Advertisement

Ionic Basis of Salt Tolerance in Plants: Nutrient Homeostasis and Oxidative Stress Tolerance

  • Koushik Chakraborty
  • Nabaneeta Basak
  • Debarati Bhaduri
  • Soham Ray
  • Joshitha Vijayan
  • Krishnendu Chattopadhyay
  • Ramani K. Sarkar
Chapter

Abstract

Salinity, recognized as a major threat in agriculture, causes 4.0–6.3% yield loss annually across the world. The problem is aggravated due to increasing irrigation with suboptimal quality of irrigation water and more salinization of coastal area due to the rise in sea level because of climate change. In saline soil, excessive concentrations of Na+ and Cl impair absorption of other beneficial ions such as K+ and Ca2+ that in turn inhibit plant growth and productivity. Maintenance of cellular K+ level and K+/Na+ ratio is still considered the most important factor for salt tolerance. Under high-Na+ environment, excess Na+ competes with K+ thereby hindering its uptake. Tolerant plants by employing a number of strategies restrict Na+ movement to young meristematic tissues and allow greater movement and/or tissue retention of K+ to physiologically more active tissues. Under salt stress different K+- and Na+-specific transporters, viz. SOS, NHX, and HKT family transporters (regulate cellular Na+ movement) and HAK, AKT, KT, and KUP (regulate K+ movement), either by upregulation or downregulation, control the cellular ion homeostasis and salt tolerance in plants. SOS1, a plasma membrane-bound Na+/H+ antiporter, mostly active in root tissue, removes the excess salt from the plant body by pumping them back to the rhizosphere in an energy-dependent process. Tonoplast-bound vacuolar Na+/H+ antiporters (NHX family transporters) play crucial role in Na+ compartmentalization inside the vacuole in mature cell in both root and leaf tissues. Storing excess salts in vacuole imparts tolerance in multifaceted manner, viz. imparting tissue and osmo-tolerance. Biosynthesis of organic osmolytes, a more energy-expensive process, is sometimes substituted by the accumulation of excess Na+ in non-active tissues under salt stress. Improved Ca2+ status inside the plant tissue is another important factor associated with salt tolerance and acts as a key signalling molecule to initiate Na+ exclusion. Several QTLs and miRNAs were reported to impart salt tolerance in several crops. Managing salinity beyond crop improvement strategies was also deliberated, e.g. lowering salt effect through K+ supplementation and phytohormones, etc. In this compilation, emphasis has been given on how nutrient/ionic imbalance causes deleterious effects on plants under saline conditions and what are the possible adaptive strategies plants employ to maintain the ionic homeostasis in saline environment.

Keywords

Salinity Na+-K+ transporter Osmolytes Tissue tolerance ROS detoxification Salt overly sensitive (SOS) pathway 

References

  1. Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K (1997) Role of Arabidopsis MYC and MYB homologs in drought-and abscisic acid-regulated gene expression. Plant Cell 9:1859–1868PubMedPubMedCentralGoogle Scholar
  2. Abogadallah GM (2010) Insights into the significance of antioxidative defense under salt stress. Plant Signal Behav 5:369–374PubMedPubMedCentralCrossRefGoogle Scholar
  3. Agarwal PK, Agarwal P, Reddy MK, Sopory SK (2006) Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep 25:1263–1274PubMedCrossRefPubMedCentralGoogle Scholar
  4. Akbar M, Yabuno T (1977) Breeding saline-resistant varieties of rice. IV. Inheritance of delayed type panicle sterility induced by salinity. Jpn J Breed 27:237–240CrossRefGoogle Scholar
  5. Allen GJ, Wyn-Jones RG, Leigh RA (1995) Sodium transport in plasma membrane vesicles isolated from wheat genotypes with differing K /Na discrimination traits. Plant Cell Environ 18:105–115CrossRefGoogle Scholar
  6. Almeida P, Katschnig D, de Boer AH (2013) HKT transporters—state of the art. Int J Mol Sci 14:20359–20385.  https://doi.org/10.3390/ijms141020359 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol.  https://doi.org/10.1590/1678-4685-gmb-2016-0106
  8. Amato M, Ladd JN (1994) Application of the ninhydrin reactive N assay for microbial biomass in acid soils. Soil Biol Biochem 26:1109–1115CrossRefGoogle Scholar
  9. Ambros V (2004) The functions of animal microRNAs. Nature 431:350–355PubMedPubMedCentralCrossRefGoogle Scholar
  10. Amjad M, Akhtar J, Haq MAU, Imran S, Jacobsen SE (2014) Soil and foliar application of potassium enhances fruit yield and quality of tomato under salinity. Turk J Biol 38:208–218CrossRefGoogle Scholar
  11. Apse MP, Blumwald E (2007) Na+ transport in plants. FEBS Lett 581:2247–2254PubMedCrossRefPubMedCentralGoogle Scholar
  12. Apse MP, Aharon GS, Snedden WA, Blumwald E (1999) Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science 285:1256–1258PubMedCrossRefPubMedCentralGoogle Scholar
  13. Arbona V, Flors V, Jacas J, García-Agustín P, Gómez-Cadenas A (2003) Enzymatic and non-enzymatic antioxidant responses of Carrizo citrange, a salt-sensitive citrus rootstock, to different levels of salinity. Plant Cell Physiol 44:388–394PubMedCrossRefPubMedCentralGoogle Scholar
  14. Arshadullah M, Ali A, Hyder SI, Mahmood IA, Zaman BU (2014) Effect of different levels of foliar application of potassium on Hysun-33 and Ausigold-4 sunflower (Helianthus annuus L.) cultivars under salt stress. Pak J Sci Indust Res Series B: Biol Sci 57:1–4Google Scholar
  15. Ashraf M (2004) Some important physiological selection criteria for salt tolerance in plants. Flora 199:361–376CrossRefGoogle Scholar
  16. Ashraf M, Foolad M (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59:206–216CrossRefGoogle Scholar
  17. Bassil E, Tajima H, Liang YC, Ohto M, Ushijima K, Nakano R, Esumi T, Coku A, Belmonte M, Blumwald E (2011) The Arabidopsis Na+/H+ antiporters NHX1 and NHX2 control vacuolar pH and K+ homeostasis to regulate growth, flower development, and reproduction. Plant Cell 23:3482–3497PubMedPubMedCentralCrossRefGoogle Scholar
  18. Bassil E, Coku A, Blumwald E (2012) Cellular ion homeostasis: emerging roles of intracellular NHX Na+/H+antiporters in plant growth and development. J Exp Bot 63:5727–5740CrossRefPubMedGoogle Scholar
