Bacterial-Mediated Biofouling: Fundamentals and Control Techniques

  • Soumya Pandit
  • Shruti Sarode
  • Franklin Sargunaraj
  • Kuppam Chandrasekhar


Biofouling is a serious drawback found in technological tools exposed in an aqueous medium; it plays a significant role in selecting suitable materials used in a different industrial application like food processing industry, shipping yards, water treatment and desalting tools; consequently, it has huge impact viability and economic feasibility of those systems. Biofouling includes organic fouling, particulate/colloidal fouling and fouling occurred due to microbial/biological entities. The present chapters dealt about bacterial mediated biofouling. Bacterial-mediated biofouling represents the “Achilles heel” due to bacteria’s ability to multiply over time; this type of biofouling is potentially more dangerous. An iota of living cells attached to the surface can grow and form biofilms using the dissolve organic substances in the water. Bacterial biofouling is recently gaining much interest due to it’s severe economic and environmental adverse effects. In the present book chapter, the different types of biofouling and their causes have been highlighted. A thorough understanding of the fundamental principles of biofilm generation would help to prevent biofouling. Basics of biofilm development causing fouling and the factors affecting fouling have been depicted. A short discussion about the means to mitigate biofouling has been provided. The present chapters also described different anti-biofouling strategies adapted to in various industrial tools. A brief description of the influence of biofouling in water treatment, food processing, and biomedical devices has been provided. Advantages and disadvantages of bacterial-mediated biofouling have been discussed.


Antimicrobial Biofilm Bacterial adhesion Quorum sensing Surface charge Hydrophobicity 


  1. Agarwala M, Choudhury B, Yadav RNS (2014) Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Indian J Microbiol 54:365–368. CrossRefPubMedPubMedCentralGoogle Scholar
  2. Arndt H, Schmidt-Denter K, Auer B, Weitere M (2003) Protozoans and biofilms. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and recent biofilms. Springer, Dordrecht, pp 161–179. CrossRefGoogle Scholar
  3. Aykent F, Yondem I, Ozyesil AG, Gunal SK, Avunduk MC, Ozkan S (2010) Effect of different finishing techniques for restorative materials on surface roughness and bacterial adhesion. J Prosthet Dent 103:221–227. CrossRefPubMedGoogle Scholar
  4. Baker JS, Dudley LY (1998) Biofouling in membrane systems – a review. Desalination 118:81–89. CrossRefGoogle Scholar
  5. Bereschenko LA, Prummel H, Euverink GJW, Stams AJM, van Loosdrecht MCM (2011) Effect of conventional chemical treatment on the microbial population in a biofouling layer of reverse osmosis systems. Water Res 45:405–416. CrossRefPubMedGoogle Scholar
  6. Biology NRC (US) B. on, Board NRC (US) O.S (2000) Bacterial biofilms and biofouling: Translational research in marine biotechnology. National Academies Press (US), Washington, DCGoogle Scholar
  7. Block JC, Haudidier K, Paquin JL, Miazga J, Levi Y (1993) Biofilm accumulation in drinking water distribution systems. Biofouling 6:333–343. CrossRefGoogle Scholar
  8. Bose D, Chatterjee S (2015) Antibacterial activity of green synthesized silver nanoparticles using vasaka (Justicia adhatoda L.) leaf extract. Indian J Microbiol 55:163–167. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Chaudhury MK, Finlay JA, Chung JY, Callow ME, Callow JA (2005) The influence of elastic modulus and thickness on the release of the soft-fouling green alga Ulva linza (syn. Enteromorphalinza ) from poly(dimethylsiloxane) (PDMS) model networks. Biofouling 21:41–48. CrossRefPubMedGoogle Scholar
  10. Cheng Y, Gao B, Liu X, Zhao X, Sun W, Ren H, Wu J (2016) In vivo evaluation of an antibacterial coating containing halogenated furanone compound-loaded poly(l-lactic acid) nanoparticles on microarc-oxidized titanium implants. Int J Nanomedicine 11:1337–1347. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Chmielewski RAN, Frank JF (2003) Biofilm formation and control in food processing facilities. Compr Rev Food Sci Food Saf 2:22–32. CrossRefGoogle Scholar
