MicroRNA (miRNA) and Small Interfering RNA (siRNA): Biogenesis and Functions in Plants

  • Parul Chowdhury


Small RNA was first identified in 1981 in the genetic screening of Caenorhabditis elegans. Functions of these RNA are to repress gene expression by base pairing with complementary sequences within gene. Therefore, regulation by these small RNAs is called as RNA silencing, gene silencing or RNA interference (RNAi). Till date various kinds of small RNA have been discovered and categorized on the basis of their origin, biogenesis and functions. RNase III type of ribonuclease enzymes, i.e. dicers, is involved in small RNA processing, along with many other enzymes. Small RNAs are classified broadly into two classes, microRNAs (miRNAs) and small interfering RNAs (siRNAs) according to their origin. These small RNAs are further classified on the basis of their mechanism of gene silencing, cleavage of complementary mRNA, translational repression, transcriptional repression and DNA elimination through histone modification. These small-sized RNAs have bigger and vital roles to play in plants, which pertain to gene regulation during biotic stress and abiotic stress and development. Small RNA also plays a role in the plant defence against viruses and transposable elements.


Small RNA MicroRNA siRNA Dicer Development Biotic and abiotic stress 


  1. Achard P, Herr A, Baulcombe DC, Harberd NP (2004) Modulation of floral development by a gibberellin-regulated microRNA. Development 131(14):3357–3365PubMedCrossRefGoogle Scholar
  2. Adai A, Johnson C, Mlotshwa S, Archer-Evans S, Manocha V, Vance V, Sundaresan V (2005) Computational prediction of miRNAs in Arabidopsis thaliana. Genome Res 15(1):78–91PubMedPubMedCentralCrossRefGoogle Scholar
  3. Adenot X, Elmayan T, Lauressergues D, Boutet S, Bouché N, Gasciolli V, Vaucheret H (2006) DRB4-dependent TAS3 trans-acting siRNAs control leaf morphology through AGO7. Curr Biol 16(9):927–932PubMedCrossRefGoogle Scholar
  4. Allen E, Howell MD (2010) miRNAs in the biogenesis of trans-acting siRNAs in higher plants. Semin Cell Dev Biol 21:798–804PubMedCrossRefGoogle Scholar
  5. Allen E, Xie Z, Gustafson AM, Sung GH, Spatafora JW, Carrington JC (2004) Evolution of microRNA genes by inverted duplication of target gene sequences in Arabidopsis thaliana. Nat Genet 36(12):1282–1290PubMedCrossRefGoogle Scholar
  6. Allen E, Xie Z, Gustafson AM, Carrington JC (2005) microRNA-directed phasing during trans-acting siRNA biogenesis in plants. Cell 121(2):207–221PubMedCrossRefGoogle Scholar
  7. Alonso-Peral MM, Li J, Li Y et al (2010) The microRNA159-regulated GAMYB-like genes inhibit growth and promote programmed cell death in Arabidopsis. Plant Physiol 154(2):757–771PubMedPubMedCentralCrossRefGoogle Scholar
  8. Altuvia Y, Landgraf P, Lithwick G et al (2005) Clustering and conservation patterns of human microRNAs. Nucleic Acids Res 33(8):2697–2706PubMedPubMedCentralCrossRefGoogle Scholar
  9. Aravin AA, Lagos-Quintana M, Yalcin A et al (2003) The small RNA profile during Drosophila melanogaster development. Dev Cell 5(2):337–350PubMedCrossRefGoogle Scholar
  10. Arteaga-Vázquez M, Caballero-Pérez J, Vielle-Calzada JP (2006) A family of microRNAs present in plants and animals. Plant Cell 18(12):3355–3369PubMedPubMedCentralCrossRefGoogle Scholar
  11. Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a microRNA and its APETALA2-like target genes. Plant Cell 15(11):2730–2741PubMedPubMedCentralCrossRefGoogle Scholar
