Nutrient Homeostasis and Salt Stress Tolerance

  • Shahid Farooq
  • Shakeel AhmadEmail author
  • Sajjad Hussain
  • Mubshar Hussain


Soil salinity is an unavoidable constraint in crop production globally. Soil salinization is often caused by improper soil management and/or crop production practices, which has made highly productive lands barren/unusable. Plant species have evolved several mechanisms to cope with salinity stress. Nutrient homeostasis is among the different mechanisms employed by plant species to withstand elevated salt levels in the root zone. Nutrients are the mediators of metabolism, so their cytoplasmic levels need to be effusively controlled both under stressful and benign environments. Several studies report the homeostasis of a single ion, i.e., sodium, potassium, or chloride. However, limited studies are available reporting the role of nutrient homeostasis (all nutrients together) under salinity stress. This chapter describes the role of nutrient homeostasis and ion channels and transporters in salt stress tolerance of plant species. The ion efflux at plasma membrane and vacuolar compartmentation in response to salinity stress has been described in detail. The impaired uptake of the nutrients is an obvious effect of salinity, mainly disturbing the sodium and potassium uptake. Much of the research has been done to test the role of different nutrients on salinity alleviation, and silicon is found to alleviate the negative effects of salinity. The nutrient homeostasis starts from ion sensing, uptake, transport, and activation of defense mechanisms as well as regulation of genes or gene networks to alleviate/withstand the adverse effects of salinity. Thus, the ion sensing, uptake, transport, and gene defense activation in response to salinity stress have also been described comprehensively.


Nutrient homeostasis Plants Salinity stress Ion channels Ion efflux 


  1. Abdolzadeh A, Shima K, Lambers H, Chiba K (2008) Change in uptake, transport and accumulation of ions in Nerium oleander (Rosebay) as affected by different nitrogen sources and salinity. Ann Bot 102:735–746PubMedPubMedCentralCrossRefGoogle Scholar
  2. Ahmad P (2010) Growth and antioxidant responses in mustard (Brassica juncea L.) plants subjected to combined effect of gibberellic acid and salinity. Arch Agron Soil Sci 56:575–588CrossRefGoogle Scholar
  3. Ahmad P, Umar S (2011) Oxidative stress: role of antioxidants in plants. Studium Press, New DelhiGoogle Scholar
  4. Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2009) Potassium/sodium steady-state homeostasis in Thellungiella halophila and Arabidopsis thaliana under long-term salinity conditions. Plant Sci 176:768–774CrossRefGoogle Scholar
  5. Alemán F, Nieves-Cordones M, Martínez V, Rubio F (2011) Root K+ acquisition in plants: the Arabidopsis thaliana model. Plant Cell Physiol 52:1603–1612PubMedCrossRefPubMedCentralGoogle Scholar
  6. Ali Z, Park HC, Ali A, Oh DH, Aman R, Kropornicka A, Hong H, Choi W, Chung WS, Kim WY, Bressan RA, Bohnert HJ, Lee SY, Yun DJ (2012) TsHKT1; 2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K(+) specificity in the presence of NaCl. Plant Physiol 158:1463–1474PubMedPubMedCentralCrossRefGoogle Scholar
  7. Amtmann A (2009) Learning from evolution: Thellungiella generates new knowledge on essential and critical components of abiotic stress tolerance in plants. Mol Plant 2:3–12PubMedPubMedCentralCrossRefGoogle Scholar
  8. Amtmann A, Blatt MR (2009) Regulation of macronutrient transport. New Phytol 181:35–52PubMedCrossRefPubMedCentralGoogle Scholar
  9. Amtmann A, Sanders D (1998) Mechanisms of Na+ uptake by plant cells. Adv Bot Res 29:75–112CrossRefGoogle Scholar
  10. Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399PubMedPubMedCentralCrossRefGoogle Scholar
  11. Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254PubMedCrossRefPubMedCentralGoogle Scholar
  12. Barragán V, Leidi EO, Andrés Z, Rubio L, De Luca A, Fernández JA, Cubero B, Pardo JM (2012) Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis. Plant Cell 24:1127–1142PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:23–58CrossRefGoogle Scholar
  14. Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+ antiporters in plant growth and development. J Exp Bot 63:5727–5740CrossRefPubMedGoogle Scholar
  15. Brady NC, Weil RR (2008) The nature and properties of soils, 14th edn. Pearson Prentice Hall, Upper Saddle RiverGoogle Scholar
  16. Britto DT, Kronzucker HJ (2009) Ussing’s conundrum and the search for transport mechanisms in plants. New Phytol 183:243–246PubMedCrossRefPubMedCentralGoogle Scholar