  12. Cortés ME, Consuegra J, Sinisterra RD (2011) Biofilm formation, control and novel strategies for eradication. Sci Microb Pathog Commun Curr Res Technol Adv 2:896–905Google Scholar
  13. Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867CrossRefPubMedPubMedCentralGoogle Scholar
  14. de la Fuente-Núñez C, Reffuveille F, Fernández L, Hancock RE (2013) Bacterial biofilm development as a multicellular adaptation: antibiotic resistance and new therapeutic strategies. Curr Opin Microbiol 16:580–589. CrossRefPubMedGoogle Scholar
  15. Decho AW (2000) Microbial biofilms in intertidal systems: an overview. Cont Shelf Res 20:1257–1273. CrossRefGoogle Scholar
  16. Deva AK, Adams WP, Vickery K (2013) The role of bacterial biofilms in device-associated infection. Plast Reconstr Surg 132:1319–1328. CrossRefPubMedGoogle Scholar
  17. Dong Y-H, Wang L-H, Zhang L-H (2007) Quorum-quenching microbial infections: mechanisms and implications. Philos Trans R Soc B Biol Sci 362:1201–1211. CrossRefGoogle Scholar
  18. Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7:277–281. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dufour D, Leung V, Lévesque CM (2010) Bacterial biofsilm: structure, function, and antimicrobial resistance. Endod Top 22:2–16. CrossRefGoogle Scholar
  20. Flemming H-C (1993) Biofilms and environmental protection. Water Sci Technol 27:1–10CrossRefGoogle Scholar
  21. Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18:1049–1056. CrossRefGoogle Scholar
  22. Gedge M, Voon L, Glynne-Jones P, Mowlem M, Morgan H, Hill M (2012) The use of ultrasonic waves to minimise biofouling in oceanographic microsensors. AIP Conf Proc 1433:765–768. CrossRefGoogle Scholar
  23. Giaouris E, Chorianopoulos N, Nychas GJE (2005) Effect of temperature, pH, and water activity on biofilm formation by Salmonella enterica enteritidis PT4 on stainless steel surfaces as indicated by the bead vortexing method and conductance measurements. J Food Prot 68:2149–2154CrossRefPubMedGoogle Scholar
  24. Gilbert P, Das J, Foley I (1997) Biofilm susceptibility to antimicrobials. Adv Dent Res 11:160–167. CrossRefPubMedGoogle Scholar
  25. Gottenbos B, van der Mei HC, Klatter F, Nieuwenhuis P, Busscher HJ (2002) In vitro and in vivo antimicrobial activity of covalently coupled quaternary ammonium silane coatings on silicone rubber. Biomaterials 23:1417–1423. CrossRefPubMedGoogle Scholar
  26. Guezennec J, Ortega-Morales O, Raguenes G, Geesey G (1998) Bacterial colonization of artificial substrate in the vicinity of deep-sea hydrothermal vents. FEMS Microbiol Ecol 26:89–99. CrossRefGoogle Scholar
  27. Gupta P, Sarkar S, Das B, Bhattacharjee S, Tribedi P (2016) Biofilm, pathogenesis and prevention—a journey to break the wall: a review. Arch Microbiol 198:1–15. CrossRefPubMedGoogle Scholar
  28. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. CrossRefPubMedGoogle Scholar
  29. Hedegaard CJ, Strube ML, Hansen MB, Lindved BK, Lihme A, Boye M, Heegaard PMH (2016) Natural pig plasma immunoglobulins have anti-bacterial effects: potential for use as feed supplement for treatment of intestinal infections in pigs. PLoS One 11:e0147373. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hentzer M, Riedel K, Rasmussen TB, Heydorn A, Andersen JB, Parsek MR, Rice SA, Eberl L, Molin S, Høiby N, Kjelleberg S, Givskov M (2002) Inhibition of quorum sensing in pseudomonas aeruginosa biofilm bacteria by a halogenated furanone compound. Microbiology 148:87–102. CrossRefPubMedGoogle Scholar
  31. Hong S, Elimelech M (1997) Chemical and physical aspects of natural organic matter (NOM) fouling of nanofiltration membranes. J Membr Sci 132:159–181. CrossRefGoogle Scholar
  32. Iorhemen OT, Hamza RA, Tay JH (2016) Membrane bioreactor (MBR) technology for wastewater treatment and reclamation: membrane fouling. Membranes 6:33. CrossRefPubMedCentralGoogle Scholar
  33. Ji H, Sun H, Qu X (2016) Antibacterial applications of graphene-based nanomaterials: recent achievements and challenges. Adv Drug Deliv Rev 105:176–189. CrossRefPubMedGoogle Scholar