  12. Axtell MJ, Bartel DP (2005) Antiquity of microRNAs and their targets in land plants. Plant Cell 17(6):1658–1673PubMedPubMedCentralCrossRefGoogle Scholar
  13. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297PubMedCrossRefGoogle Scholar
  14. Baskerville S, Bartel DP (2005) Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA 11(3):241–247PubMedPubMedCentralCrossRefGoogle Scholar
  15. Berger Y, Harpaz-Saad S, Brand A et al (2009) The NAC-domain transcription factor GOBLET specifies leaflet boundaries in compound tomato leaves. Development 136(5):823–832PubMedCrossRefGoogle Scholar
  16. Blevins T, Rajeswaran R, Shivaprasad PV et al (2006) Four plant dicers mediate viral small RNA biogenesis and DNA virus induced silencing. Nucleic Acids Res 34(21):6233–6246PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bollman KM, Aukerman MJ, Park MY, Hunter C, Berardini TZ, Poethig RS (2003) HASTY, the Arabidopsis ortholog of exportin 5/MSN5, regulates phase change and morphogenesis. Development 130(8):1493–1504PubMedCrossRefGoogle Scholar
  18. Bonnet E, Wuyts J, Rouzé P, Van de Peer Y (2004) Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 20(17):2911–2917PubMedCrossRefGoogle Scholar
  19. Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123(7):1279–1291PubMedPubMedCentralCrossRefGoogle Scholar
  20. Bouché N (2010) New insights into miR398 functions in Arabidopsis. Plant Signal Behav 5(6):684–686PubMedPubMedCentralCrossRefGoogle Scholar
  21. Buxdorf K, Hendelman A, Stav R, Lapidot M, Ori N, Arazi T (2010) Identification and characterization of a novel miR159 target not related to MYB in tomato. Planta 232(5):1009–1022PubMedCrossRefGoogle Scholar
  22. Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cerutti L, Mian N, Bateman A (2000) Domains in gene silencing and cell differentiation proteins: the novel PAZ domain and redefinition of the Piwi domain. Trends Biochem Sci 25(10):481–482PubMedCrossRefGoogle Scholar
  24. Chaabane SB, Liu R, Chinnusamy V et al (2013) STA1, an Arabidopsis pre-mRNA processing factor 6 homolog, is a new player involved in miRNA biogenesis. Nucleic Acids Res 41(3):1984–1997PubMedCrossRefGoogle Scholar
  25. Chalfie M, Sulston J (1981) Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev Biol 82(2):358–370PubMedCrossRefGoogle Scholar
  26. Chapman EJ, Carrington JC (2007) Specialization and evolution of endogenous small RNA pathways. Nat Rev Genet 8(11):884–896PubMedCrossRefGoogle Scholar
  27. Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303(5666):2022–2025PubMedCrossRefGoogle Scholar
  28. Chiou TJ (2007) The role of microRNAs in sensing nutrient stress. Plant Cell Environ 30(3):323–332PubMedCrossRefGoogle Scholar
  29. Copeland C, Xu S, Qi Y, Li X (2013) MOS2 has redundant function with its homolog MOS2H and is required for proper splicing of SNC1. Plant Signal Behav 8:e25372PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cuperus JT, Fahlgren N, Carrington JC (2011) Evolution and functional diversification of MIRNA genes. Plant Cell 23(2):431–442PubMedPubMedCentralCrossRefGoogle Scholar
  31. De Paoli E, Dorantes-Acosta A, Zhai J et al (2009) Distinct extremely abundant siRNAs associated with cosuppression in petunia. RNA 15(11):1965–1970PubMedPubMedCentralCrossRefGoogle Scholar
  32. Dmitriev AA, Kudryavtseva AV, Bolsheva NL et al (2017) miR319, miR390, and miR393 are involved in aluminum response in flax (Linum usitatissimum L.) Biomed Res Int 2017:4975146. Scholar
  33. Eamens AL, Smith NA, Curtin SJ, Wang MB, Waterhouse PM (2009) The Arabidopsis thaliana double-stranded RNA binding protein DRB1 directs guide strand selection from microRNA duplexes. RNA 15(12):2219–2235PubMedPubMedCentralCrossRefGoogle Scholar
