009) Molybdenum cofactors, enzymes and pathways. Nature 460:839–847CrossRefPubMedGoogle Scholar
  249. Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669CrossRefPubMedPubMedCentralGoogle Scholar
  250. Shah A, Wu X, Ullah A, Fahad S, Muhammad R, Yan L, Jiang C (2017) Deficiency and toxicity of boron: alterations in growth, oxidative damage and uptake by citrange orange plants. Ecotoxicol Environ Saf 145:575–582CrossRefPubMedGoogle Scholar
  251. Sharma CP (2006) Plant micronutrients. Science Publishers, New HampshireCrossRefGoogle Scholar
  252. Sharma PN, Chatterjee C, Agarwala SC, Sharma CP (1990) Zinc deficiency and pollen fertility in maize (Zea mays). Plant Soil 124:221–225CrossRefGoogle Scholar
  253. Shaul O (2002) Magnesium transport and function in plants: the tip of the iceberg. Biometals 15:309–323CrossRefPubMedGoogle Scholar
  254. Shen Z, Zhang X, Wang Z, Shen K (1994) On the relationship between boron nutrition and development of anther (pollen) in rape seed plant. Sci Agric Sin 27:51–56Google Scholar
  255. Shewry PR, Napier JA, Tatham AS (1995) Seed storage proteins: structure and biosynthesis. Plant Cell 7:945–956CrossRefPubMedPubMedCentralGoogle Scholar
  256. Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319CrossRefPubMedGoogle Scholar
  257. Shikanai T, Müller-Moule P, Munekage Y, Niyogi KK, Pilon M (2003) PAA1, P-Type ATPase of Arabidopsis functions in copper transport in chloroplasts. Plant Cell 15:1333–1346CrossRefPubMedPubMedCentralGoogle Scholar
  258. Shin R, Schachtman DP (2004) Hydrogen peroxide mediates plant root cell response to nutrient deprivation. PNAS 101(23):8827–8832CrossRefPubMedPubMedCentralGoogle Scholar
  259. Shin R, Berg RH, Schachtman DP (2005) Reactive oxygen species and root hairs in Arabidopsis root response to nitrogen, phosphorus and potassium deficiency. Plant Cell Physiol 46:1350–1357CrossRefPubMedGoogle Scholar
  260. Sicard A, Petit J, Mouras A, Chevalier C, Hernould M (2008) Meristem activity during flower and ovule development in tomato is controlled by the mini zinc finger gene inhibitor of meristem activity. Plant J 55:415–427CrossRefPubMedGoogle Scholar
  261. Slooten L, Capiau K, Van Camp W, Van Montagu M, Sybesma C, Inze D (1995) Factors affecting the enhancement of oxidative stress tolerance in transgenic tobacco overexpressing manganese superoxide dismutase in the chloroplasts. Plant Physiol 107:735–750CrossRefGoogle Scholar
  262. Smith IK, Kendall AC, Keys AJ, Turner JC, Lea PJ (1985) The regulation of the biosynthesis of glutathione in leaves of barley (Hordeum Vulgare L.). Plant Sci 41:11–17CrossRefGoogle Scholar
  263. Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66CrossRefGoogle Scholar
  264. Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–224CrossRefPubMedPubMedCentralGoogle Scholar
  265. Sun B, Jing Y, Chen K, Song L, Chen F, Zhang L (2007) Protective effect of nitric oxide on iron deficiency-induced oxidative stress in maize (Zea mays). J Plant Physiol 164:536–543CrossRefPubMedGoogle Scholar
  266. Tague BW, Gallant P, Goodman HM (1997) Expression analysis of an Arabidopsis C2H2 zinc finger protein gene. Plant Mol Biol 32:785–796CrossRefGoogle Scholar
  267. Tak HI, Ahmad F, Babalola OO, Inam A (2012) Growth, photosynthesis and yield of chickpea as influenced by urban wastewater and different levels of phosphorus. Int J Plant Res 2:6–13CrossRefGoogle Scholar
  268. Takahashi M, Terada Y, Nakai I, Nakanishi H, Yoshimura E, Mori S, Nishizawa NK (2003) Role of nicotinamine in the intracellular delivery of metals and plant reproductive development. Plant Cell 15:1263–1280PubMedPubMedCentralGoogle Scholar
  269. Takahashi H, Kopriva S, Giordano M, Saito K, Hell R (2011) Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. Annu Rev Plant Biol 62:157–184CrossRefPubMedPubMedCentralGoogle Scholar
