Advertisement

Targeting Quorum Sensing Mediated Staphylococcus aureus Biofilms: A Proteolytic Approach

  • Vipin Chandra Kalia
  • Shikha Koul
  • Subhasree Ray
  • Jyotsana Prakash
Chapter

Abstract

Staphylococcus aureus infects human through biofilm formed by the process of quorum sensing. Biofilm confers this human pathogen with high resistance to antibiotics. The inhibition of biofilm forming process or dispersal of already formed biofilm can be the potential targets for treating the diseases. Since, the biofilm is made up of exopolysaccharides, proteins and lipids, the action of proteases can hydrolyse the protein component and disrupt the biofilm matrix. Consequently the bacterium so exposed can be eliminated by low doses of antibacterials.

Keywords

Quorum sensing Proteases Bdellovibrio Staphylococcus Biofilms 

Notes

Acknowledgments

We are thankful to the Director of CSIR – Institute of Genomics and Integrative Biology (CSIR-IGIB), and CSIR-HRD (ES Scheme No. 21(1022)/16/EMR-II) for providing the necessary funds, facilities and moral support. Authors are also thankful to Academy of Scientific & Innovative Research (AcSIR), New Delhi and University Grants Commission (JP). This work was supported by Brain Pool grant (NRF-2018H1D3A2001756) by National Research Foundation of Korea (NRF) to work at Konkuk University.