  17. Britto DT, Ruth TJ, Lapi S, Kronzucker HJ (2004) Cellular and whole-plant chloride dynamics in barley: insights into chloride–nitrogen interactions and salinity responses. Planta 218:615–622PubMedCrossRefPubMedCentralGoogle Scholar
  18. Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928PubMedPubMedCentralCrossRefGoogle Scholar
  19. Cabot C, Sibole JV, Barceló J, Poschenrieder C (2014) Lessons from crop plants struggling with salinity. Plant Sci 226:2–13PubMedCrossRefPubMedCentralGoogle Scholar
  20. Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676–683PubMedPubMedCentralCrossRefGoogle Scholar
  21. Chen Z-H, Zhou M, Newman IA, Mendham NJ, Zhang GP, Shabala H (2007) Potassium and sodium relations in salinised barley tissues as a basis of differential salt tolerance. Funct Plant Biol 34:150–162CrossRefGoogle Scholar
  22. Chen ZC, Yamaji N, Horie T, Che J, Li J, An G, Ma JF (2017) A magnesium transporter OsMGT1 plays a critical role in salt tolerance in rice. Plant Physiol 174:1837–1849PubMedPubMedCentralCrossRefGoogle Scholar
  23. Clemens S, Palmgren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315PubMedCrossRefPubMedCentralGoogle Scholar
  24. Cosello P, Hey SJ, Halford NG (2011) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot 62:883–893CrossRefGoogle Scholar
  25. Colmenero-Flores JM, Martinez G, Gamba G, Vázquez N, Iglesias DJ, Brumós J, Talón M (2007) Identification and functional characterization of cation-chloride cotransporters in plants. Plant J 50:278–292CrossRefPubMedGoogle Scholar
  26. Conde A, Chaves MM, Gerós H (2011) Membrane transport, sensing and signaling in plant adaptation to environmental stress. Plant Cell Physiol 52:1583–1602CrossRefPubMedGoogle Scholar
  27. Cotsaftis O, Plett D, Shirley N, Tester M, Hrmova M (2012) A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS One 7(7):e39865PubMedPubMedCentralCrossRefGoogle Scholar
  28. Cram WJ (1973) Internal factors regulating nitrate and chloride influx in plant cells. J Exp Bot 24:328–341CrossRefGoogle Scholar
  29. Cuin TA, Bose J, Stefano G, Jha D, Tester M, Mancuso S, Shabala S (2011) Assessing the role of root plasma membrane and tonoplast Na+/H+ exchangers in salinity tolerance in wheat: in planta quantification methods. Plant Cell Environ 34:947–961PubMedCrossRefPubMedCentralGoogle Scholar
  30. Dassanayake M, Oh D-H, Haas JS, Hernandez A, Hong H, Ali S, Yun D-J, Bressan RA, Zhu J-K, Bohnert HJ, Cheeseman JM (2011a) The genome of the extremophile crucifer Thellungiella parvula. Nat Genet 43:913–918PubMedPubMedCentralCrossRefGoogle Scholar
  31. Dassanayake M, Oh D-H, Hong H, Bohnert HJ, Cheeseman JM (2011b) Transcription strength and halophytic lifestyle. Trends Plant Sci 16:1–3PubMedPubMedCentralCrossRefGoogle Scholar
  32. Davenport RJ, Muñoz-Mayor A, Jha D, Essah PA, Rus A, Tester M (2007) The Na+ transporter AtHKT1; 1 controls retrieval of Na+ from the xylem in Arabidopsis. Plant Cell Environ 30:497–507PubMedCrossRefPubMedCentralGoogle Scholar
  33. De Angeli A, Monachello D, Ephritikhine G, Frachisse J-M, Thomine S, Gambale F, Barbier-Brygoo H (2009) CLC mediated anion transport in plant cells. Philos Trans R Soc Lond Ser B Biol Sci 364:195–201CrossRefGoogle Scholar
  34. Demidchik V, Maathuis FJ (2007) Physiological roles of nonselective cation channels in plants: from salt stress to signalling and development. New Phytol 175:387–404CrossRefPubMedGoogle Scholar
  35. Demidchik V, Straltsova D, Medvedev SS, Pozhvanov GA, Sokolik A, Yurin V (2014) Stress-induced electrolyte leakage: the role of K+-permeable channels and involvement in programmed cell death and metabolic adjustment. J Exp Bot 65:1259–1270PubMedCrossRefPubMedCentralGoogle Scholar
  36. Desai MK, Mishra RN, Verma D, Nair S, Sopory SK, Reddy MK (2006) Structural and functional analysis of a salt stress inducible gene encoding voltage dependent anion channel (VDAC) from pearl millet Pannisetum glaucum. Plant Physiol Biochem 44:483–493PubMedCrossRefPubMedCentralGoogle Scholar
  37. Dietz KJ, Tavakoli N, Kluge C, Mimura T, Sharma SS, Harris GC, Chardonnens AN, Golldack D (2001) Significance of the V-type ATPase for the adaptation to stressful growth conditions and its regulation on the molecular and biochemical level. J Exp Bot 52:1969–1980PubMedCrossRefGoogle Scholar
  38. Ding F, Song J, Ruan Y, Wang B (2009) Comparison of the effects of NaCl and KCl at the roots on seedling growth, cell death and the size, frequency and secretion rate of salt glands in leaves of Limonium sinense. Acta Physiol Plant 31:343–350CrossRefGoogle Scholar