  270. Takatsuji H (1999) Zinc finger proteins: the classical zinc finger emerges in contemporary plant science. Plant Mol Biol 39:1073–1078CrossRefPubMedPubMedCentralGoogle Scholar
  271. Takatsuji H, Nakamura N, Katsumoto Y (1994) A new family of zinc finger proteins in Petunia: structure, DNA sequence recognition, and floral organ-specific expression. Plant Cell 6:947–958CrossRefPubMedPubMedCentralGoogle Scholar
  272. Talbot LD, Zeiger E (1996) Central roles for potassium and sucrose in guard-cell osmoregulation. Plant Physiol 111:1051–1057CrossRefGoogle Scholar
  273. Tanaka KS, Takio S, Satoh T (1995) Inactivation of Cu/Zn superoxide dismutase induced by copper deficiency in suspension cultured. Marchamtia paleacea var. doptera. J Plant Physiol 146:361–365CrossRefGoogle Scholar
  274. Tang C, Robson AD, Dilworth MJ (1990) A split-root experiment shows that iron is required for nodule initiation in Lupinus angustifolius L. New Phytol 115:61–67CrossRefGoogle Scholar
  275. Temple SJ, Vance CP, Gant JS (1998) Glutamate synthase and nitrogen assimilation. Trends Plant Sci 3:51–56CrossRefGoogle Scholar
  276. Tuteja N, Mahaja S (2007) Calcium signaling network in plants. Plant Signal Behav 2:79–85CrossRefPubMedPubMedCentralGoogle Scholar
  277. Valerio L, De Meyer M, Penel C, Dunand S (2004) Expression analysis of the Arabidopsis peroxidase multigene family. Phytochemistry 65:1331–1342CrossRefPubMedPubMedCentralGoogle Scholar
  278. Van Steveninck RFM, Barbare A, Fernando DR, Van Steveninck ME (1993) The binding of zinc in root cell of crop plants by phytic acid. Plant Soil 155(156):525–528CrossRefGoogle Scholar
  279. Verma L, Pandey N (2016a) Effect of iron stress on oxidative metabolism in wheat plants (Triticum aestivum L). Int J App Pure Sci Agric 2:2394–5532Google Scholar
  280. Verma L, Pandey N (2016b) Effect of iron stress on oxidative metabolism in wheat plants (Triticum aestivum L). Intl J App Pure Sci Agric 1:142–146Google Scholar
  281. Vert G, Grotz N, Dedaldechamp F, Gaymard F, Guerinot ML, Briat JF, Curie C (2002) IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. Plant Cell 14:1223–1233CrossRefPubMedPubMedCentralGoogle Scholar
  282. Virginia M-P, Lopez-Laredo AR, Iveda-Jimenez GS, Zamilpa A, Trejo-Tapi G (2015) Nitrogen deficiency stimulates biosynthesis of bioactive phenylethanoid glycosides in the medicinal plant Castilleja tenuiflora Benth. Acta Physiol Plant 37:93CrossRefGoogle Scholar
  283. Walker RP, Chen ZH (2002) Phosphoenolpyruvate carboxykinase: structure, function and regulation. Adv Bot Res 38:95–189Google Scholar
  284. Wang Y, Wu WH (2013) Potassium transport and signaling in higher plants. Annu Rev Plant Biol 64:451–476CrossRefPubMedGoogle Scholar
  285. Wang Q, Lu L, Wu X, Li Y, Lin J (2003) Boron influences pollen germination and pollen tube growth in Picea meyeri. Tree Physiol 23:345–351CrossRefPubMedGoogle Scholar
  286. Wang N, Hua H, Eneji AE, Li Z, Duan L, Tian X (2012) Genotypic variations in photosynthetic and physiological adjustment to potassium deficiency in cotton (Gossypium hirsutum). J Photochem Photobiol B Biol 110:1–8CrossRefGoogle Scholar
  287. Wang M, Zheng Q, Shen Q, Guo S (2013) The critical role of potassium in plant stress response. Int J Mol Sci 14:7370–7390CrossRefPubMedPubMedCentralGoogle Scholar
  288. Wanli G, Nazimc H, Lianga Z, Dongfeng Yang D (2016) Magnesium deficiency in plants: an urgent problem. Crop J 4:83–91CrossRefGoogle Scholar
  289. Welch RM, Webb MJ, Loneragan JF (1982) Zinc in membrane function and its role in phosphorus toxicity. In: Scaife A (ed) Proceedings of the 9th plant nutrition colloquium, Warwick, England. Commonwealth Agricultural Bureaux, Farnham Royal, pp 710–715Google Scholar