References

  1. Abraham NM, Jefferson KK (2012) Staphylococcus aureus clumping factor B mediates biofilm formation in the absence of calcium. Microbiology 158:1504–1512.  https://doi.org/10.1099/mic.0.057018-0 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ahiwale SS, Bankar AV, Tagunde S, Kapadnis BP (2017) A bacteriophage mediated gold nanoparticle synthesis and their anti-biofilm activity. Indian J Microbiol 57:188–194.  https://doi.org/10.1007/s12088-017-0640-x CrossRefPubMedPubMedCentralGoogle Scholar
  3. Archer NK, Mazaitis MJ, Costerton JW, Leid JG, Powers ME, Shirtliff ME (2011) Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence 2:445–459.  https://doi.org/10.4161/viru.2.5.17724 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Artini M, Papa R, Scoarughi GL, Galano E, Barbato G, Pucci P, Selan L (2013) Comparison of the action of different proteases on virulence properties related to the staphylococcal surface. J Appl Microbiol 114:266–277.  https://doi.org/10.1111/lam.12038 CrossRefPubMedGoogle Scholar
  5. Azman CA-S, Othman I, Fang C-M, Chan K-G, Goh B-H, Lee L-H (2017) Antibacterial, anticancer and neuroprotective activities of rare actinobacteria from mangrove forest soils. Indian J Microbiol 57:177–187.  https://doi.org/10.1007/s12088-016-0627-z CrossRefPubMedGoogle Scholar
  6. Becker SC, Dong S, Baker JR, Foster-Frey J, Pritchard DG, Donovan DM (2009) LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol Lett 294:52–60.  https://doi.org/10.1111/j.1574-6968.2009.01541.x CrossRefPubMedGoogle Scholar
  7. Begum IF, Mohankumar R, Jeevan M, Ramani K (2016) GC–MS analysis of bioactive molecules derived from Paracoccus pantotrophus FMR19 and the antimicrobial activity against bacterial pathogens and MDROs. Indian J Microbiol 56:426–432.  https://doi.org/10.1007/s12088-016-0609-1 CrossRefGoogle Scholar
  8. Boles BR, Horswill AR (2008) Agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4:e1000052.  https://doi.org/10.1371/journal.ppat.1000052 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Boles BR, Horswill AR (2011) Staphylococcal biofilm disassembly. Trends Microbiol 19:449–445.  https://doi.org/10.1016/j.tim.2011.06.004 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Chagnot C, Zorgani MA, Astruc T, Desvaux M (2013) Proteinaceous determinants of surface colonization in bacteria: bacterial adhesion and biofilm formation from a protein secretion perspective. Front Microbiol 4:303.  https://doi.org/10.3389/fmicb.2013.00303 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chaignon P, Sadovskaya I, Ragunah C, Ramasubbu N, Kaplan JB, Jabbouri S (2007) Susceptibility of staphylococcal biofilms to enzymatic treatments depends on their chemical composition. Appl Microbiol Biotechnol 75:125–132.  https://doi.org/10.1007/s00253-006-0790-y CrossRefPubMedGoogle Scholar
  12. Connolly KL, Roberts AL, Holder RC, Reid SD (2011) Dispersal of group a streptococcal biofilms by the cysteine protease SpeB leads to increased disease severity in a murine model. PLoS One 6:e18984.  https://doi.org/10.1371/journal.pone.0018984 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Curtin JJ, Donlan RM (2006) Using bacteriophages to reduce formation of catheter-associated biofilms by Staphylococcus epidermidis. Antimicrob Agents Chemother 50:1268–1275.  https://doi.org/10.1128/AAC.50.4.1268-1275.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dwidar M, Hong S, Cha M, Jang J, Mitchell RJ (2012) Combined application of bacterial predation and carbon dioxide aerosols to effectively remove biofilms. Biofouling 28:671–680.  https://doi.org/10.1080/08927014.2012.701286 CrossRefPubMedGoogle Scholar
  15. Dwidar M, Leung BM, Yaguchi T, Takayama S, Mitchell RJ (2013) Patterning bacterial communities on epithelial cells. PLoS One 8:e67165.  https://doi.org/10.1371/journal.pone.0067165 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Elchinger PH, Delattre C, Faure S, Roy O, Badel S, Bernardi T, Taillefumier C, Michaud P (2014) Effect of proteases against biofilms of Staphylococcus aureus and Staphylococcus epidermidis. Lett Appl Microbiol 59:507–513.  https://doi.org/10.1111/lam.12305 CrossRefPubMedGoogle Scholar
  17. Fenton M, Ross RP, McAuliffe O, O'Mahony J, Coffey A (2011) Characterization of the staphylococcal bacteriophage lysin CHAPK. J Appl Microbiol 111:1025–1035.  https://doi.org/10.1111/j.1365-2672.2011.05119.x CrossRefPubMedGoogle Scholar