  39. Edelist C, Raffoux X, Falque M, Dillmann C, Sicard D, Rieseberg LH, Karrenberg S (2009) Differential expression of candidate salt-tolerance genes in the halophyte Helianthus paradoxus and its glycophyte progenitors H. annuus and H. petiolaris (Asteraceae). Am J Bot 96:1830–1838PubMedCrossRefGoogle Scholar
  40. Epstein E, Bloom AJ (2005) Mineral nutrition of plants: principles and perspectives, 2nd edn. Sinauer Associates, SunderlandGoogle Scholar
  41. Falhof J, Pedersen JT, Fuglsang AT, Palmqren M (2016) Plasma membrane H+-ATPase regulation in the center of plant physiology. Mol Plant 9:323–337PubMedCrossRefGoogle Scholar
  42. FAO (2009) High level expert forum—how to feed the world in 2050, economic and social development. Food and Agricultural Organization of the United Nations, RomeGoogle Scholar
  43. Felle HH (1994) The H+/Cl- symporter in root hair cells of Sinapis alba (an electrophysiological study using ion-selective microelectrodes). Plant Physiol 106:1131–1136PubMedPubMedCentralCrossRefGoogle Scholar
  44. Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319PubMedCrossRefPubMedCentralGoogle Scholar
  45. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963PubMedCrossRefPubMedCentralGoogle Scholar
  46. Flowers TJ, Hajibagheri MA (2001) Salinity tolerance in Hordeum vulgare: ion concentrations in root cells of cultivars differing in salt tolerance. Plant Soil 231:1–9CrossRefGoogle Scholar
  47. Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28:89–121CrossRefGoogle Scholar
  48. Frachisse JM, Thomine S, Colcombet J, Guern J, Barbier-Bryqoo H (1999) Sulfate is both a substrate and an activator of the voltage-dependent anion channel of Arabidopsis hypocotyl cells. Plant Physiol 121:253–262PubMedPubMedCentralCrossRefGoogle Scholar
  49. Franklin JA, Zwiazek JJ (2004) Ion uptake in Pinus banksiana treated with sodium chloride and sodium sulphate. Physiol Plant 120:482–490PubMedCrossRefPubMedCentralGoogle Scholar
  50. Fricke W, Leigh RA, Tomos AD (1994) Epidermal solute concentrations and osmolality in barley leaves studied at the single-cell level – changes along the leaf blade, during leaf aging and NaCl stress. Planta 192:317–323Google Scholar
  51. Fricke W, Leigh RA, Tomos AD (1996) The intercellular distribution of vacuolar solutes in the epidermis and mesophyll of barley leaves changes in response to NaCl. J Exp Bot 47:1413–1426CrossRefGoogle Scholar
  52. Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y (2011) Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233:175–188PubMedCrossRefPubMedCentralGoogle Scholar
  53. Gálvez FJ, Baghour M, Hao G, Cagnac O, Rodríguez-Rosales MP, Venema K (2012) Expression of LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. Plant Physiol Biochem 51:109–115PubMedCrossRefPubMedCentralGoogle Scholar
  54. Garciadeblás B, Senn ME, Banuelos MA, Rodríguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801PubMedCrossRefPubMedCentralGoogle Scholar
  55. Gimeno V, Syvertsen JP, Nieves M, Simón I, Martínez V, García-Sánchez F (2009) Additional nitrogen fertilization affects salt tolerance of lemon trees on different rootstocks. Sci Hortic 121:298–305CrossRefGoogle Scholar
  56. Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential of halophytes. Crit Rev Plant Sci 18:227–255CrossRefGoogle Scholar
  57. Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30:1383–1391PubMedCrossRefPubMedCentralGoogle Scholar
  58. Gong Z, Koiwa H, Cushman MA, Ray A, Bufford D, Kore-eda S, Matsumoto TK, Zhu J, Cushman JC, Bressan RA, Hasegawa PM (2001) Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol 126:363–375PubMedPubMedCentralCrossRefGoogle Scholar
  59. Gong D, Guo Y, Schumaker KS, Zhu J-K (2004) The SOS3 family of calcium sensors and SOS2 family of protein kinases in Arabidopsis. Plant Physiol 134:919–926PubMedPubMedCentralCrossRefGoogle Scholar
  60. Grattan SR, Grieveb CM (1998) Salinity-mineral nutrient relations in horticultural crops. Sci Hortic 78:127–157CrossRefGoogle Scholar
  61. Hajibagheri MA, Flowers TJ (1989) X-ray microanalysis of ion distribution within root cortical cells of the halophyte Suaeda maritima (L.) Dum. Planta 177:131–134PubMedCrossRefPubMedCentralGoogle Scholar
  62. Hajibagheri MA, Yeo AR, Flowers TJ, Collins JC (1989) Salinity resistance in Zea mays: fluxes of potassium, sodium and chloride, cytoplasmic concentrations and microsomal membrane lipids. Plant Cell Environ 12:753–757CrossRefGoogle Scholar
  63. Hasanuzzaman M, Nahar K, Alam MM, Bhowmi, Hossain MA, Rahman MM, Prasad MNV, Ozturk M, Fujita M (2014) Potential use of halophytes to remediate saline soils. Bio Med Resh Int.