  34. Fabian MR, Sonenberg N, Filipowicz W (2010) Regulation of mRNA translation and stability by microRNAs. Annu Rev Biochem 79:351–379PubMedCrossRefGoogle Scholar
  35. Faghihi MA, Wahlestedt C (2009) Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol 10(9):637–643PubMedPubMedCentralCrossRefGoogle Scholar
  36. Finnegan EJ, Matzke MA (2003) The small RNA world. J Cell Sci 116(23):4689–4693PubMedCrossRefGoogle Scholar
  37. Floyd SK, Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428(6982):485–486PubMedCrossRefGoogle Scholar
  38. Fox S, Sergei F, Mockler TC (2009) Applications of ultra-high-throughput sequencing. In: Belostotky DA (ed) Plant systems biology. Humana Press, New York, pp 79–108CrossRefGoogle Scholar
  39. Furini A, Koncz C, Salamini F, Bartels D (1997) High level transcription of a member of a repeated gene family confers dehydration tolerance to callus tissue of Craterostigma plantagineum. EMBO J 16(12):3599–3608PubMedPubMedCentralCrossRefGoogle Scholar
  40. Gandikota M, Birkenbihl RP, Höhmann S, Cardon GH, Saedler H, Huijser P (2007) The miRNA156/157 recognition element in the 3′ UTR of the Arabidopsis SBP box gene SPL3 prevents early flowering by translational inhibition in seedlings. Plant J 49(4):683–693PubMedCrossRefGoogle Scholar
  41. Gocal GF, Sheldon CC, Gubler F et al (2001) GAMYB-like genes, flowering, and gibberellin signaling in Arabidopsis. Plant Physiol 127(4):1682–1693PubMedPubMedCentralCrossRefGoogle Scholar
  42. Goetz M, Hooper LC, Johnson SD, Rodrigues JCM, Vivian-Smith A, Koltunow AM (2007) Expression of aberrant forms of AUXIN RESPONSE FACTOR8 stimulates parthenocarpy in Arabidopsis and tomato. Plant Physiol 145(2):351–366PubMedPubMedCentralCrossRefGoogle Scholar
  43. Grigg SP, Canales C, Hay A, Tsiantis M (2005) SERRATE coordinates shoot meristem function and leaf axial patterning in Arabidopsis. Nature 437(7061):1022–1026PubMedCrossRefGoogle Scholar
  44. Guo HS, Xie Q, Fei JF, Chua NH (2005) MicroRNA directs mRNA cleavage of the transcription factor NAC1 to downregulate auxin signals for Arabidopsis lateral root development. Plant Cell 17(5):1376–1386PubMedPubMedCentralCrossRefGoogle Scholar
  45. Hackenberg M, Shi BJ, Gustafson P, Langridge P (2013) Characterization of phosphorus-regulated miR399 and miR827 and their isomirs in barley under phosphorus-sufficient and phosphorus-deficient conditions. BMC Plant Biol 13(1):214PubMedPubMedCentralCrossRefGoogle Scholar
  46. Hagen G, Guilfoyle T (2002) Auxin-responsive gene expression: genes, promoters and regulatory factors. Plant Mol Biol 49(3–4):373–385PubMedCrossRefGoogle Scholar
  47. Hammond SM (2005) Dicing and slicing. FEBS Lett 579(26):5822–5829PubMedCrossRefGoogle Scholar
  48. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293(5532):1146–1150PubMedCrossRefGoogle Scholar
  49. Hannon GJ (2002) RNA interference. Nature 418(6894):244–251PubMedCrossRefGoogle Scholar
  50. Held MA, Penning B, Brandt AS, Kessans SA, Yong W, Scofield SR, Carpita NC (2008) Small-interfering RNAs from natural antisense transcripts derived from a cellulose synthase gene modulate cell wall biosynthesis in barley. Proc Natl Acad Sci U S A 105(51):20534–20539PubMedPubMedCentralCrossRefGoogle Scholar
  51. Helliwell CA, Chin-Atkins AN, Wilson IW, Chapple R, Dennis ES, Chaudhury A (2001) The Arabidopsis AMP1 gene encodes a putative glutamate carboxypeptidase. Plant Cell 13(9):2115–2125PubMedPubMedCentralCrossRefGoogle Scholar