  19. Bhaduri D, Meena HN, Chakraborty K (2016) Variation in phosphorus accumulation in groundnut cultivars as influenced by water salinity. Legum Res 39:215–220Google Scholar
  20. Bi YH, Chen WL, Zhang WN, Zhou Q, Yun LJ, Xing D (2009) Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium- induced cell death in Arabidopsis thaliana. Biol Cell 101:629–643PubMedCrossRefPubMedCentralGoogle Scholar
  21. Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta 1465:140–151PubMedCrossRefPubMedCentralGoogle Scholar
  22. Bohnert HJ, Jensen RG (1996) Strategies for engineering water-stress tolerance in plants. Trends Biotechnol 14:89–97CrossRefGoogle Scholar
  23. Bonilla P, Dvorak J, Mackill D, Deal K, Gregorio G (2002) RLFP and SSLP mapping of salinity tolerance genes in chromosome 1 of rice (Oryza sativa L.) using recombinant inbred lines. Philipp Agric Sci 85:68–76Google Scholar
  24. Brandon C, Homman K (1995) The cost of inaction: valuing the economy-wide cost of environmental degradation in India. The World Bank, New DelhiGoogle Scholar
  25. Brini F, Masmoudi K (2012) Ion transporters and abiotic stress tolerance in plants. ISRN Mol Biol.  https://doi.org/10.5402/2012/927436
  26. Britto DT, Kronzucker HJ (2008) Cellular mechanisms of potassium transport in plants. Physiol Plant 133:637–650CrossRefPubMedGoogle Scholar
  27. Buschmann PH, Vaidyanathan R, Gassmann W, Schroeder JI (2000) Enhancement of Na+ uptake currents, time-dependent inward-rectifying K+ channel currents, and K+ channel transcripts by K+ starvation in wheat root cells. Plant Physiol 122:1387–1398PubMedPubMedCentralCrossRefGoogle Scholar
  28. Byrt CS, Platten JD, Spielmeyer W, James RA, Lagudah ES, Dennis ES, Tester M, Munns R (2007) HKT1;5-like cation transporters linked to Na+ exclusion loci in wheat, Nax2 and Kna1. Plant Physiol 143:1918–1928PubMedPubMedCentralCrossRefGoogle Scholar
  29. Caines AM, Shennan C (1999) Interactive effects of Ca2+ and NaCl salinity on the growth of two tomato genotypes differing in Ca2+ use efficiency. Plant Physiol Biochem 37:569–576CrossRefGoogle Scholar
  30. Chakraborty K, Sairam RK, Bhattacharya RC (2012a) Differential expression of salt overly sensitive pathway genes determines salinity stress tolerance in Brassica genotypes. Plant Physiol Biochem 51:90–101PubMedCrossRefPubMedCentralGoogle Scholar
  31. Chakraborty K, Sairam RK, Bhattacharya RC (2012b) Salinity induced expression of pyrrolline-5-carboxylate synthetase determine salinity tolerance in Brassica spp. Acta Physiol Plant 34:1935–1941CrossRefGoogle Scholar
  32. Chakraborty K, Singh AL, Bhaduri D, Sairam RK (2013) Mechanism of salinity stress tolerance in crop plants and recent developments. In: Hemantaranjan A (ed) Advances in plant physiology, vol 14. Scientific Publishers, Jodhpur, pp 466–496Google Scholar
  33. Chakraborty K, Bishi SK, Goswami N, Singh AL, Zala PV (2016a) Differential fine-regulation of enzyme driven ROS detoxification network imparts salt tolerance in contrasting peanut genotypes. Environ Exp Bot 128:79–90CrossRefGoogle Scholar
  34. Chakraborty K, Sairam RK, Bhaduri D (2016b) Effects of different levels of soil salinity on yield attributes, accumulation of nitrogen, and micronutrients in Brassica spp. J Plant Nutr 39:1026–1037CrossRefGoogle Scholar
  35. Chakraborty K, Bhaduri D, Meena HN, Kalariya K (2016c) External potassium (K+) application improves salinity tolerance by promoting Na+-exclusion, K+-accumulation and osmotic adjustment in contrasting peanut cultivars. Plant Physiol Biochem 103:143–153PubMedCrossRefPubMedCentralGoogle Scholar
  36. Chakraborty K, Bose J, Shabala L, Eyles A, Shabala S (2016d) Evaluating relative contribution of osmo- and tissue-tolerance mechanisms towards salinity stress tolerance in three Brassica species. Physiol Plant 158:135–151PubMedCrossRefPubMedCentralGoogle Scholar
  37. Chakraborty K, Bose J, Shabala L, Shabala S (2016e) Difference in root K+ retention ability and reduced sensitivity of K+-permeable channels to reactive oxygen species confer differential salt tolerance in three Brassica species. J Exp Bot 67:4611–4625PubMedPubMedCentralCrossRefGoogle Scholar
  38. Cheeseman JM (2013) The integration of activity in saline environments: problems and perspectives. Funct Plant Biol 40:759–774Google Scholar
  39. Chen L, Song Y, Li S, Zhang L, Zou C, Yu D (2012) The role of WRKY transcription factors in plant abiotic stresses. Biochim Biophys Acta-Gene Regul Mech 1819:120–128CrossRefGoogle Scholar
  40. Cheng NH, Pittman JK, Barkla BJ, Shigaki T, Hirschi KD (2003) The Arabidopsis cax1 mutant exhibits impaired ion homeostasis, development, and hormonal responses and reveals interplay among vacuolar transporters. Plant Cell 15:347–364PubMedPubMedCentralCrossRefGoogle Scholar
  41. Chinnusamy V, Jagendorf A, Zhu JK (2005) Understanding and improving salt tolerance in plants. Crop Sci 45:437–448CrossRefGoogle Scholar
  42. Coello P, Hey SJ, Halford NG (2010) The sucrose non-fermenting-1-related (SnRK) family of protein kinases: potential for manipulation to improve stress tolerance and increase yield. J Exp Bot 62:883–893PubMedCrossRefPubMedCentralGoogle Scholar
  43. Cotsaftis O, Plett D, Shirley N, Tester M, Hrmova M (2012) A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS One 7:e39865PubMedPubMedCentralCrossRefGoogle Scholar
  44. Covarrubias AA, Reyes JL (2010) Post-transcriptional gene regulation of salinity and drought responses by plant microRNAs. Plant Cell Environ 33:481–489PubMedCrossRefPubMedCentralGoogle Scholar
  45. Cramer GR (2002) Sodium-calcium interactions under salinity stress. In: Salinity: environment-plants-molecules. Springer, Dordrecht, pp 205–227Google Scholar
  46. Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751PubMedPubMedCentralCrossRefGoogle Scholar
  47. Degl’Innocenti E, Hafsi C, Guidi L, Navari-Izzo F (2009) The effect of salinity on photosynthetic activity in potassium-deficient barley species. J Plant Physiol 166:1968–1981PubMedCrossRefPubMedCentralGoogle Scholar
  48. Desikan R, Mackerness SAH, Hancock JT, Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127:159–172PubMedPubMedCentralCrossRefGoogle Scholar
  49. Dietrich P, Sanders D, Hedrich R (2001) The role of ion channels in light-dependent stomatal opening. J Exp Bot 52:1959–1967PubMedCrossRefPubMedCentralGoogle Scholar