  64. Hasegawa PM (2013) Sodium (Na+) homeostasis and salt tolerance of plants. Environ Exp Bot 92:19–31CrossRefGoogle Scholar
  65. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51:463–499CrossRefGoogle Scholar
  66. Hauser F, Horie T (2010) A conserved primary salt tolerance mechanism mediated by HKT transporters: a mechanism for sodium exclusion and maintenance of high K+/Na+ ratio in leaves during salinity stress. Plant Cell Environ 33:552–565PubMedCrossRefPubMedCentralGoogle Scholar
  67. Hightower M, Pierce SA (2008) The energy challenge. Nature 452:285–286PubMedCrossRefPubMedCentralGoogle Scholar
  68. Hillel D (2000) Salinity management for sustainable irrigation: integrating science, environment, and economics. World Bank PublicationsGoogle Scholar
  69. Hillel D (2005) Soil salinity: historical and contemporary perspectives. In: Proceedings of the International Salinity Forum, Riverside, p. 235–240Google Scholar
  70. Horie ST, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Wai-Yin C, Ho-Yin L, Hattori K, Konomi M, Osumi M, Osumi M, Yamagami M, Schroeder JI, Uozumi N (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938PubMedCrossRefPubMedCentralGoogle Scholar
  71. Hua BG, Mercier RW, Leng Q, Berkowitz GA (2003) Plants do it differently. A new basis for potassium/sodium selectivity in the pore of an ion channel. Plant Physiol 132:1353–1361PubMedPubMedCentralCrossRefGoogle Scholar
  72. Huang CX, Van Steveninck RF (1989) Maintenance of low Cl concentrations in mesophyll cells of leaf blades of barley seedlings exposed to salt stress. Plant Physiol 90:1440–1443PubMedPubMedCentralCrossRefGoogle Scholar
  73. Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12:1667–1678PubMedPubMedCentralCrossRefGoogle Scholar
  74. James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142:1537–1547PubMedPubMedCentralCrossRefGoogle Scholar
  75. James RA, Blake C, Byrt CSm Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1; 4 and HKT1; 5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62:2939–2947PubMedCrossRefPubMedCentralGoogle Scholar
  76. Janicka-Russak M, Kabała K (2015) The role of plasma membrane H+-ATPase in salinity stress of plants. In: Progress in Botany. Springer, Cham/Switzerland, pp 77–92Google Scholar
  77. Jeschke WD, Klagges S, Hilpert A, Bhatti AS, Sarwar G (1995) Partitioning and flows of ions and nutrients in salt-treated plants of Leptochloa fusca L. Kunth. I. Cations and chloride. New Phytol 130:23–35CrossRefGoogle Scholar
  78. Kobayashi NI, Yamaji N, Yamamoto H, Okubo K, Ueno H, Costa A, Tanoi K, Matsumura H, Fujii-Kashino M, Horiuchi T, Al Nayef M, Shabala S, An G, Ma JF, Horie T (2017) OsHKT1;5 mediates Na+ exclusion in the vasculature to protect leaf blades and reproductive tissues from salt toxicity in rice. Plant J 91:657–670PubMedCrossRefPubMedCentralGoogle Scholar
  79. Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189:54–81PubMedPubMedCentralCrossRefGoogle Scholar
  80. Kronzucker HJ, Szczerba MW, Schulze LM, Britto DT (2008) Non-reciprocal interactions between K+ and Na+ ions in barley (Hordeum vulgare L.) J Exp Bot 59:2793–2801PubMedPubMedCentralCrossRefGoogle Scholar
  81. Kulik A, Wawer I, Krzywińska E, Bucholc M, Dobrowolska G (2011) SnRK2 protein kinases—key regulators of plant response to abiotic stresses. OMICS 15:859–872PubMedPubMedCentralCrossRefGoogle Scholar
  82. Kumar K, Kumar M, Kim S-R, Ryu H, Cho Y-G (2013) Insights into genomics of salt stress response in rice. Rice 6:27PubMedPubMedCentralCrossRefGoogle Scholar
  83. Lan W-Z, Wang W, Wang S-M, Li L-G, Buchanan BB, Lin H-X, Gao J-P, Luan S (2010) A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel. Proc Natl Acad Sci 107:7089–7094PubMedPubMedCentralCrossRefGoogle Scholar
  84. Leidi EO, Barragán V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B, Fernández JA, Bressan RA, Hasegawa PM, Quintero FJ, Pardo JM (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61(3):495–506PubMedCrossRefPubMedCentralGoogle Scholar
  85. Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260PubMedCrossRefPubMedCentralGoogle Scholar