  52. Huang TH, Fan B, Rothschild MF, Hu ZL, Li K, Zhao SH (2007) MiRFinder: an improved approach and software implementation for genome-wide fast microRNA precursor scans. BMC Bioinform 8(1):1CrossRefGoogle Scholar
  53. Iki T, Yoshikawa M, Nishikiori M et al (2010) In vitro assembly of plant RNA-induced silencing complexes facilitated by molecular chaperone HSP90. Mol Cell 39(2):282–291PubMedCrossRefGoogle Scholar
  54. Jagadeeswaran G, Saini A, Sunkar R (2009) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229(4):1009–1014PubMedCrossRefGoogle Scholar
  55. Jin H (2008) Endogenous small RNAs and antibacterial immunity in plants. FEBS Lett 582(18):2679–2684PubMedPubMedCentralCrossRefGoogle Scholar
  56. Johnson C, Kasprzewska A, Tennessen K et al (2009) Clusters and superclusters of phased small RNAs in the developing inflorescence of rice. Genome Res 19(8):1429–1440PubMedPubMedCentralCrossRefGoogle Scholar
  57. Jones-Rhoades MW, Bartel DP, Bartel B (2006) MicroRNAs and their regulatory roles in plants. Annu Rev Plant Biol 57:19–53PubMedCrossRefGoogle Scholar
  58. Katiyar-Agarwal S, Morgan R, Dahlbeck D et al (2006) A pathogen-inducible endogenous siRNA in plant immunity. Proc Natl Acad Sci U S A 103(47):18002–18007PubMedPubMedCentralCrossRefGoogle Scholar
  59. Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95(7):1017–1026PubMedCrossRefGoogle Scholar
  60. Khvorova A, Reynolds A, Jayasena SD (2003) Functional siRNAs and miRNAs exhibit strand bias. Cell 115(2):209–216PubMedCrossRefGoogle Scholar
  61. Kulcheski FR, de Oliveira LF, Molina LG et al (2011) Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics 12(1):307PubMedPubMedCentralCrossRefGoogle Scholar
  62. Kurihara Y, Watanabe Y (2004) Arabidopsis micro-RNA biogenesis through dicer-like 1 protein functions. Proc Natl Acad Sci U S A 101(34):12753–12758PubMedPubMedCentralCrossRefGoogle Scholar
  63. Kurihara Y, Takashi Y, Watanabe Y (2006) The interaction between DCL1 and HYL1 is important for efficient and precise processing of pri-miRNA in plant microRNA biogenesis. RNA 12(2):206–212PubMedPubMedCentralCrossRefGoogle Scholar
  64. Landgraf P, Rusu M, Sheridan R et al (2007) A mammalian microRNA expression atlas based on small RNA library sequencing. Cell 129(7):1401–1414PubMedPubMedCentralCrossRefGoogle Scholar
  65. Laubinger S, Sachsenberg T, Zeller G, Busch W, Lohmann JU, Rätsch G, Weigel D (2008) Dual roles of the nuclear cap-binding complex and SERRATE in pre-mRNA splicing and microRNA processing in Arabidopsis thaliana. Proc Natl Acad Sci U S A 105(25):8795–8800PubMedPubMedCentralCrossRefGoogle Scholar
  66. Laufs P, Peaucelle A, Morin H, Traas J (2004) MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131(17):4311–4322PubMedCrossRefGoogle Scholar
  67. Lauter N, Kampani A, Carlson S, Goebel M, Moose SP (2005) microRNA172 down-regulates glossy15 to promote vegetative phase change in maize. Proc Natl Acad Sci U S A 102(26):9412–9417PubMedPubMedCentralCrossRefGoogle Scholar
  68. Lee RC, Feinbaum RL, Ambros V (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75(5):843–854PubMedCrossRefPubMedCentralGoogle Scholar
  69. Lee Y, Jeon K, Lee JT, Kim S, Kim VN (2002) MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 21(17):4663–4670PubMedPubMedCentralCrossRefGoogle Scholar
  70. Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425(6956):415–419PubMedCrossRefPubMedCentralGoogle Scholar
  71. Li J, Yang Z, Yu B, Liu J, Chen X (2005) Methylation protects miRNAs and siRNAs from a 3′-end uridylation activity in Arabidopsis. Curr Biol 15(16):1501–1507PubMedPubMedCentralCrossRefGoogle Scholar