  50. Ding D, Zhang L, Wang H, Liu Z, Zhang Z, Zheng Y (2009) Differential expression of miRNAs in response to salt stress in maize roots. Ann Bot 103:29–38PubMedCrossRefPubMedCentralGoogle Scholar
  51. Dregne H, Kassas M, Rosanov B (1991) A new assessment of the world status of desertification. Desertification Control Bull 20:6–18Google Scholar
  52. Dubcovsky J, María GS, Epstein E, Luo MC, Dvořák J (1996) Mapping of the K+/Na+ discrimination locus Kna1 in wheat. Theor Appl Genet 92:448–454PubMedCrossRefPubMedCentralGoogle Scholar
  53. Dugas DV, Bartel B (2004) MicroRNA regulation of gene expression in plants. Curr Opin Plant Biol 7:512–520PubMedCrossRefPubMedCentralGoogle Scholar
  54. El-Sharkawy MS, El-Beshsbeshy TR, Mahmoud EK, Abdelkader NI, Al-Shal RM, Missaoui AM (2017) Response of Alfalfa under salt stress to the application of potassium sulfate nanoparticles. Am J Plant Sci 8:1751–1773CrossRefGoogle Scholar
  55. Epstein E, Norlyn JD, Rush DW, Kingsbury R, Kelley DB, Wrana AF (1980) Saline culture of crops: a genetic approach. Science 210:399–404PubMedCrossRefPubMedCentralGoogle Scholar
  56. Fahad S, Hussain S, Matloob A, Khan FA, Khaliq A, Saud S, Hassan S, Shan D, Khan F, Ullah N, Faiq M (2015) Phytohormones and plant responses to salinity stress: a review. Plant Growth Regul 75:391–404CrossRefGoogle Scholar
  57. Flowers TJ, Colmer TD (2008) Salinity tolerance in halophytes. New Phytol 179:945–963PubMedCrossRefPubMedCentralGoogle Scholar
  58. Flowers TJ, Munns R, Colmer TD (2014) Sodium chloride toxicity and the cellular basis of salt tolerance in halophytes. Ann Bot 115:419–431PubMedPubMedCentralCrossRefGoogle Scholar
  59. Foolad MR, Jones RA (1993) Mapping salt-tolerance genes in tomato (Lycopersicon esculentum) using trait-based marker analysis. Theor Appl Genet 87:184–192PubMedCrossRefPubMedCentralGoogle Scholar
  60. Foyer CH, Noctor G (2005) Redox homeostasis and antioxidant signaling: a metabolic interface between stress perception and physiological responses. Plant Cell 17:1866–1875PubMedPubMedCentralCrossRefGoogle Scholar
  61. Fuchs I, Stölzle S, Ivashikina N, Hedrich R (2005) Rice K+ uptake channel OsAKT1 is sensitive to salt stress. Planta 221:212–221PubMedCrossRefPubMedCentralGoogle Scholar
  62. Fukuda A, Nakamura A, Tanaka Y (1999) Molecular cloning and expression of the Na+/H+ exchanger gene in Oryza sativa. Biochim Biophys Acta-Gene Str Expr 1446:149–155CrossRefGoogle Scholar
  63. Fukuda A, Nakamura A, Tagiri A, Tanaka H, Miyao A, Hirochika H, Tanaka Y (2004) Function, intracellular localization and the importance in salt tolerance of a vacuolar Na+/H+ antiporter from rice. Plant Cell Physiol 45:146–159PubMedCrossRefPubMedCentralGoogle Scholar
  64. Fukuda A, Nakamura A, Hara N, Toki S, Tanaka Y (2011) Molecular and functional analyses of rice NHX-type Na+/H+ antiporter genes. Planta 233:175–188PubMedCrossRefPubMedCentralGoogle Scholar
  65. Gama PBS, Tanaka K, Eneji A, Eltayeb AE, Elsiddig K (2009) Salt induced stress effects on biomass, photosynthetic rate and reactive oxygen species scavenging enzyme accumulation in common bean. J Plant Nutr 32:837–854CrossRefGoogle Scholar
  66. Gao R, Duan K, Guo G, Du Z, Chen Z, Li L, He T, Lu R, Huang J (2013) Comparative transcriptional profiling of two contrasting barley genotypes under salinity stress during the seedling stage. Int J Genomics 2013:1–19.  https://doi.org/10.1155/2013/972852 CrossRefGoogle Scholar
  67. Garciadeblas B, Senn ME, Banuelos MA, Rodriguez-Navarro A (2003) Sodium transport and HKT transporters: the rice model. Plant J 34:788–801PubMedCrossRefPubMedCentralGoogle Scholar
  68. Gaxiola RA, Rao R, Sherman A, Grifasi P, Alpier SL, Fink GR (1999) The Arabidopsis thaliana proton transporters, AtNHX1 and Avp1, can function in cation detoxification in yeast. Proc Natl Acad Sci U S A 96:1480–1485PubMedPubMedCentralCrossRefGoogle Scholar
  69. Ghassemi F, Jakeman AJ, Nix HA (1995) Salinization of land and water resources. Univ. of New South Wales Press, Ltd., CanberraGoogle Scholar
  70. Gill SS, Tajrishi M, Madan M, Tuteja N (2013) A DESD-box helicase functions in salinity stress tolerance by improving photosynthesis and antioxidant machinery in rice (Oryza sativa L. cv. PB1). Plant Mol Biol 82:1–22PubMedCrossRefPubMedCentralGoogle Scholar
  71. Gomez LD, Noctor G, Knight M, Foyer CH (2004) Regulation of calcium signaling and gene expression by glutathione. J Exp Bot 55:1851–1859PubMedCrossRefPubMedCentralGoogle Scholar
  72. Gong Q, Li P, Ma S, InduRupassara S, Bohnert HJ (2005) Salinity stress adaptation competence in the extremophile Thellungiella halophila in comparison with its relative Arabidopsis thaliana. Plant J 44:826–839PubMedCrossRefPubMedCentralGoogle Scholar
  73. Gorham J (1992) Salt tolerance of plants. Sci Prog (1933-) 76:273–285Google Scholar
  74. Gregorio GB (1997) Tagging salinity tolerance genes in rice using amplified fragment length polymorphism (AFLP). Dissertation, University of the Philippines, Los BañosGoogle Scholar
  75. Guo Y, Qiu QS, Quintero FJ, Pardo JM, Ohta M, Zhang C, Schumaker KS, Zhu JK (2004) Transgenic evaluation of activated mutant alleles of SOS2 reveals a critical requirement for its kinase activity and C-terminal regulatory domain for salt tolerance in Arabidopsis thaliana. Plant Cell 16:435–449PubMedPubMedCentralCrossRefGoogle Scholar
  76. Gupta NK, Meena SK, Gupta S, Khandelwal SK (2002) Gas exchange, membrane permeability, and ion uptake in two species of Indian jujube differing in salt tolerance. Photo-Dermatology 40:535–539Google Scholar
  77. Hadi MR, Karimi N (2012) The role of calcium in plants’ salt tolerance. J Plant Nutr 35:2037–2054CrossRefGoogle Scholar
  78. Hadi MR, Khiyam-Nekoie SM, Khavarinejad R, Khosh Kholgh Sima NA, Yavari P (2008) Accumulation and role of ions (Ca2+, Mg2+, SO4 −2) on salt tolerance in Triticum turgidum L. J Biol Sci 8:143–148CrossRefGoogle Scholar
  79. Halfter U, Ishitani M, Zhu JK (2000) The Arabidopsis SOS2 protein kinase physically interacts with and is activated by the calcium-binding protein SOS3. Proc Natl Acad Sci U S A 97:3735–3740PubMedPubMedCentralCrossRefGoogle Scholar
  80. Handbook of Agriculture (2011) Indian Council of Agricultural Research (ICAR), New Delhi. 1617 p. ISBN: 978-8171640966Google Scholar