  86. Liu J, Ishitani M, Halfter U, Kim CS, Zhu JK (2000) The Arabidopsis thaliana SOS2 gene encodes a protein kinase that is required for salt tolerance. Proc Natl Acad Sci 97:3730–3734PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lorenzen I, Aberle T, Plieth C (2004) Salt stress-induced chloride flux: a study using transgenic Arabidopsis expressing a fluorescent anion probe. Plant J 38:539–544PubMedCrossRefPubMedCentralGoogle Scholar
  88. Luo Q, Yu B, Liu Y (2005) Differential selectivity to chloride and sodium ions in seedlings of Glycine max and G. soja under NaCl stress. J Plant Physiol 162:1003–1012PubMedCrossRefPubMedCentralGoogle Scholar
  89. Ma L, Zhang H, Sun L, Jiao Y, Zhang G, Miao C, Hao F (2011) NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. J Exp Bot 63:305–317PubMedCrossRefPubMedCentralGoogle Scholar
  90. Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158PubMedCrossRefPubMedCentralGoogle Scholar
  91. Mahajan S, Sopoy SK, Tuteja N (2006) CBL–CIPK paradigm: role in calcium and stress signaling in plants. Proc Indian Natl Sci Acad U S A 72:63–78Google Scholar
  92. Marschner H (1995) Mineral nutrition of higher plants, 2nd edn. Academic, LondonGoogle Scholar
  93. Martínez-Atienza J, Jiang X, Garciadeblas B, Mendoza I, Zhu J-K, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012PubMedPubMedCentralCrossRefGoogle Scholar
  94. Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Véry AA (2011) Over-expression of an Na+-and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 68:468–479PubMedPubMedCentralCrossRefGoogle Scholar
  95. Moya JL, Gomez-Cadenas A, Primo-Millo E, Talon M (2003) Chloride absorption in salt-sensitive Carrizo citrange and salt tolerant Cleopatra mandarin citrus rootstocks is linked to water use. J Exp Bot 54:825–833PubMedCrossRefPubMedCentralGoogle Scholar
  96. Munns R (2005) Genes and salt tolerance: bringing them together. New Phytol 167:645–663PubMedPubMedCentralCrossRefGoogle Scholar
  97. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefGoogle Scholar
  98. Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D, Gilliham M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364PubMedCrossRefPubMedCentralGoogle Scholar
  99. Nieves-Cordones M, Miller AJ, Alemán F, Martinez V, Rubio F (2008) A putative role for the plasma membrane potential in the control of the expression of the gene encoding the tomato high-affinity potassium transporter HAK5. Plant Mol Biol 68:521–532PubMedCrossRefPubMedCentralGoogle Scholar
  100. Niu X, Bressan RA, Hasegawa PM, Pardo JM (1995) Ion homeostasis in NaCl stress environments. Plant Physiol 109:735–742PubMedPubMedCentralCrossRefGoogle Scholar
  101. Oh DH, Leidi E, Zhang Q, Hwang SM, Li Y, Quintero FJ, Jiang X, D'Urzo MP, Lee SY, Zhao Y, Bahk JD, Bressan RA, Yun DJ, Pardo JM, Bohnert HJ (2009) Loss of halophytism by interference with SOS1 expression. Plant Physiol 151:210–222PubMedPubMedCentralCrossRefGoogle Scholar
  102. Oh DH, Dassanayake M, Haas JS, Kropornika A, Wright C, d'Urzo MP, Hong H, Ali S, Hernandez A, Lambert GM, Inan G, Galbraith DW, Bressan RA, Yun DJ, Zhu JK, Cheeseman JM, Bohnert HJ (2010) Genome structures and halophyte-specific gene expression of the extremophile Thellungiella parvula in comparison with Thellungiella salsuginea (Thellungiella halophila) and Arabidopsis. Plant Physiol 154:1040–1052PubMedPubMedCentralCrossRefGoogle Scholar
  103. Oh DH, Dassanayake M, Bohnert HJ, Cheeseman JM (2012) Life at the extreme: lessons from the genome. Genome Biol 13:241PubMedPubMedCentralCrossRefGoogle Scholar
  104. Olias R, Eljakaoui Z, Li J, De Morales PA, Marín-Manzano MC, Pardo JM, Belver A (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ 32:904–916PubMedCrossRefPubMedCentralGoogle Scholar
  105. Otoch MLO, Sobreira ACM, de Aragão MEF, Orellano EG, Lima MGS, de Melo DF (2001) Salt modulation of vacuolar H+-ATPase and H+-pyrophosphatase activities in Vigna unguiculata. J Plant Physiol 158:545–551CrossRefGoogle Scholar
  106. Pardo JM, Rubio F (2011) Na+ and K+ transporters in plant signaling. In: Transporters and pumps in plant signaling. Springer, Berlin, pp 65–98CrossRefGoogle Scholar