  72. Lippman Z, Martienssen R (2004) The role of RNA interference in heterochromatic silencing. Nature 431(7006):364–370PubMedCrossRefGoogle Scholar
  73. Lippman Z, Gendrel AV, Black M et al (2004) Role of transposable elements in heterochromatin and epigenetic control. Nature 430(6998):471–476PubMedCrossRefGoogle Scholar
  74. Liu J, Carmell MA, Rivas FV et al (2004) Argonaute2 is the catalytic engine of mammalian RNAi. Science 305(5689):1437–1441PubMedCrossRefGoogle Scholar
  75. Liu Z, Jia L, Wang H, He Y (2011) HYL1 regulates the balance between adaxial and abaxial identity for leaf flattening via miRNA-mediated pathways. J Exp Bot 62:4367–4381PubMedPubMedCentralCrossRefGoogle Scholar
  76. Liu YX, Wang M, Wang XJ (2014) Endogenous small RNA clusters in plants. Genomics Proteom Bioinform 12(2):64–71CrossRefGoogle Scholar
  77. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297(5589):2053–2056PubMedCrossRefGoogle Scholar
  78. Lu C, Fedoroff N (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12(12):2351–2365PubMedPubMedCentralCrossRefGoogle Scholar
  79. Lv DK, Bai X, Li Y et al (2010) Profiling of cold-stress-responsive miRNAs in rice by microarrays. Gene 459(1):39–47PubMedCrossRefGoogle Scholar
  80. Ma X, Tang Z, Qin J, Meng Y (2015) The use of high-throughput sequencing methods for plant microRNA research. RNA Biol 12(7):709–719PubMedPubMedCentralCrossRefGoogle Scholar
  81. MacRae IJ, Zhou K, Li F et al (2006) Structural basis for double-stranded RNA processing by dicer. Science 311(5758):195–198PubMedCrossRefGoogle Scholar
  82. Mallory AC, Vaucheret H (2006) Functions of microRNAs and related small RNAs in plants. Nat Genet 38:S31–S36PubMedCrossRefGoogle Scholar
  83. Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang G, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23(16):3356–3364PubMedPubMedCentralCrossRefGoogle Scholar
  84. Mallory AC, Bartel DP, Bartel B (2005) MicroRNA-directed regulation of Arabidopsis AUXIN RESPONSE FACTOR17 is essential for proper development and modulates expression of early auxin response genes. Plant Cell 17(5):1360–1375PubMedPubMedCentralCrossRefGoogle Scholar
  85. Manavella PA, Hagmann J, Ott F, Laubinger S, Franz M, Macek B, Weigel D (2012) Fast-forward genetics identifies plant CPL phosphatases as regulators of miRNA processing factor HYL1. Cell 151(4):859–870PubMedCrossRefGoogle Scholar
  86. Mello CC, Conte D (2004) Revealing the world of RNA interference. Nature 431(7006):338–342PubMedCrossRefGoogle Scholar
  87. Mi S, Cai T, Hu Y et al (2008) Sorting of small RNAs into Arabidopsis argonaute complexes is directed by the 5′ terminal nucleotide. Cell 133(1):116–127PubMedPubMedCentralCrossRefGoogle Scholar
  88. Nag A, King S, Jack T (2009) miR319a targeting of TCP4 is critical for petal growth and development in Arabidopsis. Proc Natl Acad Sci U S A 106(52):22534–22539PubMedPubMedCentralCrossRefGoogle Scholar
  89. Nagasaki H, Itoh JI, Hayashi K et al. Y(2007) The small interfering RNA production pathway is required for shoot meristem initiation in rice. Proc Natl Acad Sci U S A 104(37):14867–14871PubMedPubMedCentralCrossRefGoogle Scholar
  90. Navarro L, Dunoyer P, Jay F et al. JD(2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312(5772):436–439PubMedCrossRefGoogle Scholar
  91. Ngo H, Tschudi C, Gull K, Ullu E (1998) Double-stranded RNA induces mRNA degradation in Trypanosoma brucei. Proc Natl Acad Sci U S A 95(25):14687–14692PubMedPubMedCentralCrossRefGoogle Scholar