  81. HanumanthaRao B, Nair RM, Nayyar H (2016) Salinity and high temperature tolerance in mungbean [Vigna radiata (L.) Wilczek] from a physiological perspective. Front Plant Sci 7:957.  https://doi.org/10.3389/fpls.2016.00957 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Haq TU, Gorham J, Akhtar J, Akhtar N, Steele KA (2010) Dynamic quantitative trait loci for salt stress components on chromosome 1 of rice. Funct Plant Biol 37:634–645CrossRefGoogle Scholar
  83. Hare PD, Cress WA, Van Staden J (1998) Dissecting the roles of osmolyte accumulation during stress. Plant Cell Environ 21:535–553CrossRefGoogle Scholar
  84. Haro R, Banuelos MA, Senn MAE, Barrero-Gil J, Rodriguez-Navarro A (2005) HKT1 mediates sodium uniport in roots. Pitfalls in the expression of HKT1 in yeast. Plant Physiol 139:1495–1506PubMedPubMedCentralCrossRefGoogle Scholar
  85. Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Ann Rev Plant Bio 51:463–499CrossRefGoogle Scholar
  86. Hayashi H, Alia Mustardy L, Deshnium P, Ida M, Murata N (1997) Transformation of Arabidopsis thaliana with the codA gene for choline oxidase; accumulation of glycine betaine and enhanced tolerance to salt and cold stress. Plant J 12:133–142PubMedCrossRefPubMedCentralGoogle Scholar
  87. Hiz MC, Canher B, Niron H, Turet M (2014) Transcriptome analysis of salt tolerant common bean (Phaseolus vulgaris L.) under saline conditions. PLoS ONE 9(3):e92598.  https://doi.org/10.1371/journal.pone.0092598 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Horie T, Costa A, Kim TH, Han MJ, Horie R, Leung HY, Miyao A, Hirochika H, An G, Schroeder JI (2007) Rice OsHKT2;1 transporter mediates large Na+ influx components into K+-starved roots for growth. EMBO J 26:3003–3014PubMedPubMedCentralCrossRefGoogle Scholar
  89. Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14:660–668PubMedPubMedCentralCrossRefGoogle Scholar
  90. Horie T, Brodsky DE, Costa A, Kaneko T, Lo Schiavo F, Katsuhara M, Schroeder JI (2011) K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiol 156:1493–1507PubMedPubMedCentralCrossRefGoogle Scholar
  91. Hu H, Dai M, Yao J, Xiao B, Li X, Zhang Q, Xiong L (2006) Overexpressing a NAM, ATAF, and CUC (NAC ) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci U S A 103:12987–12992PubMedPubMedCentralCrossRefGoogle Scholar
  92. Hu S, Tao H, Qian Q, Guo L (2012) Genetics and molecular breeding for salt-tolerance in rice. Rice Genomics Genet 3:38–39Google Scholar
  93. Huang SB, Spielmeyer W, Lagudah ES, James RA, Platten JD, Dennis ES, Munns RA (2006) Sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiol 142:1718–1727PubMedPubMedCentralCrossRefGoogle Scholar
  94. Iqbal N, Umar S, Khan NA, Khan MIR (2014) A new perspective of phytohormones in salinity tolerance: regulation of proline metabolism. Environ Exp Bot 100:34–42CrossRefGoogle Scholar
  95. Ishitani M, Liu J, Halfter U, Kim CS, Shi W, Zhu JK (2000) SOS3 function in plant salt tolerance requires N-myristoylation and calcium binding. Plant Cell 12:1667–1678PubMedPubMedCentralCrossRefGoogle Scholar
  96. Iterbe-Ormaetxe I, Escuredo PR, Arrese-Igor C, Becana M (1998) Oxidative damage in pea plants exposed to water deficit of paraquat. Plant Physiol 161:173–181CrossRefGoogle Scholar
  97. Jabnoune M, Espeout S, Mieulet D, Fizames C, Verdeil JL, Conejero G, Rodriguez-Navarro A, Sentenac H, Guiderdoni E, Abdelly C et al (2009) Diversity in expression patterns and functional properties in the rice HKT transporter family. Plant Physiol 150:1955–1971PubMedPubMedCentralCrossRefGoogle Scholar
  98. Janicka-Russak M, Kłobus G (2007) Modification of plasma membrane and vacuolar H+-ATPases in response to NaCl and ABA. J Plant Physiol 164:295–302PubMedCrossRefPubMedCentralGoogle Scholar
  99. Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286PubMedPubMedCentralCrossRefGoogle Scholar
  100. Jiang XY, Leidi EO, Pardo JM (2010) How do vacuolar NHX exchangers function in plant salt tolerance? Plant Signal Behav 5:792–795PubMedPubMedCentralCrossRefGoogle Scholar
  101. Jiang C, Belfield EJ, Mithani A, Visscher A, Ragoussis J, Mott R, Smith JA, Harberd NP (2012) ROS-mediated vascular homeostatic control of root-to-shoot soil Na delivery in Arabidopsis. EMBO J 31:4359–4370PubMedPubMedCentralCrossRefGoogle Scholar
  102. Jin ZM, Wang CH, Liu ZP, Gong WJ (2007) Physiological and ecological characters studies on Aloe vera under soil salinity and seawater irrigation. Process Biochem 42:710–714CrossRefGoogle Scholar
  103. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14:787–799PubMedCrossRefPubMedCentralGoogle Scholar
  104. Kamiya T, Akahori T, Ashikari M, Maesshima M (2005) Expression of the vacuolar Ca2+/H+ exchanger, OsCAX1a, in rice: cell and age specificity of expression and enhancement by Ca2+. Plant Cell Physiol 47:96–106.  https://doi.org/10.1093/pcp/pci227 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Kanmani E, Ravichandran V, Sivakumar R, Senthil A, Surendar KK, Boominathan P (2017) Influence of plant growth regulators on physiological traits under salinity stress in contrasting rice varieties (Oryza sativa L.) Int J Curr Microbiol App Sci 6:1654–1661CrossRefGoogle Scholar
  106. Khan HR, Ashraf M, Shahzad SM, Imtiaz M, Aziz A, Piracha MA, Siddiqui AR (2016) Additional application of plant nutrients with farm yard manure for improving the adaptation of cotton crop to salinity stress. J Appl Agric Biotechnol 1:48–57Google Scholar
  107. Khong GN, Richaud F, Coudert Y, Pati PK, Santi C, Périn C, Breitler JC, Meynard D, Vinh DN, Guiderdoni E, Gantet P (2008) Modulating rice stress tolerance by transcription factors. Biotechnol Genet Eng Rev 25:381–404PubMedCrossRefPubMedCentralGoogle Scholar
  108. Kim Y, Arihara J, Nakayama T, Nakayama N, Shimada S, Usui K (2004) Antioxidative responses and their relation to salt tolerance in Echinochloa oryzicola vasing and Steraia viridis (L.) Beauv. Plant Growth Regul 44:87–92CrossRefGoogle Scholar
  109. Knight H, Trewavas AJ, Knight MR (1997) Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078PubMedCrossRefPubMedCentralGoogle Scholar
  110. Kong Y, Elling AA, Chen B, Deng X (2010) Differential expression of microRNAs in maize inbred and hybrid lines during salt and drought stress. Am J Plant Sci 1:69CrossRefGoogle Scholar