  18. Fenton M, Keary R, McAuliffe O, Ross RP, O’Mahony J, Coffey A (2013) Bacteriophage-derived peptidase eliminates and prevents Staphylococcal biofilms. Int J Microbiol 2013:625341.  https://doi.org/10.1155/2013/625341 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Fischetti VA (2008) Bacteriophage lysins as effective antibacterials. Curr Opin Microbiol 11:393–400.  https://doi.org/10.1016/j.mib.2008.09.012 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Fleming D, Rumbaugh KP (2017) Approaches to dispersing medical biofilms. Microrganisms 5:15.  https://doi.org/10.3390/microorganisms5020015 CrossRefGoogle Scholar
  21. Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633.  https://doi.org/10.1038/nrmicro2415 CrossRefPubMedGoogle Scholar
  22. Fredheim EG, Klingenberg C, Rohde H, Frankenberger S, Gaustad P, Flaegstad T, Sollid JE (2009) Biofilm formation by Staphylococcus haemolyticus. J Clin Microbiol 47:1172–1180.  https://doi.org/10.1099/mic.0.057018-0 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Frees D, Brøndsted L, Ingmer H (2013) Bacterial proteases and virulence. Subcell Biochem 66:161–192.  https://doi.org/10.1007/978-94-007-5940-4_7 CrossRefPubMedGoogle Scholar
  24. Gilan I, Sivan A (2013) Effect of proteases on biofilm formation of the plastic-degrading actinomycete Rhodococcus ruber C208. FEMS Microbiol Lett 342:18–23.  https://doi.org/10.1111/1574-6968.12114 CrossRefPubMedGoogle Scholar
  25. Gui Z, Wang H, Ding T, Zhu W, Zhuang X, Chu W (2014) Azithromycin reduces the production of α-hemolysin and biofilm formation in Staphylococcus aureus. Indian J Microbiol 54:114–117.  https://doi.org/10.1007/s12088-013-0438-4 CrossRefPubMedGoogle Scholar
  26. Hangler M, Burmølle M, Schneider I, Allermann K, Jensen B (2009) The serine protease Esperase HPF inhibits the formation of multispecies biofilm. Biofouling 25:667–674.  https://doi.org/10.1080/08927010903096008 CrossRefPubMedGoogle Scholar
  27. Hernández-Saldaña OF, Valencia-Posadas M, de la Fuente-Salcido NM, Bideshi DK, Barboza-Corona JE (2016) Bacteriocinogenic bacteria isolated from raw goat milk and goat cheese produced in the Center of México. Indian J Microbiol 56:301–308.  https://doi.org/10.1007/s12088-016-0587-3 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Iebba V, Totino V, Santangelo F, Gagliardi A, Ciotoli L, Virga A, Ambrosi C, Pompili M, De Biase RV, Selan L, Artini M, Pantanella F, Mura F, Passariello C, Nicoletti M, Nencioni L, Trancassini M, Quattrucci S, Schippa S (2014) Bdellovibrio bacteriovorus directly attacks Pseudomonas aeruginosa and Staphylococcus aureus cystic fibrosis isolates. Front Microbiol 5:280.  https://doi.org/10.3389/fmicb.2014.00280 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Iwase T, Uehara Y, Shinji H, Tajima A, Seo H, Takada K, Agata T, Mizunoe Y (2010) Staphylococcus epidermidis Esp inhibits Staphylococcus aureus biofilm formation and nasal colonization. Nature 465:346–349.  https://doi.org/10.1038/nature09074 CrossRefPubMedGoogle Scholar
  30. Jeyanthi V, Velusamy P (2016) Anti-methicillin resistant Staphylococcus aureus compound isolation from halophilic Bacillus amyloliquefaciens MHB1 and determination of its mode of action using electron microscope and flow cytometry analysis. Indian J Microbiol 56:148–157.  https://doi.org/10.1007/s12088-016-0566-8 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kadouri D, O’Toole GA (2005) Susceptibility of biofilms to Bdellovibrio bacteriovorus attack. Appl Environ Microbiol 71:4044–4051.  https://doi.org/10.1128/AEM.71.7.4044-4051.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245.  https://doi.org/10.1016/j.biotechadv.2012.10.004 CrossRefPubMedGoogle Scholar
  33. Kalia VC (2014) Microbes, antimicrobials and resistance: the battle goes on. Indian J Microbiol 54:1–2.  https://doi.org/10.1007/s12088-013-0443-7 CrossRefPubMedGoogle Scholar
  34. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Critic Rev Microbiol 37:121–140.  https://doi.org/10.3109/1040841X.2010.532479 CrossRefGoogle Scholar
  35. Kalia VC, Wood TK, Kumar P (2014) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol 68:13–23.  https://doi.org/10.1007/s00248-013-0316-y CrossRefPubMedGoogle Scholar