  34. Johnson LR (2008) Microcolony and biofilm formation as a survival strategy for bacteria. J Theor Biol 251:24–34. CrossRefPubMedGoogle Scholar
  35. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. CrossRefPubMedGoogle Scholar
  36. Kalia VC (2014a) Microbes, antimicrobials and resistance: the battle goes on. Indian J Microbiol 54:1–2. CrossRefPubMedGoogle Scholar
  37. Kalia VC (2014b) In search of versatile organisms for quorum-sensing inhibitors: acyl homoserine lactones (AHL)-acylase and AHL-lactonase. FEMS Microbiol Lett 359:143–143. CrossRefPubMedGoogle Scholar
  38. Kalia VC, Prakash J, Koul S, Ray S (2017) Simple and rapid method for detecting biofilm forming bacteria. Indian J Microbiol 57:109–111. CrossRefPubMedGoogle Scholar
  39. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140. CrossRefPubMedGoogle Scholar
  40. Kalia VC, Wood TK, Kumar P (2014) Evolution of resistance to quorum-sensing inhibitors. Microb Ecol 68:13–23. CrossRefPubMedGoogle Scholar
  41. Kerr A, Beveridge CM, Cowling MJ, Hodgkiess T, Parr ACS, Smith MJ (1999) Some physical factors affecting the accumulation of biofouling. J Mar Biol Assoc UK 79:357–359. CrossRefGoogle Scholar
  42. Khardori N, Yassien M (1995) Biofilms in device-related infections. J Ind Microbiol 15:141–147. CrossRefPubMedGoogle Scholar
  43. Kim IS, Jang N (2006) The effect of calcium on the membrane biofouling in the membrane bioreactor (MBR). Water Res 40:2756–2764. CrossRefPubMedGoogle Scholar
  44. Kim J-H, Choi D-C, Yeon K-M, Kim S-R, Lee C-H (2011) Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environ Sci Technol 45:1601–1607. CrossRefPubMedGoogle Scholar
  45. Kim W, Tengra FK, Young Z, Shong J, Marchand N, Chan HK, Pangule RC, Parra M, Dordick JS, Plawsky JL, Collins CH (2013) Spaceflight promotes biofilm formation by pseudomonas aeruginosa. PLoS One 8:e62437. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524. CrossRefPubMedGoogle Scholar
  47. Körstgens V, Flemming H-C, Wingender J, Borchard W (2001) Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Sci Technol 43:49–57CrossRefPubMedGoogle Scholar
  48. Lewis AL (2000) Phosphorylcholine-based polymers and their use in the prevention of biofouling. Colloids Surf B Biointerfaces 18:261–275. CrossRefPubMedGoogle Scholar
  49. Li Y-H (2009) Quorum sensing and signal transduction in biofilms: the impacts of bacterial social behavior on biofilm ecology. In: Schlesinger LS, Jaykus L-A, Wang HH (eds) Food-borne microbes. American Society of Microbiology, Washington, DC, pp 117–133. CrossRefGoogle Scholar
  50. Li Y-H, Tian X (2012) Quorum sensing and bacterial social interactions in biofilms. Sensors 12:2519–2538. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Lim Y, Jana M, Luong TT, Lee CY (2004) Control of glucose- and NaCl-induced biofilm formation by rbf in staphylococcus aureus. J Bacteriol 186:722–729. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Madsen JS, Burmølle M, Hansen LH, Sørensen SJ (2012) The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 65:183–195. CrossRefPubMedGoogle Scholar
  53. Manefield M, Welch M, Givskov M, Salmond GP, Kjelleberg S (2001) Halogenated furanones from the red alga, Delisea pulchra, inhibit carbapenem antibiotic synthesis and exoenzyme virulence factor production in the phytopathogen Erwinia carotovora. FEMS Microbiol Lett 205:131–138. CrossRefPubMedGoogle Scholar
  54. Marion-Ferey K, Pasmore M, Stoodley P, Wilson S, Husson GP, Costerton JW (2003) Biofilm removal from silicone tubing: an assessment of the efficacy of dialysis machine decontamination procedures using an in vitro model. J Hosp Infect 53:64–71. CrossRefPubMedGoogle Scholar
  55. Mi B, Elimelech M (2008) Chemical and physical aspects of organic fouling of forward osmosis membranes. J Membr Sci 320:292–302. CrossRefGoogle Scholar
  56. Nguyen T, Roddick FA, Fan L (2012) Biofouling of water treatment membranes: a review of the underlying causes, monitoring techniques and control measures. Membranes 2:804–840. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Patil SA, Harnisch F, Koch C, Hübschmann T, Fetzer I, Carmona-Martínez AA, Müller S, Schröder U (2011) Electroactive mixed culture derived biofilms in microbial bioelectrochemical systems: the role of pH on biofilm formation, performance and composition. Bioresour Technol 102:9683–9690. CrossRefPubMedGoogle Scholar