  111. Koyama ML, Levesley A, Koebner RM, Flowers TJ, Yeo AR (2001) Quantitative trait loci for component physiological traits determining salt tolerance in rice. Plant Physiol 125:406–422PubMedPubMedCentralCrossRefGoogle Scholar
  112. Kronzucker HJ, Britto DT (2011) Sodium transport in plants: a critical review. New Phytol 189:54–81PubMedPubMedCentralCrossRefGoogle Scholar
  113. Kumar K, Mosa K (2015) Ion transporters: a decisive component of salt stress tolerance in plants. In: Wani SH, Hossain MA (eds) Managing salt tolerance in plants: molecular and genomic perspectives. CRC Press, Boca Raton, pp 373–390CrossRefGoogle Scholar
  114. Lan WZ, Wang W, Wang SM, Li LG, Buchanan BB, Lin HX, Gao JP, Luan S (2010) A rice high-affinity potassium transporter (HKT) conceals a calcium-permeable cation channel. Proc Natl Acad Sci U S A 107:7089–7094PubMedPubMedCentralCrossRefGoogle Scholar
  115. Laurie S, Feeney KA, Maathuis FJM, Heard PJ, Brown SJ, Leigh RA (2002) A role for HKT1 in sodium uptake by wheat roots. Plant J 32:139–149PubMedCrossRefPubMedCentralGoogle Scholar
  116. Li B, Duan H, Li J, Deng XW, Yin W, Xia X (2013) Global identification of miRNAs and targets in Populus euphratica under salt stress. Plant Mol Biol 81:525–539PubMedCrossRefPubMedCentralGoogle Scholar
  117. Lin HX, Zhu MZ, Yano M, Gao JP, Liang ZW, Su WA, Hu XH, Ren ZH, Chao DY (2004) QTLs for Na+ and K+ uptake of the shoots and roots controlling rice salt tolerance. Theor Appl Genet 108:253–260PubMedCrossRefPubMedCentralGoogle Scholar
  118. Lin H, Yang Y, Quan R, Mendoza I, Wu Y, Du W, Zhao S, Schumaker KS, Pardo JM, Guo Y (2009) Phosphorylation of SOS3-LIKE CALCIUM BINDING PROTEIN8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell 21:1607–1619PubMedPubMedCentralCrossRefGoogle Scholar
  119. Liu HH, Tian X, Li YJ, Wu CA, Zheng CC (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843PubMedPubMedCentralCrossRefGoogle Scholar
  120. Ma L, Zhang H, Sun L, Jiao Y, Zhang G, Miao C, Hao F (2012) NADPH oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na+/K+ homeostasis in Arabidopsis under salt stress. J Exp Bot 63:305–317PubMedCrossRefPubMedCentralGoogle Scholar
  121. Maathuis F (2006) The role of monovalent cation transporters in plant responses to salinity. J Exp Bot 57:1137–1147PubMedCrossRefPubMedCentralGoogle Scholar
  122. Maathuis FJ, Ahmad I, Patishtan J (2014) Regulation of Na+ fluxes in plants. Front Plant Sci 5:467.  https://doi.org/10.3389/fpls.2014.00467 CrossRefPubMedPubMedCentralGoogle Scholar
  123. Marin K, Suzuki I, Yamaguchi K, Ribbeck K, Yamamoto H, Kanesaki Y, Hagemann M, Murata N (2003) Identification of histidine kinases that act as sensors in the perception of salt stress in Synechocystis sp., PCC 6803. Proc Natl Acad Sci U S A 100:9061–9066PubMedPubMedCentralCrossRefGoogle Scholar
  124. Marschner H (1986) Mineral nutrition in higher plants. Academic, London, pp 477–542Google Scholar
  125. Marschner P (2012) Marschner’s mineral nutrition of higher plants (3rd). ISBN: 978-0-12-384905-2. Academic, Cambridge, MAGoogle Scholar
  126. Martinez-Atienza J, Jiang X, Garciablades B, Mendoza I, Zhu JK, Pardo JM, Quintero FJ (2007) Conservation of the salt overly sensitive pathway in rice. Plant Physiol 143:1001–1012PubMedPubMedCentralCrossRefGoogle Scholar
  127. Maser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N, Robertson W, Sussman MR, Schroeder JI (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKTI1. FEBS Lett 531:57–161CrossRefGoogle Scholar
  128. Melo YL, Dantas CVS, Lima-Melo Y, Maia JM, Macêdo CECD (2017) Changes in osmotic and ionic indicators in Ananas comosus (L.) cv. MD gold pre-treated with phytohormones and submitted to saline medium. Rev Bras Frutic 39:e-155Google Scholar
  129. Mian A, Oomen RJ, Isayenkow S, Sentenac H, Maathuis FJ, Very AA (2011) Overexpression of a Na+ and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 68:468–479PubMedPubMedCentralCrossRefGoogle Scholar
  130. Mittal D, Sharma N, Sharma V, Sopory SK, Sanan-Mishra N (2016) Role of microRNAs in rice plant under salt stress. Ann Appl Biol 168:2–18CrossRefGoogle Scholar
  131. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498PubMedCrossRefPubMedCentralGoogle Scholar
  132. Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type–specific alteration of Na+ transport in Arabidopsis. Plant Cell 21:2163–2178PubMedPubMedCentralCrossRefGoogle Scholar
  133. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250PubMedCrossRefPubMedCentralGoogle Scholar
  134. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681CrossRefPubMedPubMedCentralGoogle Scholar
  135. Munns R, Husain S, Rivelli AR, James RA, Condon AT, Lindsay MP, Lagudah ES, Schachtman DP, Hare RA (2002) Avenues for increasing salt tolerance of crops, and the role of physiologically based selection traits. In: Progress in plant nutrition: plenary lectures of the XIV international plant nutrition colloquium. Springer, Dordrecht, pp 93–105CrossRefGoogle Scholar
  136. Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M, Plett D (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30:360–364PubMedCrossRefPubMedCentralGoogle Scholar
  137. Murillo-Amador B, Jones HG, Kaya C, Aguilar RL, García-Hernández JL, Troyo-Diéguez E, Ávila-Serrano NY, Rueda-Puente E (2006) Effects of foliar application of calcium nitrate on growth and physiological attributes of cowpea (Vigna unguiculata L. Walp.) grown under salt stress. Environ Exp Bot 58:188–196CrossRefGoogle Scholar
  138. Nakashima K, Takasaki H, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K (2012) NAC transcription factors in plant abiotic stress responses. Biochim Biophys Acta- Gene Regul Mech 1819:97–103CrossRefGoogle Scholar
  139. Nedjimi B, Daoud Y (2009) Ameliorative effect of CaCl2 on growth, membrane permeability and nutrient uptake in Atriplex halimus subsp. schweinfurthii grown at high (NaCl) salinity. Desalination 249:163–166CrossRefGoogle Scholar
  140. Negrão S, Courtois B, Ahmadi N, Abreu I, Saibo N, Oliveira MM (2011) Recent updates on salinity stress in rice: from physiological to molecular responses. Crit Rev Plant Sci 30:329–377CrossRefGoogle Scholar