  36. Kalia VC, Prakash J, Koul S, Ray S (2017) Simple and rapid method for detecting biofilm forming bacteria. Indian J Microbiol 57:109–111.  https://doi.org/10.1007/s12088-016-0616-2 CrossRefPubMedGoogle Scholar
  37. Koul S, Kalia VC (2017) Multiplicity of quorum quenching enzymes: a potential mechanism to limit quorum sensing bacterial population. Indian J Microbiol 57:100–108.  https://doi.org/10.1007/s12088-016-0633-1 CrossRefPubMedGoogle Scholar
  38. Koul S, Prakash J, Mishra A, Kalia VC (2016) Potential emergence of multi-quorum sensing inhibitor resistant (MQSIR) bacteria. Indian J Microbiol 56:1–18.  https://doi.org/10.1007/s12088-015-0558-0 CrossRefPubMedGoogle Scholar
  39. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561.  https://doi.org/10.1016/j.biotechadv.2013.08.007 CrossRefPubMedGoogle Scholar
  40. Kumar R, Koul S, Kumar P, Kalia VC (2016) Searching biomarkers in the sequenced genomes of Staphylococcus for their rapid identification. Indian J Microbiol 56:64–71.  https://doi.org/10.1007/s12088-016-0565-9 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Lauderdale KJ, Boles BR, Cheung AL, Horswill AR (2009) Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect Immun 77:1623–1635.  https://doi.org/10.1128/IAI.01036-08 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Lister JL, Horswill AR (2014) Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 2:38.  https://doi.org/10.3389/fcimb.2014.00178 CrossRefGoogle Scholar
  43. Loozen G, Boon N, Pauwels M, Slomka V, Rodrigues Herrero E, Quirynen M, Teughels W (2015) Effect of Bdellovibrio bacteriovorus HD100 on multispecies oral communities. Anaerobe 35(Pt A):45–53.  https://doi.org/10.1016/j.anaerobe.2014.09.011 CrossRefPubMedGoogle Scholar
  44. Loughran AJ, Atwood DN, Anthony AC, Harik NS, Spencer HJ, Beenken KE, Smeltzer MS (2014) Impact of individual extracellular proteases on Staphylococcus aureus biofilm formation in diverse clinical isolates and their isogenic sarA mutants. Microbiology 3:897–909.  https://doi.org/10.1002/mbo3.214 CrossRefGoogle Scholar
  45. Ma Y, Xu Y, Yestrepsky BD, Sorenson RJ, Chen M, Larsen SD, Sun H (2012) Novel inhibitors of Staphylococcus aureus virulence gene expression and biofilm formation. PLoS One 7:e47255.  https://doi.org/10.1371/journal.pone.0047255 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Marti M, Trotonda MP, Tormo-Mas MA, Vergara-Irigaray M, Cheung AL, Lasa I, Penades JR (2010) Extracellular proteases inhibit protein-dependent biofilm formation in Staphylococcus aureus. Microbes Infect 12:55–64.  https://doi.org/10.1016/micinf.2009.10.005 CrossRefPubMedGoogle Scholar
  47. Monnappa AK, Dwidar M, Seo JK, Hur JH, Mitchell RJ (2014) Bdellovibrio bacteriovorus inhibits Staphylococcus aureus biofilm formation and invasion into human epithelial cells. Sci Rep 4:3811.  https://doi.org/10.1038/srep03811 CrossRefPubMedPubMedCentralGoogle Scholar
  48. Mootz JM, Malone CL, Shaw LN, Horswill AR (2013) Staphopains modulate Staphylococcus aureus biofilm integrity. Infect Immun 81:3227–3238.  https://doi.org/10.1128/IAI.00377-13 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Mukherji R, Patil A, Prabhune A (2015) Role of extracellular proteases in biofilm disruption of gram positive bacteria with special emphasis on Staphylococcus aureus biofilms. Enz Eng 4:126.  https://doi.org/10.4172/2329-6674.1000126 CrossRefGoogle Scholar
  50. Nelson DC, Garbe J, Collin M (2011) Cysteine proteinase SpeB from Streptococcus pyogenes – a potent modifier of immunologically important host and bacterial proteins. Biol Chem 392:1077–1088.  https://doi.org/10.1515/BC-2011-208 CrossRefPubMedGoogle Scholar
  51. Nijland R, Hall MJ, Burgess JG (2010) Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS One 5:e15668.  https://doi.org/10.1371/journal.pone.0015668 CrossRefPubMedPubMedCentralGoogle Scholar
  52. O’Neill E, Pozzi C, Houston P, Humphreys H, Robinson DA, Loughman A, Foster TJ, O’Gara JP (2008) A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 190:3835–3850.  https://doi.org/10.1128/JB.00167-08 CrossRefPubMedPubMedCentralGoogle Scholar
  53. Papa R, Artini M, Cellini A, Tilotta M, Galano E, Pucci P, Amoresano A, Selan L (2013) A new antiinfective strategy to reduce the spreading of antibiotic resistance by the action on adhesion-mediated virulence factors in Staphylococcus aureus. Microb Pathog 63:44–53.  https://doi.org/10.1016/j.micpath.2013.05.003 CrossRefPubMedGoogle Scholar