  107. Park J, Okita TW, Edwards GE (2009) Salt tolerant mechanisms in single-cell C4 species Bienertia sinuspersici and Suaeda aralocaspica (Chenopodiaceae). Plant Sci 176:616–626CrossRefGoogle Scholar
  108. Peleg Z, Apse MP, Blumwald E (2011) Engineering salinity and water-stress tolerance in crop plants: getting closer to the field. Adv Bot Res 57:405–443CrossRefGoogle Scholar
  109. Pérez-Alfocea F, Ghanem ME, Gómez-Cadenas A, Dodd IC (2011) Omics of root-to-shoot signaling under salt stress and water deficit. OMICS 15:893–901PubMedCrossRefPubMedCentralGoogle Scholar
  110. Platten DJ, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin H-X, Luan S, Maser P, Pantoja O, RodriguezNavarro A, Schachtman DP, Schroeder JI, Sentenac H, Uozumi N, Very AA, Zhu JK, Dennis ES, Tester M (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11:372–374CrossRefPubMedGoogle Scholar
  111. Plett DC, Møller IS (2009) Na+ transport in plants: what we know and would like to know. Plant Cell Environ 33:612–626CrossRefGoogle Scholar
  112. Plett CD, Møller IS (2010) Na+ transport in glycophytic plants: what we know and would like to know. Plant Cell Environ 33:612–626CrossRefGoogle Scholar
  113. Pottosin I, Dobrovinskaya O (2014) Non-selective cation channels in plasma and vacuolar membranes and their contribution to K+ transport. J Plant Physiol 171:732–742CrossRefPubMedGoogle Scholar
  114. Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive1 Na+-H+ antiporter during salinity stress. Plant Physiol 136:2548–2555PubMedPubMedCentralCrossRefGoogle Scholar
  115. Qin F, Shinozaki K, Yamaguchi-Shinozaki K (2011) Achievements and challenges in understanding plant abiotic stress responses and tolerance. Plant Cell Physiol 52:1569–1582PubMedCrossRefPubMedCentralGoogle Scholar
  116. Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim W-Y, Ali Z, Fujii H, Mendoza I, Yun D-J, Zhu J-K, Pardo JM (2011) Activation of the plasma membrane Na/H antiporter salt-overly-sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci 108:2611–2616PubMedPubMedCentralCrossRefGoogle Scholar
  117. Rahnama A, James RA, Poustini K, Munns R (2010) Stomatal conductance as a screen for osmotic stress tolerance in durum wheat growing in saline soil. Funct Plant Biol 37:255–263CrossRefGoogle Scholar
  118. Reddy MP, Sanish S, Iyengar ERR (1992) Photosynthetic studies and compartmentation of ions in different tissues of Salicornia brachiata under saline conditions. Photosynthetica (CSFR)Google Scholar
  119. Reddy AS, Ali GS, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium-and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032PubMedPubMedCentralCrossRefGoogle Scholar
  120. Ren Z-H, Gao J-P, Li L-G, Cai X-L, Huang W, Chao D-Y, Zhu M-Z, Wang Z-Y, Luan S, Lin H-X (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1147PubMedCrossRefPubMedCentralGoogle Scholar
  121. Rengasamy P (2002) Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agric 42:351–361CrossRefGoogle Scholar
  122. Rengasamy P (2006) World salinization with emphasis on Australia. J Exp Bot 57:1017–1023PubMedCrossRefPubMedCentralGoogle Scholar
  123. Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37:613–620CrossRefGoogle Scholar
  124. Roberts SK, Tester M (1997) Permeation of Ca2+ and monovalent cations through an outwardly rectifying channel in maize root stelar cells. J Exp Bot 48:839–846CrossRefGoogle Scholar
  125. Roberts SK (2006) Plasma membrane anion channels in higher plants and their putative functions in roots. New Phytol 169:647–666PubMedCrossRefPubMedCentralGoogle Scholar
  126. Rogers ME, Noble CL, Pederick RJ (1997) Identifying suitable forage legume species for saline areas. Aus J Exp Agric 37:639–645CrossRefGoogle Scholar
  127. Romero-Aranda R, Moya JL, Tadeo FR, Legaz F, Primo-Millo E, Talon M (1998) Physiological and anatomical disturbances induced by chloride salts in sensitive and tolerant citrus: beneficial and detrimental effects of cations. Plant Cell Environ 21:1243–1253CrossRefGoogle Scholar
  128. Rozema J, Flowers T (2008) Crops for a salinized world. Science 322:1478–1480PubMedCrossRefPubMedCentralGoogle Scholar
  129. Ruan CJ, da Silva JAT, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for a salinized world. Crit Rev Plant Sci 29:329–359CrossRefGoogle Scholar