  141. Nelson M, Maredia M (2001) Environmental impacts of the CGIAR: an assessmentGoogle Scholar
  142. Nouri H, Borujeni SC, Nirola R, Hassanli A, Beecham S, Alaghmand S, Saint C, Mulcahy D (2017) Application of green remediation on soil salinity treatment; a review on halophyte remediation. Process Saf Environ Prot 107:94–107CrossRefGoogle Scholar
  143. Obata T, Kitamoto HK, Nakamura A, Fukuda A, Tanaka Y (2007) Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiol 144:1978–1985PubMedPubMedCentralCrossRefGoogle Scholar
  144. Oh SJ, Song SI, Kim YS, Jang HJ, Kim M, Kim YK (2005) Arabidopsis CBF3/DREB1A and ABF3 in transgenic rice increased tolerance to abiotic stress without stunting growth. Plant Physiol 138:341–351PubMedPubMedCentralCrossRefGoogle Scholar
  145. Oh SJ, Kwon CW, Choi DW, Song SIK, Kim JK (2007) Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. J Plant Biotechnol 5:646–656CrossRefGoogle Scholar
  146. Oldeman LR, Hakkeling TA, Sombroek WG (1991) World map of the status of human induced soil degradation: an explanatory note. International Centre and United Nations Environment Programme, WageningenGoogle Scholar
  147. Oomen RJ, Benito B, Sentenac H, Rodríguez-Navarro A, Talón M, Véry AA, Domingo C (2012) HKT2; 2/1, a K -permeable transporter identified in a salt-tolerant rice cultivar through surveys of natural genetic polymorphism. Plant J 71:750–762PubMedPubMedCentralCrossRefGoogle Scholar
  148. Pardo JM, Cubero B, Leidi EO, Quintero FJ (2006) Alcali cation exchangers: roles in cellular homeostasis and stress tolerance. J Exp Bot 57:1181–1199PubMedCrossRefPubMedCentralGoogle Scholar
  149. Parida AK, Das AB, Mohanty P (2004) Defense potentials to NaCl in a mangrove, Bruguiera parviflora: differential changes of isoforms of some antioxidative enzymes. J Plant Physiol 161:531–542PubMedCrossRefPubMedCentralGoogle Scholar
  150. Patel BB, Patel BB, Dave RS (2011) Studies on infiltration of saline–alkali soils of several parts of Mehsana and Patan districts of North Gujarat. J Appl Technol Environ Sanitation 1:87–92Google Scholar
  151. Paul S, Kundu A, Pal A (2011) Identification and validation of conserved microRNAs along with their differential expression in roots of Vigna unguiculata grown under salt stress. Plant Cell Tissue Organ Cult 105:233–242CrossRefGoogle Scholar
  152. Peleg Z, Blumwald E (2011) Hormone balance and abiotic stress tolerance in crop plants. Curr Opin Plant Biol 14:290–295PubMedCrossRefPubMedCentralGoogle Scholar
  153. Phuc DT, Minh NV, Yen HH (2016) Assessment of natural variation in OsHKT1;2 gene in rice (Oryza sativa). VNU J Sci Nat Sci Technol 32:189–193Google Scholar
  154. Pilot G, Gaymard F, Mouline K, Chérel I, Sentenac H (2003) Regulated expression of Arabidopsis Shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51:773–787PubMedCrossRefPubMedCentralGoogle Scholar
  155. Priya P, Jain M (2013) RiceSRTFDB: a database of rice transcription factors containing comprehensive expression, cis-regulatory element and mutant information to facilitate gene function analysis. Database 2013:bat027PubMedPubMedCentralCrossRefGoogle Scholar
  156. Qi Z, Spalding EP (2004) Protection of plasma membrane K+ transport by the salt overly sensitive1Na+/H+ antiporter during salinity stress. Plant Physiol 136:2548–2555PubMedPubMedCentralCrossRefGoogle Scholar
  157. Qin Y, Duan Z, Xia X, Yin W (2011) Expression profiles of precursor and mature microRNAs under dehydration and high salinity shock in Populus euphratica. Plant Cell Rep 30:1893PubMedCrossRefPubMedCentralGoogle Scholar
  158. Qiu QS, Guo Y, Dietrich MA, Schumaker KS, Zhu JK (2002) Regulation of SOS1, a plasma membrane Na+/H+ exchanger in Arabidopsis thaliana, by SOS2 and SOS3. Proc Natl Acad Sci U S A 99:8436–8441PubMedPubMedCentralCrossRefGoogle Scholar
  159. Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y (2007) SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19:1415–1431PubMedPubMedCentralCrossRefGoogle Scholar
  160. Queensland Government (1995–2017) The state of Queensland, Australia. https://www.qld.gov.au/environment/land/soil/salinity
  161. Quintero FJ, Ohta M, Shi H, Zhu JK, Pardo JM (2002) Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis. Proc Natl Acad Sci U S A 99(13):9061–9066PubMedPubMedCentralCrossRefGoogle Scholar
  162. Quintero FJ, Martinez-Atienza J, Villalta I, Jiang X, Kim WY, Ali Z, Fujii H, Mendoza I, Yun DJ, Zhu JK, Pardo JM (2011) Activation of the plasma membrane Na/H antiporter Salt-Overly-Sensitive 1 (SOS1) by phosphorylation of an auto-inhibitory C-terminal domain. Proc Natl Acad Sci U S A 108:2611–2616PubMedPubMedCentralCrossRefGoogle Scholar
  163. Reguera M, Bassil E, Blumwald E (2014) Intracellular NHX-type cation/H+ antiporters in plants. Mol Plant 7:261–263PubMedCrossRefPubMedCentralGoogle Scholar
  164. Ren ZH, Gao JP, Li LG, Cai XL, Wei H, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37:1141–1146PubMedCrossRefPubMedCentralGoogle Scholar
  165. Rengasamy P (2002) Transient salinity and subsoil constraints to dryland farming in Australian sodic soils: an overview. Aust J Exp Agric 42:351–361CrossRefGoogle Scholar
  166. Rivandi J, Miyazaki J, Hrmova M, Pallotta M, Tester M et al (2011) A SOS3 homologue maps to HvNax4, a barley locus controlling an environmentally sensitive Na (+) exclusion trait. J Exp Bot 62:1201–1216PubMedCrossRefPubMedCentralGoogle Scholar
  167. Rodriguez-Rosales MP, Galvez FJ, Huertas R, Aranda MN, Baghour M, Cagnac O, Venema K (2009) Plant NHX cation/proton antiporters. Plant Signal Behav 4:265–276PubMedPubMedCentralCrossRefGoogle Scholar
  168. Rubio F, Gassmann W, Schroeder JI (1995) Sodium-driven potassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance. Science 2701:1660–1663CrossRefGoogle Scholar
  169. Rubio MC, Bustos-Sammamed P, Clemente MR, Becana M (2009) Effects of salt stress on expression of antioxidant genes and proteins in the model legume Lotus japonicus. New Phytol 181:851–859PubMedCrossRefPubMedCentralGoogle Scholar
  170. Rus AM, Estan MT, Gisbert C, Garcia-Sogo B, Serrano R, Caro M et al (2001) Expressing the yeast HAL1 gene in tomato increases fruit yield and enhances K+/Na+ selectivity under salt stress. Plant Cell Environ 24:875–880CrossRefGoogle Scholar