  54. Park JH, Lee JH, Kim CJ, Lee JC, Cho MH, Lee J (2012) Extracellular protease in Actinomycetes culture supernatants inhibits and detaches Staphylococcus aureus biofilm formation. Biotechnol Lett 34:655–661.  https://doi.org/10.1007/s10529-011-0825-z CrossRefPubMedGoogle Scholar
  55. Sass P, Bierbaum G (2007) Lytic activity of recombinant bacteriophage φ11 and φ12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol 73:347–352.  https://doi.org/10.1128/AEM.01616-06 CrossRefPubMedGoogle Scholar
  56. Seth AK, Geringer MR, Nguyen KT, Agnew SP, Dumanian Z, Galiano RD, Leung KP, Mustoe TA, Hong SJ (2013) Bacteriophage therapy for Staphylococcus aureus biofilm-infected wounds: a new approach to chronic wound care. Plast Reconstr Surg 131:225–234.  https://doi.org/10.1097/PRS.0b013e31827e47cd CrossRefPubMedGoogle Scholar
  57. Sharma A, Lal R (2017) Survey of (Meta)genomic approaches for understanding microbial community dynamics. Indian J Microbiol 57:23–38.  https://doi.org/10.1007/s12088-016-0629-x CrossRefPubMedGoogle Scholar
  58. Shaw L, Golonka E, Potempa J, Foster SJ (2004) The role and regulation of the extracellular proteases of Staphylococcus aureus. Microbiology 150:217–228.  https://doi.org/10.1099/mic.0.26634-0 CrossRefPubMedGoogle Scholar
  59. Shukla SK, Rao TS (2013) Dispersal of Bap-mediated Staphylococcus aureus biofilm by proteinase K. J Antibiot (Tokyo) 66:55–60.  https://doi.org/10.1038/ja.2012.98 CrossRefGoogle Scholar
  60. Son JS, Lee SJ, Jun SY, Sj Y, Kang Sh PHR, Kang JO, Choi YJ (2010) Antibacterial and biofilm removal activity of a podoviridae Staphylococcus aureus bacteriophage SAP-2 and a derived recombinant cell-wall-degrading enzyme. Appl Microbiol Biotechnol 86:1439–1449.  https://doi.org/10.1007/s00253-009-2386-9 CrossRefPubMedGoogle Scholar
  61. Sugimoto S, Iwase T, Sato F, Tajima A, Shinji H, Mizunoe Y (2011) Cloning, expression and purification of extracellular serine protease Esp, a biofilm-degrading enzyme, from Staphylococcus epidermidis. J Appl Microbiol 111:1406–1415.  https://doi.org/10.1111/j.1365-2672.2011.05167.x CrossRefPubMedGoogle Scholar
  62. Sugimoto S, Iwamoto T, Takada K, Okuda K, Tajima A, Iwase T, Mizunoe Y (2013) Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host-pathogen interaction. J Bacteriol 195:1645–1655.  https://doi.org/10.1128/JB.01672-12 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Vandecandelaere I, Depuydt P, Nelis HJ, Coenye T (2014) Protease production by Staphylococcus epidermidis and its effect on Staphylococcus aureus biofilms. Pathog Dis 70:321–331.  https://doi.org/10.1111/2049-632X.12133 CrossRefPubMedGoogle Scholar
  64. Varsha KK, Nishant G, Sneha SM, Shilpa G, Devendra L, Priya S, Nampoothiri KM (2016) Antifungal, anticancer and aminopeptidase inhibitory potential of a phenazine compound produced by Lactococcus BSN307. Indian J Microbiol 56:411–416.  https://doi.org/10.1007/s12088-016-097-1 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Wadhwani SA, Shedbalkar UU, Singh R, Vashisth P, Pruthi V, Chopade BA (2016) Kinetics of synthesis of gold nanoparticles by Acinetobacter sp. SW30 isolated from environment. Indian J Microbiol 56:439–444.  https://doi.org/10.1007/s12088-016-0598-0 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Walencka E, Sadowska B, Rozalska S, Hryniewicz W, Rózalska B (2005) Lysostaphin as a potential therapeutic agent for staphylococcal biofilm eradication. Pol J Microbiol 54:191–200. doi:NAPubMedGoogle Scholar
  67. Wu JA, Kusuma C, Mond JJ, Kokai-Kun JF (2003) Lysostaphin disrupts Staphylococcus aureus and Staphylococcus epidermidis biofilms on artificial surfaces. Antimicrob Agents Chemother 47:3407–3414.  https://doi.org/10.1128/AAC.47.11.3407-3414.2003 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Vipin Chandra Kalia
    • 1
    • 2
  • Shikha Koul
    • 1
  • Subhasree Ray
    • 1
  • Jyotsana Prakash
    • 1
  1. 1.Microbial Biotechnology and GenomicsCSIR – Institute of Genomics and Integrative Biology (IGIB)DelhiIndia
  2. 2.Molecular Biology Lab 502; Department of Chemical EngineeringKonkuk UniversitySeoulRepublic of Korea

Personalised recommendations