Advertisement

Bioinformatics Resources for the Stress Biology of Plants

  • Sonu Kumar
  • Asheesh Shanker
Chapter

Abstract

Bioinformatics play an invaluable role in many areas of biological research including stress biology. In the present global scenario, almost every organism faces stress as a response to stressors (biotic or abiotic). Any stress has serious impact on the overall growth and development of organisms. Moreover, productivity of plants is also affected by stress. Due to these reasons, stress biology has been the focus of research for many scientists, and the massive data generated by them require appropriate management and analysis tools. The availability of bioinformatics tools including software, databases, and web resources has brought a major change in the stress-related research. These resources help in the analysis and better interpretation of the data generated through experiments. This chapter deals with various general and specialized bioinformatics resources useful for the stress biology community working on plants.

Keywords

Bioinformatics Plant Stress Abiotic Biotic Databases Software 

References

  1. Alter S, Bader KC, Spannagl M, Wang Y, Bauer E, Schön CC, Mayer KF (2015) DroughtDB: an expert-curated compilation of plant drought stress genes and their homologs in nine species. Database 2015:bav046CrossRefPubMedPubMedCentralGoogle Scholar
  2. Altman RB (2004) Building successful biological databases. Brief Bioinform 5:4–5CrossRefPubMedGoogle Scholar
  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefGoogle Scholar
  4. Amid C, Birney E, Bower L, Cerdeño-Tárraga A, Cheng Y, Cleland I, Faruque N, Gibson R, Goodgame N, Hunter C, Jang M (2011) Major submissions tool developments at the European nucleotide archive. Nucleic Acids Res 40:D43–D47CrossRefPubMedPubMedCentralGoogle Scholar
  5. Atkinson NJ, Urwin PE (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J Exp Bot 63:3523–3543CrossRefPubMedGoogle Scholar
  6. Attwood TK, Gisel A, Eriksson NE, Bongcam-Rudloff E (2011) Concepts, historical milestones and the central place of bioinformatics in modern biology: a European perspective. In Bioinfo Tren Meth InTechGoogle Scholar
  7. Balaji J, Crouch JH, Petite PV, Hoisington DA (2006) A database of annotated tentative orthologs from crop abiotic stress transcripts. Bioinformation 1:225–227PubMedPubMedCentralGoogle Scholar
  8. Barker WC, Garavelli JS, Haft DH, Hunt LT, Marzec CR, Orcutt BC, Srinivasarao GY, Yeh LS, Ledley RS, Mewes HW, Pfeiffer F (1998) The PIR-international protein sequence database. Nucleic Acids Res 26:27–32CrossRefPubMedPubMedCentralGoogle Scholar
  9. Benson DA, Karsch-Mizrachi I, Lipman DJ, Ostell J, Rapp BA, Wheeler DL (2000) GenBank. Nucleic Acids Res 28:15–18CrossRefPubMedPubMedCentralGoogle Scholar
  10. Berardini TZ, Reiser L, Li D, Mezheritsky Y, Muller R, Strait E, Huala E (2015) The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis 53:474–485CrossRefPubMedPubMedCentralGoogle Scholar
  11. Berman HM, Battistuz T, Bhat TN, Bluhm WF, Bourne PE, Burkhardt K, Feng Z, Gilliland GL, Iype L, Jain S, Fagan P (2002) The protein data bank. Acta Crystallogr D Biol Crystallogr 58:899–907CrossRefPubMedGoogle Scholar
  12. Blaszczyk M, Jamroz M, Kmiecik S, Kolinski A (2013) CABS-fold: server for the de novo and consensus-based prediction of protein structure. Nucleic Acids Res 41:W406–W411CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bolser D, Staines DM, Pritchard E, Kersey P (2016) Ensembl plants: integrating tools for visualizing, mining, and analyzing plant genomics data. Plant Bioinfo: Meth Proto 1374:115–40Google Scholar