  92. Nodine MD, Bartel DP (2010) MicroRNAs prevent precocious gene expression and enable pattern formation during plant embryogenesis. Genes Dev 24(23):2678–2692PubMedPubMedCentralCrossRefGoogle Scholar
  93. Nogueira FT, Chitwood DH, Madi S, Ohtsu K, Schnable PS, Scanlon MJ, Timmermans MC (2009) Regulation of small RNA accumulation in the maize shoot apex. PLoS Genet 5(1):e1000320PubMedPubMedCentralCrossRefGoogle Scholar
  94. Palatnik JF, Allen E, Wu X, Schommer C, Schwab R, Carrington JC, Weigel D (2003) Control of leaf morphogenesis by microRNAs. Nature 425(6955):257–263PubMedCrossRefGoogle Scholar
  95. Papp I, Mette MF, Aufsatz W et al (2003) Evidence for nuclear processing of plant micro RNA and short interfering RNA precursors. Plant Physiol 132(3):1382–1390PubMedPubMedCentralCrossRefGoogle Scholar
  96. Peragine A, Yoshikawa M, Wu G, Albrecht HL, Poethig RS (2004) SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev 18(19):2368–2379PubMedPubMedCentralCrossRefGoogle Scholar
  97. Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16(13):1616–1626PubMedPubMedCentralCrossRefGoogle Scholar
  98. Ren G, Xie M, Dou Y, Zhang S, Zhang C, Yu B (2012) Regulation of miRNA abundance by RNA binding protein TOUGH in Arabidopsis. Proc Natl Acad Sci U S A 109(31):12817–12821PubMedPubMedCentralCrossRefGoogle Scholar
  99. Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49(4):592–606PubMedPubMedCentralCrossRefGoogle Scholar
  100. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513–520PubMedCrossRefGoogle Scholar
  101. Rosa M, Prado C, Podazza G, Interdonato R, González JA, Hilal M, Prado FE (2009) Soluble sugars: metabolism, sensing and abiotic stress: a complex network in the life of plants. Plant Signal Behav 4(5):388–393PubMedPubMedCentralCrossRefGoogle Scholar
  102. Ru P, Xu L, Ma H, Huang H (2006) Plant fertility defects induced by the enhanced expression of microRNA167. Cell Res 16(5):457–465PubMedCrossRefGoogle Scholar
  103. Ruby JG, Jan C, Player C et al (2006) Large-scale sequencing reveals 21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans. Cell 127(6):1193–1207PubMedCrossRefGoogle Scholar
  104. Schauer SE, Jacobsen SE, Meinke DW, Ray A (2002) DICER-LIKE1: blind men and elephants in Arabidopsis development. Trends Plant Sci 7(11):487–491PubMedCrossRefGoogle Scholar
  105. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8(4):517–527PubMedCrossRefGoogle Scholar
  106. Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD (2003) Asymmetry in the assembly of the RNAi enzyme complex. Cell 115(2):199–208PubMedCrossRefGoogle Scholar
  107. Shen B, Goodman HM (2004) Uridine addition after microRNA-directed cleavage. Science 306(5698):997–997PubMedCrossRefGoogle Scholar
  108. Shikata M, Yamaguchi H, Sasaki K, Ohtsubo N (2012) Overexpression of Arabidopsis miR157b induces bushy architecture and delayed phase transition in Torenia fournieri. Planta 236(4):1027–1035PubMedCrossRefGoogle Scholar
  109. Souret FF, Kastenmayer JP, Green PJ (2004) AtXRN4 degrades mRNA in Arabidopsis and its substrates include selected miRNA targets. Mol Cell 15(2):173–183PubMedCrossRefGoogle Scholar
  110. Sun X, Xu L, Wang Y et al (2015) Identification of novel and salt-responsive miRNAs to explore miRNA-mediated regulatory network of salt stress response in radish (Raphanus sativus L.) BMC Genomics 16(1):197PubMedPubMedCentralCrossRefGoogle Scholar
  111. Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019PubMedPubMedCentralCrossRefGoogle Scholar