  171. Schachtman D, Liu W (1999) Molecular pieces to the puzzle of the interaction between potassium and sodium uptake in plants. Trends Plant Sci 4:281–287PubMedCrossRefPubMedCentralGoogle Scholar
  172. Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JH, Mueller-Roeber B (2013) SALT-RESPONSIVE ERF1 regulates reactive oxygen species–dependent signaling during the initial response to salt stress in rice. Plant Cell 25:2115–2131PubMedPubMedCentralCrossRefGoogle Scholar
  173. Schulz P, Herde M, Romeis T (2013) Calcium-dependent protein kinases: hubs in plant stress signaling and development. Plant Physiol 163:523–530PubMedPubMedCentralCrossRefGoogle Scholar
  174. Serrano R, Culiañz-Maciá FA, Moreno V (1998) Genetic engineering of salt and drought tolerance with yeast regulatory genes. Sci Hortic 78:261–269CrossRefGoogle Scholar
  175. Shabala S, Cuin TA (2007) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669.  https://doi.org/10.1111/j.1399-3054.2007.01008.x CrossRefGoogle Scholar
  176. Shabala S, Cuin TA (2008) Potassium transport and plant salt tolerance. Physiol Plant 133:651–669PubMedCrossRefPubMedCentralGoogle Scholar
  177. Shabala S, Pottosin II (2010) Potassium and potassium-permeable channels in plant salt tolerance. In: Demidchik V, Maathuis F (eds) Ion channels and plant stress responses. Springer, Heidelberg, pp 87–110CrossRefGoogle Scholar
  178. Shabala S, Demidchik V, Shabala L, Cuin TA, Smith SJ, Miller AJ, Davies JM, Newman IA (2006) Extracellular Ca2+ ameliorates NaCl-induced K+ loss from Arabidopsis root and leaf cells by controlling plasma membrane K+-permeable channels. Plant Physiol 141:1653–1665PubMedPubMedCentralCrossRefGoogle Scholar
  179. Shabala S, Bose J, Fuglsang AT, Pottosin I (2015) On a quest for stress tolerance genes: membrane transporters in sensing and adapting to hostile soils. J Exp Bot 67:1015–1031PubMedCrossRefPubMedCentralGoogle Scholar
  180. Shavrukov Y, Gupta NK, Miyazaki J, Baho MN, Chalmers KJ et al (2010) HvNax3-a locus controlling shoot sodium exclusion derived from wild barley (Hordeum vulgare ssp spontaneum). Funct Integr Genomics 10:277–291PubMedCrossRefPubMedCentralGoogle Scholar
  181. Shi H, Ishitani M, Kim C, Zhu JK (2000) The Arabidopsis thaliana salt tolerance gene SOS1 encodes a putative Na+/H+ antiporter. Proc Natl Acad Sci U S A 97:6896–6901PubMedPubMedCentralCrossRefGoogle Scholar
  182. Shi H, Xiong L, Stevenson B, Lu T, Zhu JK (2002) The Arabidopsis salt overly sensitive 4 mutants uncover a critical role for vitamin B6 in plant salt tolerance. Plant Cell 14:575–588PubMedPubMedCentralCrossRefGoogle Scholar
  183. Shi H, Kim Y, Guo Y, Stevenson B, Zhu JK (2003) The Arabidopsis SOS5 locus encodes a putative cell surface adhesion protein and is required for normal cell expansion. Plant Cell 15:19–32PubMedPubMedCentralCrossRefGoogle Scholar
  184. Shi Z, Li Y, Wang RC, Makeschine F (2005) Assessment of temporal and spatial variability of soil salinity in a coastal saline field. Environ Geol 48(2):171–178CrossRefGoogle Scholar
  185. Singh RK, Gregorio GB, Jain RK (2007) QTL mapping for salinity tolerance in rice. Physiol Mol Biol Plants 13:87–99Google Scholar
  186. Smart CC, Flores S (1997) Overexpression of d-myo-inositol-3-phosphate synthase leads to elevated levels of inositol in Arabidopsis. Plant Mol Biol 33:811–820PubMedCrossRefPubMedCentralGoogle Scholar
  187. Su H, Golldack D, Katsuhara M, Zhao CS, Bohnert HJ (2001) Expression and stress-dependent induction of potassium channel transcripts in the common ice plant. Plant Physiol 125:604–614PubMedPubMedCentralCrossRefGoogle Scholar
  188. Sun G, Stewart CN Jr, Xiao P, Zhang B (2012) MicroRNA expression analysis in the cellulosic biofuel crop switchgrass (Panicum virgatum) under abiotic stress. PLoS One 7:e32017PubMedPubMedCentralCrossRefGoogle Scholar
  189. Sunarpi HT, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K et al (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na unloading from xylem vessels to xylem parenchyma cells. Plant J 44:928–938PubMedCrossRefPubMedCentralGoogle Scholar
  190. Sunkar R (2010) MicroRNAs with macro-effects on plant stress responses. Semin Cell Dev Biol 21:805–811PubMedCrossRefPubMedCentralGoogle Scholar
  191. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019PubMedPubMedCentralCrossRefGoogle Scholar
  192. Sze H, Liang F, Hwang I, Curran AC, Harper JF (2000) Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast. Annu Rev Plant Physiol Plant Mol Biol 51:433–462PubMedCrossRefPubMedCentralGoogle Scholar
  193. Szyroki A, Ivashikina N, Dietrich P, Roelfsema MRG, Ache P, Reintanz B, Deeken R, Godde M, Felle H, Steinmeyer R, Palme K, Hedrich R (2001) KAT1 is not essential for stomatal opening. Proc Natl Acad Sci U S A 98:2917–2921PubMedPubMedCentralCrossRefGoogle Scholar
  194. Teige M, Scheikl E, Eulgem T, Dóczi R, Ichimura K, Shinozaki K et al (2004) The MKK2 pathway mediates cold and salt stress signaling in Arabidopsis. Mol Cell 15:141–152PubMedCrossRefPubMedCentralGoogle Scholar
  195. Tester M, Davenport R (2003) Na+ tolerant and Na+ transport in higher plants. Ann Bot 91:503–527PubMedPubMedCentralCrossRefGoogle Scholar
  196. Thomson MJ, Ocampo DM, Egdane J, Katimbang M, Singh RK, Gregorio G, Ismail M (2007) QTL mapping and marker assisted backcrossing for improved salinity tolerance in rice. In: Plant and animal genomes XV conference, San Diego, CA, pp 13–17Google Scholar
  197. Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403PubMedCrossRefPubMedCentralGoogle Scholar
  198. Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi-Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16:2481–2498PubMedPubMedCentralCrossRefGoogle Scholar
  199. Tran LSP, Urao T, Qin F, Maruyama K, Kakimoto T, Shinozaki K, Yamaguchi-Shinozaki K (2007) Functional analysis of AHK1/ATHK1 and cytokinin receptor histidine kinases in response to abscisic acid, drought, and salt stress in Arabidopsis. Proc Natl Acad Sci U S A 104:20623–20628PubMedPubMedCentralCrossRefGoogle Scholar
  200. Tuna AL, Kaya C, Ashraf M, Altunlu H, Yokas I, Yagmur B (2007) The effects of calcium sulphate on growth, membrane stability and nutrient uptake of tomato plants grown under salt stress. Environ Exp Bot 59:173–178CrossRefGoogle Scholar