  290. White PJ, Broadley MR (2003) Calcium in plants. Ann Bot 92:487–511CrossRefPubMedPubMedCentralGoogle Scholar
  291. White PJ, Karley AJ (2010) Potassium. In: Hell R, Mendel R-R (eds) Cell biology of metals and nutrients. Springer, Berlin/Heidelberg, pp 199–224Google Scholar
  292. Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inze D, Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO J 16:4806–4816CrossRefPubMedPubMedCentralGoogle Scholar
  293. Wind C, Arend M, Fromm J (2004) Potassium-dependent cambial growth in poplar. Plant Biol 6:30–37CrossRefPubMedPubMedCentralGoogle Scholar
  294. Wu W, Assmann SM (1995) Is ATP required for K+ channel activation in Vicia guard cells? Plant Physiol 107:101–109CrossRefPubMedPubMedCentralGoogle Scholar
  295. Wyn-Jones RG, Brady CJ, Speirs J (1979) In: Laidman DL, Wyn-Jones RG (eds) Recent advances in the biochemistry of cereals. Academic, London, pp 63–103Google Scholar
  296. Xu R, Li QQ (2003) A RING-H2 zinc-finger protein gene RIE1 is essential for seed development in Arabidopsis. Plant Mol Biol 53:37–50CrossRefPubMedPubMedCentralGoogle Scholar
  297. Yamagishi M, Yamamoto Y (1994) Effects of boron on nodule development and symbiotic nitrogen fixation in soybean plants. Soil Sci Plant Nutr 40:265–274CrossRefGoogle Scholar
  298. Yang T, Poovaiah BW (2002) Hydrogen peroxide homeostasis: activation of plant catalase by calcium/calmodulin. Proc Natl Acad Sci U S A 99:4097–4102CrossRefPubMedPubMedCentralGoogle Scholar
  299. Yoshida N, Yanai Y, Chen LJ, Kato Y, Hiratsuka J, Miwa T, Sung ZR, Takahashi S (2001) EMBRYONIC FLOWER2, a novel polycomb group protein homolog, mediates shoot development and flowering in Arabidopsis. Plant Cell 13:2471–2481CrossRefPubMedPubMedCentralGoogle Scholar
  300. Yu Q, Rengel Z (1999) Micronutrient deficiency influences plant growth and activities of superoxide dismutases in narrow-leafed lupins. Ann Bot 183:175–182CrossRefGoogle Scholar
  301. Yu Q, Worth C, Rengel Z (1999) Using capillary electrophoresis to measure Cu/Zn-SOD concentration in leaves of wheat genotypes differing in tolerance to Zn deficiency. Plant Sci 143:231–239CrossRefGoogle Scholar
  302. Yu G, Osborne LD, Rengel Z (1998) Micronutrient deficiency changes activities of superoxide dismutase and ascorbate peroxidase in tobacco plants. J Plant Nutr 21:1427–1437CrossRefGoogle Scholar
  303. Yu Q, Baluska F, Jasper F, Menzel D, Goldbach E (2002) Short term boron deprivation enhances levels of cytoskeletal proteins in maize, but not in zucchini, root apices. Physiol Plant 117:270–278CrossRefGoogle Scholar
  304. Zhang X, Shen Z, Shen K (1994) Effect of boron on floral organ development and seed setting of rape seed (Brassica napus L.). Turang Xuebas 31:146–152Google Scholar
  305. Zhang W, Wang C, Qin C, Wood T, Olafsdottir G, Welti R, Wang X (2003) The oleate stimulated phospholipase D, PLDd, and phosphatidic acid decrease H2O2-induced cell death in Arabidopsis. Plant Cell 15:2285–2295CrossRefPubMedPubMedCentralGoogle Scholar
  306. Zhao D, Oosterhuis DM, Bednarz CW (2001) Influence of potassium deficiency on photosynthesis, chlorophyll content, and chloroplast ultrastructure of cotton plants. Photosynthetica 39:103–109CrossRefGoogle Scholar
  307. Zhu Z, Gerendas J, Bendixen R, Schinner K, Tabrizi H, Sattelmacher B, Hansen UP (2000) Different tolerance to light stress in No3 and NH4 + grown Phaseolus vulgaris L. Plant Biol 2:558–570CrossRefGoogle Scholar
  308. Zielinski RE (1998) Calmodulin and calmodulin-binding proteins in plants. Ann Rev Plant Physiol Plant Mol Biol 49:697–725CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Nalini Pandey
    • 1
  1. 1.Plant Nutrition and Stress Physiology Laboratory, Botany DepartmentUniversity of LucknowLucknowIndia

Personalised recommendations