  112. Sunkar R, Girke T, Jain PK, Zhu JK (2005) Cloning and characterization of microRNAs from rice. Plant Cell 17(5):1397–1411PubMedPubMedCentralCrossRefGoogle Scholar
  113. Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18(8):2051–2065PubMedPubMedCentralCrossRefGoogle Scholar
  114. Thiebaut F, Rojas CA, Almeida KL et al (2012) Regulation of miR319 during cold stress in sugarcane. Plant Cell Environ 35(3):502–512PubMedCrossRefGoogle Scholar
  115. Tosic M, Roach A, de Rivaz JC, Dolivo M, Matthieu JM (1990) Post-transcriptional events are responsible for low expression of myelin basic protein in myelin deficient mice: role of natural antisense RNA. EMBO J 9(2):401PubMedPubMedCentralCrossRefGoogle Scholar
  116. Valdés-López O, Yang SS, Aparicio-Fabre R, Graham PH, Reyes JL, Vance CP, Hernández G (2010) MicroRNA expression profile in common bean (Phaseolus vulgaris) under nutrient deficiency stresses and manganese toxicity. New Phytol 187(3):805–818PubMedCrossRefGoogle Scholar
  117. Valiollahi E, Farsi M, Kakhki AM (2014) Sly-miR166 and Sly-miR319 are components of the cold stress response in Solanum lycopersicum. Plant Biotechnol Rep 8(4):349–356CrossRefGoogle Scholar
  118. Vaucheret H (2006) Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes Dev 20(7):759–771PubMedCrossRefGoogle Scholar
  119. Vaucheret H, Vazquez F, Crété P, Bartel DP (2004) The action of ARGONAUTE1 in the miRNA pathway and its regulation by the miRNA pathway are crucial for plant development. Genes Dev 18(10):1187–1197PubMedPubMedCentralCrossRefGoogle Scholar
  120. Vazquez F, Hohn T (2013) Biogenesis and biological activity of secondary siRNAs in plants. Scientifica 2013Google Scholar
  121. Verdel A, Vavasseur A, Le Gorrec M, Touat-Todeschini L (2009) Common themes in siRNA-mediated epigenetic silencing pathways. Int J Dev Biol 53(2):245PubMedCrossRefGoogle Scholar
  122. Vierstra RD (2003) The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci 8(3):135–142PubMedCrossRefGoogle Scholar
  123. Wang XJ, Reyes JL, Chua NH, Gaasterland T (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5:R65PubMedPubMedCentralCrossRefGoogle Scholar
  124. Wang JW, Wang LJ, Mao YB, Cai WJ, Xue HW, Chen XY (2005) Control of root cap formation by microRNA-targeted auxin response factors in Arabidopsis. Plant Cell 17(8):2204–2216PubMedPubMedCentralCrossRefGoogle Scholar
  125. Wang JW, Czech B, Weigel D (2009) miR156-regulated SPL transcription factors define an endogenous flowering pathway in Arabidopsis thaliana. Cell 138(4):738–749PubMedCrossRefGoogle Scholar
  126. Weiberg A, Wang M, Lin FM et al (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342(6154):118–123PubMedPubMedCentralCrossRefGoogle Scholar
  127. Werner S (2010) MicroRNA processing in Arabidopsis thaliana. Doctoral dissertation, Universität TübingenGoogle Scholar
  128. Wirth S, Crespi M (2009) Non-protein coding RNAs, a diverse class of gene regulators, and their action in plants. RNA Biol 6(2):161–164PubMedCrossRefGoogle Scholar
  129. Wu MF, Tian Q, Reed JW (2006) Arabidopsis microRNA167 controls patterns of ARF6 and ARF8 expression, and regulates both female and male reproduction. Development 133(21):4211–4218PubMedCrossRefGoogle Scholar
  130. Xie Z, Johansen LK, Gustafson AM et al (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2(5):e104PubMedPubMedCentralCrossRefGoogle Scholar
  131. Xie M, Ren G, Zhang C, Yu B (2012) The DNA-and RNA-binding protein FACTOR of DNA METHYLATION 1 requires XH domain-mediated complex formation for its function in RNA-directed DNA methylation. Plant J 72(3):491–500PubMedCrossRefGoogle Scholar