  201. Umali DL (1993) Irrigation-induced salinity: a growing problem for development and the environment, vol 215. World Bank Publications, Washington, DCCrossRefGoogle Scholar
  202. Uno Y, Furihata T, Abe H, Yoshida R, Shinozaki K, Yamaguchi-Shinozaki K (2000) Arabidopsis basic leucine zipper transcription factors involved in an abscisic acid-dependent signal transduction pathway under drought and high-salinity conditions. Proc Natl Acad Sci U S A 97:11632–11637PubMedPubMedCentralCrossRefGoogle Scholar
  203. Urao T, Yakubov B, Satoh R, Yamaguchi-Shinozaki K, Seki M, Hirayama T, Shinozaki K (1999) A transmembrane hybrid-type histidine kinase in Arabidopsis functions as an osmosensor. Plant Cell 11:1743–1754PubMedPubMedCentralCrossRefGoogle Scholar
  204. Venema K, Quintero FJ, Pardo JM, Donaire JP (2002) The Arabidopsis Na+/H+exchanger AtNHX1 catalyzes low affinity Na+ and K+ transport in reconstituted liposomes. J Biol Chem 277:2413–2418PubMedCrossRefPubMedCentralGoogle Scholar
  205. Wang XC, Chang LL, Wang BC, Wang D, Li PH, Wang L, Yi X, Huang Q, Peng M, Guo A (2013) Comparative proteomics of Thellungiella halophila leaves from plants subjected to salinity reveals the importance of chloroplastic starch and soluble sugars in halophyte salt tolerance. Mol Cell Proteomics 12:2174–2195PubMedPubMedCentralCrossRefGoogle Scholar
  206. Wang R, Jing W, Xiao L, Jin Y, Shen L, Zhang W (2015) The Rice high-affinity potassium transporter1;1 is involved in salt tolerance and regulated by an MYB-type transcription factor. Plant Physiol 168:1076–1090.  https://doi.org/10.1104/pp.15.00298 CrossRefPubMedPubMedCentralGoogle Scholar
  207. Wichern J, Wichern F, Joergensen RG (2006) Impact of salinity on soil microbial communities and the decomposition of maize in acidic soils. Geoderma 137:100–108CrossRefGoogle Scholar
  208. Wu YS, Hu YB, Xu GH (2009) Interactive effects of potassium and sodium on root growth and expression of K+/Na+ transporter genes in rice. Plant Growth Regul 57:271–280CrossRefGoogle Scholar
  209. Xia K, Wang R, Ou X, Fang Z, Tian C, Duan J et al (2012) OsTIR1 and OsAFB2 downregulation via OsmiR393 overexpression leads to more tillers, early flowering and less tolerance to salt and drought in rice. PLoS One 7:e30039PubMedPubMedCentralCrossRefGoogle Scholar
  210. Xie F, Wang Q, Sun R, Zhang B (2014) Deep sequencing reveals important roles of microRNAs in response to drought and salinity stress in cotton. J Exp Bot 66:789–804PubMedPubMedCentralCrossRefGoogle Scholar
  211. Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48-1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9:e92913.  https://doi.org/10.1371/journal.pone.0092913 CrossRefPubMedPubMedCentralGoogle Scholar
  212. Xu R, Wang J, Li C, Johnson P, Lu C, Zhou M (2012) A single locus is responsible for salinity tolerance in a Chinese landrace barley (Hordeum vulgare L.) PLoS One 7:e43079.59CrossRefGoogle Scholar
  213. Xu Y, Zhou Y, Hong S, Xia Z, Cui D, Guo J, Xu H, Jiang X (2013) Functional characterization of a wheat NHX antiporter gene TaNHX2 that encodes a K+/H+ exchanger. PLoS One 8:e78098.  https://doi.org/10.1371/journal.pone.0078098 CrossRefPubMedPubMedCentralGoogle Scholar
  214. Xue T, Li X, Zhu W, Wu C, Yang G, Zheng C (2009) Cotton metallothionein GhMT3a, a reactive oxygen species scavenger, increased tolerance against abiotic stress in transgenic tobacco and yeast. J Exp Bot 60:339–349CrossRefPubMedGoogle Scholar
  215. Yan S, Tang Z, Su W, Sun W (2005) Proteomic analysis of salt stress-responsive proteins in rice root. Proteomics 5:235–244PubMedCrossRefPubMedCentralGoogle Scholar
  216. Yan N, Marschner P, Cao W, Zuo C, Qin W (2015) Influence of salinity and water content on soil microorganisms. Int Soil Water Conserv Res 3:316–323CrossRefGoogle Scholar
  217. Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong ZZ (2009) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2:22–31PubMedCrossRefPubMedCentralGoogle Scholar
  218. Yao X, Horie T, Xue SW, Leung HY, Katsuhara M, Brodsky DE, Wu Y, Schroeder JI (2010) Differential sodium and potassium transport selectivities of the rice OsHKT2;1 and OsHKT2;2 transporters in plant cells. Plant Physiol 152:341–355PubMedPubMedCentralCrossRefGoogle Scholar
  219. Yokoi S, Quintero FJ, Cubero B, Ruiz MT, Bressan RA, Hasegawa PM, Pardo JM (2002) Differential expression and function of Arabidopsis thaliana NHX Na+/H+ antiporters in the salt stress response. Plant J 30:529–539PubMedCrossRefPubMedCentralGoogle Scholar
  220. Zhang HX, Blumwald E (2001) Transgenic salt-tolerant tomato plants accumulate salt in foliage but not in fruit. Nat Biotechnol 19:765–768PubMedCrossRefPubMedCentralGoogle Scholar
  221. Zhang B, Wang Q (2015) MicroRNA-based biotechnology for plant improvement. J Cell Physiol 230:1–15PubMedCrossRefPubMedCentralGoogle Scholar
  222. Zhang HX, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci U S A 98:12832–12836PubMedPubMedCentralCrossRefGoogle Scholar
  223. Zhang XX, Tang YJ, Ma QB, Yang CY, Mu YH, Suo HC, Luo LH, Nian H (2013) OsDREB2A, a rice transcription factor, significantly affects salt tolerance in transgenic soybean. PLoS One 8:e83011.  https://doi.org/10.1371/journal.pone.0083011 CrossRefPubMedPubMedCentralGoogle Scholar
  224. Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71PubMedCrossRefPubMedCentralGoogle Scholar
  225. Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6:441–445PubMedCrossRefPubMedCentralGoogle Scholar
  226. Zhu JK, Liu J, Xiong L (1998) Genetic analysis of salt tolerance in Arabidopsis: evidence for a critical role of potassium nutrition. Plant Cell 10:1181–1191PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Koushik Chakraborty
    • 1
  • Nabaneeta Basak
    • 1
  • Debarati Bhaduri
    • 2
  • Soham Ray
    • 3
  • Joshitha Vijayan
    • 4
  • Krishnendu Chattopadhyay
    • 3
  • Ramani K. Sarkar
    • 1
  1. 1.Division of Crop Physiology & BiochemistryICAR-National Rice Research InstituteCuttackIndia
  2. 2.Division of Crop ProductionICAR-National Rice Research InstituteCuttackIndia
  3. 3.Division of Crop ImprovementICAR-National Rice Research InstituteCuttackIndia
  4. 4.Integrated Rural Development and ManagementRamakrishna Mission Vivekananda UniversityKolkataIndia

Personalised recommendations