  14. Boutet E, Lieberherr D, Tognolli M, Schneider M, Bairoch A (2007) UniProtKB/Swiss-Prot: the manually annotated section of the UniProt Knowledge Base. Plant Bioinfo: Meth Proto 406:89–112Google Scholar
  15. Brooks BR, Bruccoleri RE, Olafson BD, States DJ, Swaminathan SA, Karplus M (1983) CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4:187–217CrossRefGoogle Scholar
  16. Calzadilla PI, Maiale SJ, Ruiz OA, Escaray FJ (2016) Transcriptome response mediated by cold stress in Lotus japonicus. Front Plant Sci 7:374CrossRefPubMedPubMedCentralGoogle Scholar
  17. Chen J, Anderson JB, DeWeese-Scott C, Fedorova ND, Geer LY, He S, Hurwitz DI, Jackson JD, Jacobs AR, Lanczycki CJ, Liebert CA (2003) MMDB: Entrez’s 3D-structure database. Nucleic Acids Res 31:474–477CrossRefPubMedPubMedCentralGoogle Scholar
  18. Choudhury FK, Rivero RM, Eduardo B, Mittler R (2017) Reactive oxygen species, abiotic stress and stress combination. Plant J 90:856–867CrossRefPubMedGoogle Scholar
  19. Cochrane G, Karsch-Mizrachi I, Takagi T, Sequence Database Collaboration IN (2015) The international nucleotide sequence database collaboration. Nucleic Acids Res 44:D48–D50CrossRefPubMedPubMedCentralGoogle Scholar
  20. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797CrossRefPubMedPubMedCentralGoogle Scholar
  21. Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz DT, Repasky MP, Knoll EH, Shelley M, Perry JK, Shaw DE (2004) Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. J Med Chem 47:1739–1749CrossRefPubMedGoogle Scholar
  22. Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-Pdb viewer: an environment for comparative protein modeling. Electrophoresis 18:2714–2723CrossRefPubMedGoogle Scholar
  23. Hess B, Kutzner C, Van Der Spoel D, Lindahl E (2008) GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 4:435–447CrossRefPubMedGoogle Scholar
  24. Hirayama T, Shinozaki K (2010) Research on plant abiotic stress responses in the post-genome era: past, present and future. Plant J 61:1041–1052CrossRefGoogle Scholar
  25. Jayaram B, Singh T, Mukherjee G, Mathur A, Shekhar S, Shekhar V (2012) Sanjeevini: a freely accessible web-server for target directed lead molecule discovery. BMC Bioinforma 13:S7CrossRefGoogle Scholar
  26. Jayaram B, Dhingra P, Mishra A, Kaushik R, Mukherjee G, Singh A, Shekhar S (2014) Bhageerath-H: a homology/ab initio hybrid server for predicting tertiary structures of monomeric soluble proteins. BMC Bioinforma 15:S7CrossRefGoogle Scholar
  27. Källberg M, Margaryan G, Wang S, Ma J, Xu J (2014) RaptorX server: a resource for template-based protein structure modeling. Prot Str Prediction 1137:17–27CrossRefGoogle Scholar
  28. Kaminuma E, Kosuge T, Kodama Y, Aono H, Mashima J, Gojobori T, Sugawara H, Ogasawara O, Takagi T, Okubo K, Nakamura Y (2010) DDBJ progress report. Nucleic Acids Res 39:D22–D27CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefPubMedPubMedCentralGoogle Scholar
  30. Katoh K, Kuma KI, Toh H, Miyata T (2005) MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Res 33:511–518CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kim DE, Chivian D, Baker D (2004) Protein structure prediction and analysis using the Robetta server. Nucleic Acids Res 32:W526–W531CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kumar SA, Kumari PH, Sundararajan VS, Suravajhala P, Kanagasabai R, Kishor PK (2014) PSPDB: plant stress protein database. Plant Mol Biol Report 32:940–942CrossRefGoogle Scholar
  33. Lambert C, Leonard N, De Bolle X, Depiereux E (2002) ESyPred3D: prediction of proteins 3D structures. Bioinformatics 18:1250–1256CrossRefPubMedGoogle Scholar
  34. Leonberger K, Jackson K, Smith R, Ward Gauthier N (2016) Plant diseases [2016]. Agric Nat Res Pub. 182Google Scholar