  130. Ruiz-Lozano JM, Porcel R, Azcón C, Aroca R (2012) Regulation by arbuscular mycorrhizae of the integrated physiological response to salinity in plants: new challenges in physiological and molecular studies. J Exp Bot 63:4033–4044PubMedCrossRefPubMedCentralGoogle Scholar
  131. Rus A, Lee B-h, Muñoz-Mayor A, Sharkhuu A, Miura K, Zhu J-K, Bressan RA, Hasegawa PM (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136:2500–2511PubMedPubMedCentralCrossRefGoogle Scholar
  132. Sánchez-Barrena MJ, Martínez-Ripoll M, Zhu JK, Albert A (2005) The structure of the Arabidopsis thaliana SOS3: molecular mechanism of sensing calcium for salt stress response. J Mol Biol 345:1253–1264PubMedCrossRefPubMedCentralGoogle Scholar
  133. Sánchez-Barrena M, Fujii H, Angulo I, Martinez-Ripoll M, Zhu J-K, Albert A (2007) The structure of the C-terminal domain of the protein kinase AtSOS2 bound to the calcium sensor AtSOS3. Mol Cell 26:427–435PubMedPubMedCentralCrossRefGoogle Scholar
  134. Sanders D (2000) Plant biology: the salty tale of Arabidopsis. Curr Biol 10:486–488CrossRefGoogle Scholar
  135. Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421Google Scholar
  136. Schroeder JI, Delhaize E, Frommer WB, Guerinot ML, Harrison MJ, Herrera-Estrella L, Horie T, Kochian LV, Munns R, Nishizawa NK, Tsay Y-F, Sanders D (2013) Using membrane transporters to improve crops for sustainable food production. Nature 497:60–66PubMedPubMedCentralCrossRefGoogle Scholar
  137. Serrano R, Mulet JM, Rios G, Marquez JA, de Larrinoa IF, Leube MP, Mendizabal I, Pascual-Ahuir A, Proft M, Ros R, Montesinos C (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot 50:1023–1036CrossRefGoogle Scholar
  138. Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669PubMedCrossRefPubMedCentralGoogle Scholar
  139. Shabala S, Pottosin I (2014) Regulation of potassium transport in plants under hostile conditions: implications for abiotic and biotic stress tolerance. Physiol Plant 151:257–279CrossRefPubMedGoogle Scholar
  140. Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665PubMedPubMedCentralCrossRefGoogle Scholar
  141. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci 97:6896–6901PubMedPubMedCentralCrossRefGoogle Scholar
  142. Shi H, Quintero FJ, Pardo JM, Zhu JK (2002) The putative plasma membrane Na+/H+ antiporter SOS1 controls long-distance Na+ transport in plants. Plant Cell 14:465–477PubMedPubMedCentralCrossRefGoogle Scholar
  143. Sibole JV, Cabot C, Poschenrieder C, Barcelo J (2003) Efficient leaf partitioning, an overriding condition for abscisic acidcontrolled stomatal and leaf growth responses to NaCl salinization in two legumes. J Exp Bot 54:2111–2119PubMedCrossRefPubMedCentralGoogle Scholar
  144. Singh K, Singla-Pareek SL, Pareek A (2011) Dissecting out the crosstalk between salinity and hormones in roots of Arabidopsis. OMICS 15:913–924PubMedCrossRefPubMedCentralGoogle Scholar
  145. Song J, Chen M, Feng G, Jia Y, Wang B, Zhang F (2009) Effect of salinity on growth, ion accumulation and the roles of ions in osmotic adjustment of two populations of Suaeda salsa. Plant Soil 314:133–141CrossRefGoogle Scholar
  146. Storey R, Walker RR (1998) Citrus and salinity. Sci Hortic 78:39–81CrossRefGoogle Scholar
  147. Storey R, Schachtman DP, Thomas MR (2003) Root structure and cellular chloride, sodium and potassium distribution in salinised grapevines. Plant Cell Environ 26:789–800PubMedCrossRefGoogle Scholar
  148. Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35:259–270PubMedCrossRefGoogle Scholar
  149. Swarajyalakshmi G, Gurumurthy P, Subbaiah GV (2003) Soil salinity in South India: problems and solutions. J Crop Prod 7:247–275CrossRefGoogle Scholar
  150. Sykes SR (1992) The inheritance of salt exclusion in woody perennial fruit species. Plant Soil 146:123–129CrossRefGoogle Scholar
  151. Takeda S, Matsuoka M (2008) Genetic approaches to crop improvement: responding to environmental and population changes. Nat Rev Genet 9:444–457PubMedCrossRefPubMedCentralGoogle Scholar
  152. Teakle NL, Tyerman SD (2010) Mechanisms of Cl-transport contributing to salt tolerance. Plant Cell Environ 33:566–589CrossRefPubMedGoogle Scholar