  58. Percival SL, Suleman L, Vuotto C, Donelli G (2015) Healthcare-associated infections, medical devices and biofilms: risk, tolerance and control. J Med Microbiol 64:323–334. CrossRefPubMedGoogle Scholar
  59. Picioreanu C, Kreft J-U, Klausen M, Haagensen JAJ, Tolker-Nielsen T, Molin S (2007) Microbial motility involvement in biofilm structure formation – a 3D modelling study. Water Sci Technol 55:337. CrossRefPubMedGoogle Scholar
  60. Poulsen LV (1999) Microbial biofilm in food processing. LWT Food Sci Technol 32:321–326. CrossRefGoogle Scholar
  61. Pratt LA, Kolter R (1999) Genetic analyses of bacterial biofilm formation. Curr Opin Microbiol 2:598–603. CrossRefPubMedGoogle Scholar
  62. Reid G (1999) Biofilms in infectious disease and on medical devices. Int J Antimicrob Agents 11:223–226. CrossRefPubMedGoogle Scholar
  63. Rose RK, Turner SJ (1998) Extracellular volume in streptococcal model biofilms: effects of pH, calcium and fluoride. Biochim Biophys Acta Gen Subj 1379:185–190. CrossRefGoogle Scholar
  64. Santo CE, Morais PV, Grass G (2010) Isolation and characterization of bacteria resistant to metallic copper surfaces. Appl Environ Microbiol 76:1341–1348. CrossRefPubMedGoogle Scholar
  65. Singh R, Paul D, Jain RK (2006) Biofilms: implications in bioremediation. Trends Microbiol 14:389–397. CrossRefPubMedGoogle Scholar
  66. Speranza B, Corbo MR, Sinigaglia M (2011) Effects of nutritional and environmental conditions on Salmonella sp. biofilm formation. J Food Sci 76:M12–M16. CrossRefPubMedGoogle Scholar
  67. Stamm WE (1991) Catheter-associated urinary tract infections: epidemiology, pathogenesis, and prevention. Am J Med Proc Third Decennial Int Conf Nosocomial Infect 91:S65–S71. CrossRefGoogle Scholar
  68. Stokke R, Dahle H, Roalkvam I, Wissuwa J, Daae FL, Tooming-Klunderud A, Thorseth IH, Pedersen RB, Steen IH (2015) Functional interactions among filamentous Epsilonproteobacteria and bacteroidetes in a deep-sea hydrothermal vent biofilm. Environ Microbiol 17:4063–4077. CrossRefPubMedGoogle Scholar
  69. Stoodley P, Dodds I, Boyle JD, Lappin-Scott HM (1998) Influence of hydrodynamics and nutrients on biofilm structure. J Appl Microbiol 85(Suppl 1):19S–28S. CrossRefPubMedGoogle Scholar
  70. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9. CrossRefPubMedGoogle Scholar
  71. Tang H, Cao T, Liang X, Wang A, Salley SO, McAllister J, Ng KYS (2009) Influence of silicone surface roughness and hydrophobicity on adhesion and colonization of Staphylococcus epidermidis. J Biomed Mater Res A 88:454–463. CrossRefPubMedGoogle Scholar
  72. Underdown BJ, Schiff JM (1986) Immunoglobulin A: strategic defense initiative at the mucosal surface. Annu Rev Immunol 4:389–417. CrossRefPubMedGoogle Scholar
  73. Walt DR, Smulow JB, Turesky SS, Hill RG (1985) The effect of gravity on initial microbial adhesion. J Colloid Interface Sci 107:334–336. CrossRefGoogle Scholar
  74. Weitere M, Bergfeld T, Rice SA, Matz C, Kjelleberg S (2005) Grazing resistance of Pseudomonas aeruginosa biofilms depends on type of protective mechanism, developmental stage and protozoan feeding mode. Environ Microbiol 7:1593–1601. CrossRefPubMedGoogle Scholar
  75. Yang H-L, Lin JC-T, Huang C (2009) Application of nanosilver surface modification to RO membrane and spacer for mitigating biofouling in seawater desalination. Water Res 43:3777–3786. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Soumya Pandit
    • 1
  • Shruti Sarode
    • 1
  • Franklin Sargunaraj
    • 2
  • Kuppam Chandrasekhar
    • 3
    • 4
  1. 1.Department of BiotechnologyIIT-KharagpurKharagpurIndia
  2. 2.Faculty of Medicine, Department of Human and Medical GeneticsVilnius UniversityVilniusLithuania
  3. 3.Bio-Engineering and Environmental Science (BEES)CSIR-IICTHyderabadIndia
  4. 4.School of Applied BioscienceKyungpook National University (KNU)DaeguSouth Korea

Personalised recommendations