  35. Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51:497–523CrossRefPubMedPubMedCentralGoogle Scholar
  36. Moraes Filho RM, Menezes AF, Martins LS (2017) In silico modeling and characterization of phytoparasitic nematodes translationally-controlled tumor proteins. Genet Mol Res:16Google Scholar
  37. Morgenstern B (1999) DIALIGN 2: improvement of the segment-to-segment approach to multiple sequence alignment. Bioinformatics (Oxford, England) 15:211–218CrossRefGoogle Scholar
  38. Morris GM, Huey R, Lindstrom W, Sanner MF, Belew RK, Goodsell DS, Olson AJ (2009) AutoDock4 and AutoDockTools4: automated docking with selective receptor flexibility. J Comput Chem 30:2785–2791CrossRefPubMedPubMedCentralGoogle Scholar
  39. Mount DM (2004/2003) Bioinformatics: sequence and genome analysis (2). CSHL Press, New York: 1–8Google Scholar
  40. Mousavi SA, Pouya FM, Ghaffari MR, Mirzaei M, Ghaffari A, Alikhani M, Ghareyazie M, Komatsu S, Haynes PA, Salekdeh GH (2016) PlantPReS: a database for plant proteome response to stress. J Proteome 143:69–72CrossRefGoogle Scholar
  41. Naika M, Shameer K, Mathew OK, Gowda R, Sowdhamini R (2013) STIFDB2: an updated version of plant stress-responsive transcription factor database with additional stress signals, stress-responsive transcription factor binding sites and stress-responsive genes in Arabidopsis and rice. Plant Cell Physiol 54:e8CrossRefPubMedPubMedCentralGoogle Scholar
  42. Nawaz M, Iqbal N, Idrees S, Ullah I (2014) DREB1A from Oryza sativa var. IR6: homology modelling and molecular docking. Turk J Bot 38:1095–1102CrossRefGoogle Scholar
  43. Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48:443–453CrossRefPubMedGoogle Scholar
  44. Nielsen M, Lundegaard C, Lund O, Petersen TN (2010) CPHmodels-3.0-remote homology modeling using structure-guided sequence profiles. Nucleic Acids Res 38:W576–W581CrossRefPubMedPubMedCentralGoogle Scholar
  45. Notredame C, Higgins DG, Heringa J (2000) T-coffee: a novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217CrossRefPubMedGoogle Scholar
  46. Pearlman DA, Case DA, Caldwell JW, Ross WS, Cheatham TE, DeBolt S, Ferguson D, Seibel G, Kollman P (1995) AMBER, a package of computer programs for applying molecular mechanics, normal mode analysis, molecular dynamics and free energy calculations to simulate the structural and energetic properties of molecules. Comput Phys Commun 91:1–41CrossRefGoogle Scholar
  47. Pearson WR (1990) Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol 183:63–98Google Scholar
  48. Prabha R, Ghosh I, Singh DP (2011) Plant stress gene database: a collection of plant genes responding to stress condition. ARPN J Sci Techno 1:28–31Google Scholar
  49. Priya P, Jain M (2013) RiceSRTFDB: a database of rice transcription factors containing comprehensive expression, cis-regulatory element and mutant information to facilitate gene function analysis. Database 2013:bat027CrossRefPubMedPubMedCentralGoogle Scholar
  50. Purty RS, Sachar M, Chatterjee S (2017) Structural and expression analysis of salinity stress responsive phosphoserine phosphatase from Brassica juncea (L.) J Proteomics Bioinform 10:119–127CrossRefGoogle Scholar
  51. Rice P, Longden I, Bleasby A (2000) EMBOSS: the European molecular biology open software suite. Trends Genet 16:276–277CrossRefPubMedGoogle Scholar
  52. Rodziewicz P, Swarcewicz B, Chmielewska K, Wojakowska A, Stobiecki M (2014) Influence of abiotic stresses on plant proteome and metabolome changes. Acta Physiol Plant 36:1–9CrossRefGoogle Scholar
  53. Schwede T, Kopp J, Guex N, Peitsch MC (2003) SWISS-MODEL: an automated protein homology-modeling server. Nucleic Acids Res 31:3381–3385CrossRefPubMedPubMedCentralGoogle Scholar