  153. Teakle NL, Real D, Colmer TD (2006) Growth and ion relations in response to combined salinity and waterlogging in the perennial forage legumes Lotus corniculatus and Lotus tenuis. Plant Soil 289:369–383CrossRefGoogle Scholar
  154. Teakle N, Flowers T, Real D, Colmer T (2007) Lotus tenuis tolerates the interactive effects of salinity and waterlogging by ‘excluding’ Na+ and Cl- from the xylem. J Exp Bot 58:2169–2180PubMedCrossRefPubMedCentralGoogle Scholar
  155. Teodoro AE, Zingarelli L, Lado P (1998) Early changes of Cl efflux and H+ extrusion induced by osmotic stress in Arabidopsis thaliana cells. Physiol Plant 102:29–37CrossRefGoogle Scholar
  156. Tracy FE, Gilliham M, Dodd AN, Webb AA, Tester M (2008) NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ 31:1063–1073PubMedCrossRefPubMedCentralGoogle Scholar
  157. Van Steveninck RFM, Van Steveninck ME, Stelzer R, Läuchli A (1982) Studies on the distribution of Na and Cl in two species of lupin (Lupinus luteus and Lupinus angustifolius) differing in salt tolerance. Physiol Plant 56:465–473CrossRefGoogle Scholar
  158. Very AA, Sentenac H (2003) Molecular mechanisms and regulation of K+ transport in higher plants. Annu Rev Plant Biol 54:575–603PubMedCrossRefPubMedCentralGoogle Scholar
  159. Volkov V, Amtmann A (2006) Thellungiella halophila, a salt tolerant relative of Arabidopsis thaliana, has specific root ionchannel features supporting K+/Na+ homeostasis under salinity stress. Plant J 48:342–353PubMedCrossRefPubMedCentralGoogle Scholar
  160. Wang B, Lüttge U, Ratajczak R (2001) Effects of salt treatment and osmotic stress on V-ATPase and V-PPase in leaves of the halophyte Suaeda salsa. J Exp Bot 52:2355–2365PubMedCrossRefPubMedCentralGoogle Scholar
  161. Wang Y, Xiao D, Li Y, Li X (2008) Soil salinity evolution and its relationship with dynamics of groundwater in the oasis of inland river basins: case study from the Fubei region of Xinjiang Province, China. Environ Monit Assess 140:291–302PubMedCrossRefPubMedCentralGoogle Scholar
  162. Wang CM, Zhang JL, Liu XS, Li Z, Wu GQ, Cai JY, Flowers TJ, Wang SM (2009) Puccinellia tenuiflora maintains a low Na+ level under salinity by limiting unidirectional Na+ influx resulting in a high selectivity for K+ over Na+. Plant Cell Environ 32:486–496PubMedCrossRefPubMedCentralGoogle Scholar
  163. White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988CrossRefGoogle Scholar
  164. Winter E (1982) Salt tolerance of Trifolium alexandrinum L. II. Ion balance in relation to its salt tolerance. Aus J Plant Physiol 9:227–237CrossRefGoogle Scholar
  165. Xu G, Magen H, Tarchitzky J, Kafkafi U (1999) Advances in chloride nutrition of plants. Adv Agron 68:97–150CrossRefGoogle Scholar
  166. Yadav S, Irfan M, Ahmad A, Hayat S (2011) Causes of salinity and plant manifestations to salt stress: a review. J Environ Biol 32:667–685PubMedPubMedCentralGoogle Scholar
  167. Yen HE, Wu S-M, Hung Y-H, Yen S-K (2000) Isolation of 3 salt-induced low-abundance cDNAs from light-grown callus of Mesembryanthemum crystallinum by suppression subtractive hybridization. Physiol Plant 110:402–409CrossRefGoogle Scholar
  168. Zhang J-L, Flowers TJ, Wang S-M (2010) Mechanisms of sodium uptake by roots of higher plants. Plant Soil 326:45–60CrossRefGoogle Scholar
  169. Zhang H, Han B, Wang T, Chen S, Li H, Zhang Y, Dai S (2012) Mechanisms of plant salt response: insights from proteomics. J Proteome Res 11:49–67PubMedCrossRefPubMedCentralGoogle Scholar
  170. Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53:247–273PubMedPubMedCentralCrossRefGoogle Scholar
  171. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shahid Farooq
    • 1
  • Shakeel Ahmad
    • 2
    Email author
  • Sajjad Hussain
    • 3
  • Mubshar Hussain
    • 2
  1. 1.Department of Plant ProtectionGaziosmanpaşa UniversityTokatTurkey
  2. 2.Department of Agronomy, Faculty of Agricultural Sciences and TechnologyBahauddin Zakariya UniversityMultanPakistan
  3. 3.Department of Horticulture, Faculty of Agricultural Sciences and TechnologyBahauddin Zakariya UniversityMultanPakistan

Personalised recommendations