  132. Yang Z, Zhu Q, Luo K, Zhou Q (2001) The 7SK small nuclear RNA inhibits the CDK9/cyclin T1 kinase to control transcription. Nature 414(6861):317–322PubMedCrossRefGoogle Scholar
  133. Yang Z, Ebright YW, Yu B, Chen X (2006) HEN1 recognizes 21–24 nt small RNA duplexes and deposits a methyl group onto the 2′ OH of the 3′ terminal nucleotide. Nucleic Acids Res 34(2):667–675PubMedPubMedCentralCrossRefGoogle Scholar
  134. Yoshikawa M, Peragine A, Park MY, Poethig RS (2005) A pathway for the biogenesis of trans-acting siRNAs in Arabidopsis. Genes Dev 19(18):2164–2175PubMedPubMedCentralCrossRefGoogle Scholar
  135. Yu B, Bi L, Zheng B et al (2008) The FHA domain proteins DAWDLE in Arabidopsis and SNIP1 in humans act in small RNA biogenesis. Proc Natl Acad Sci U S A 105(29):10073–10078PubMedPubMedCentralCrossRefGoogle Scholar
  136. Yu N, Cai WJ, Wang S, Shan CM, Wang LJ, Chen XY (2010) Temporal control of trichome distribution by microRNA156-targeted SPL genes in Arabidopsis thaliana. Plant Cell 22(7):2322–2335PubMedPubMedCentralCrossRefGoogle Scholar
  137. Zeng Y, Yi R, Cullen BR (2005) Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J 24(1):138–148PubMedCrossRefGoogle Scholar
  138. Zhan X, Wang B, Li H, Liu R, Kalia RK, Zhu JK, Chinnusamy V (2012) Arabidopsis proline-rich protein important for development and abiotic stress tolerance is involved in microRNA biogenesis. Proc Natl Acad Sci U S A 109(44):18198–18203PubMedPubMedCentralCrossRefGoogle Scholar
  139. Zhang X, Yazaki J, Sundaresan A et al (2006) Genome-wide high-resolution mapping and functional analysis of DNA methylation in Arabidopsis. Cell 126(6):1189–1201PubMedCrossRefGoogle Scholar
  140. Zhang W, Gao S, Zhou X et al (2010) Multiple distinct small RNAs originate from the same microRNA precursors. Genome Biol 11(8):R81PubMedPubMedCentralCrossRefGoogle Scholar
  141. Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39:D1114–D1117PubMedCrossRefGoogle Scholar
  142. Zhang X, Xia J, Lii YE et al (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 13(3):R20PubMedPubMedCentralCrossRefGoogle Scholar
  143. Zhang Y, Zhu X, Chen et al (2014) Identification and characterization of cold-responsive microRNAs in tea plant (Camellia sinensis) and their targets using high-throughput sequencing and degradome analysis. BMC Plant Biol 14(1):271PubMedPubMedCentralCrossRefGoogle Scholar
  144. Zhou M, Luo H (2014) Role of microRNA319 in creeping bentgrass salinity and drought stress response. Plant Signal Behav 9(4):1375–1391CrossRefGoogle Scholar
  145. Zhou X, Wang G, Zhang W (2007) UV-B responsive microRNA genes in Arabidopsis thaliana. Mol Syst Biol 3(1):103PubMedPubMedCentralGoogle Scholar
  146. Zhou ZS, Zeng HQ, Liu ZP, Yang ZM (2012) Genome-wide identification of Medicago truncatula microRNAs and their targets reveals their differential regulation by heavy metal. Plant Cell Environ 35(1):86–99PubMedCrossRefGoogle Scholar
  147. Zhou M, Li D, Li Z, Hu Q, Yang C, Zhu L, Luo H (2013) Constitutive expression of a miR319 gene alters plant development and enhances salt and drought tolerance in transgenic creeping bentgrass. Plant Physiol 161(3):1375–1391PubMedPubMedCentralCrossRefGoogle Scholar
  148. Zhu QH, Helliwell CA (2010) Regulation of flowering time and floral patterning by miR172. J Exp Bot 62:487–495. Scholar
  149. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Parul Chowdhury
    • 1
  1. 1.Dr B Lal Institute of BiotechnologyJaipurIndia

Personalised recommendations