  54. Sham A, Aly MA (2012) Bioinformatics based comparative analysis of omega-3 fatty acids in desert plants and their role in stress resistance and tolerance. Int J Plant Sci 2:80–89Google Scholar
  55. Shameer K, Ambika S, Varghese SM, Karaba N, Udayakumar M, Sowdhamini R (2009) STIFDB- Arabidopsis stress responsive transcription factor dataBase. Int J Plant Genomics 2009:583429CrossRefPubMedPubMedCentralGoogle Scholar
  56. Sharma V, Munjal A, Shanker A (2016) A text book of bioinformatics, 2nd edn. Rastogi Publications, Meerut, p 350Google Scholar
  57. Shen Y, Maupetit J, Derreumaux P, Tufféry P (2014) Improved PEP-FOLD approach for peptide and miniprotein structure prediction. J Chem Theory Comput 10:4745–4758CrossRefPubMedGoogle Scholar
  58. Smita S, Lenka SK, Katiyar A, Jaiswal P, Preece J, Bansal KC (2011) QlicRice: a web interface for abiotic stress responsive QTL and loci interaction channels in rice. Database 2011:bar037CrossRefPubMedPubMedCentralGoogle Scholar
  59. Smith K (2013) A brief history of NCBI’s formation and growth. The NCBI HandbookGoogle Scholar
  60. Smith TF, Waterman MS (1981) Identification of common molecular subsequences. J Mol Biol 147:195–197CrossRefPubMedGoogle Scholar
  61. Tatusova T, Smith-White B, Ostell J (2007) A collection of plant-specific genomic data and resources at NCBI. Plant Bioinfo: Meth Proto 406:61–87CrossRefGoogle Scholar
  62. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  63. Trott O, Olson AJ (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J Comput Chem 31:455–461PubMedPubMedCentralGoogle Scholar
  64. Wang L, Guo Z, Zhang Y, Wang Y, Yang G, Yang L, Wang R, Xie Z (2017) Characterization of LhSorP5CS, a gene catalyzing proline synthesis in Oriental hybrid lily Sorbonne: molecular modelling and expression analysis. Bot Stud 58:10CrossRefPubMedPubMedCentralGoogle Scholar
  65. Webb B, Sali A (2014) Protein structure modeling with MODELLER. Protein Struct Prediction 2014:1–15Google Scholar
  66. Wei Z, Zeng X, Qin C, Wang Y, Bai L, Xu Q, Yuan H, Tang Y, Nyima T (2016) Comparative transcriptome analysis revealed genes commonly responsive to varied nitrate stress in leaves of Tibetan hulless barley. Front Plant Sci 7:1067PubMedPubMedCentralGoogle Scholar
  67. Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Edgar R, Federhen S, Feolo M (2007) Database resources of the national center for biotechnology information. Nucleic Acids Res 36:D13–D21CrossRefPubMedPubMedCentralGoogle Scholar
  68. Wu S, Zhang Y (2007) LOMETS: a local meta-threading-server for protein structure prediction. Nucleic Acids Res 35:3375–3382CrossRefPubMedPubMedCentralGoogle Scholar
  69. Xiong H, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Li J, Liu L (2017) RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Sci Rep 7:2731CrossRefPubMedPubMedCentralGoogle Scholar
  70. Yang JM, Chen CC (2004) GEMDOCK: a generic evolutionary method for molecular docking. Proteins: Struct Funct Bioinfo 55:288–304CrossRefGoogle Scholar
  71. Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y (2015) The I-TASSER suite: protein structure and function prediction. Nat Methods 12:7–8CrossRefPubMedPubMedCentralGoogle Scholar
  72. Zhang S, Yue Y, Sheng L, Wu Y, Fan G, Li A, Hu X, ShangGuan M, Wei C (2013) PASmiR: a literature curated database for miRNA molecular regulation in plant response to abiotic stress. BMC Plant Biol 13:33CrossRefPubMedPubMedCentralGoogle Scholar
  73. Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167:313–324CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Sonu Kumar
    • 1
  • Asheesh Shanker
    • 1
  1. 1.Bioinformatics Programme, Center for Biological SciencesCentral University of South BiharPatnaIndia

Personalised recommendations