Advertisement

Nanotechnological Approaches in Quorum Sensing Inhibition

  • A. Jamuna Bai
  • V. Ravishankar Rai
Chapter

Abstract

The increasing incidence of drug resistance in pathogenic bacteria has made it essential to explore novel antimicrobials and drug targets. The nanoparticles have been considered as one of the most potential therapeutic agents. Nanomaterials have unique physicochemical properties. In the recent years, nanoparticles have been well characterized for their antimicrobial properties. Apart from their inhibitory effects on pathogens, they are also being increasingly investigated for their effects on biofilm formation and signaling in bacterial cells at sub-inhibitory levels. Quorum sensing (QS) or cell to cell signaling is known to regulate biofilm formation and virulence factor production in pathogenic bacteria. Hence, the QS mechanism offers new drug targets. The nanomaterials at sub-inhibitory concentration can inhibit QS and prevent biofilm formation and virulence development in pathogens. The chapter focuses on the application of nanoparticles as QS inhibitory or quorum quenching agents to attenuate pathogenicity in bacteria and control their recalcitrant biofilms.

Keywords

Quorum sensing Biofilms Nanoparticles Nanotechnology Quorum sensing inhibitors Anti-biofilm agents 

References

  1. Ali SG, Ansari MA, Khan HM, Jalal M, Mahdi AA, Cameotra SS (2017) Crataeva nurvala nanoparticles inhibit virulence factors and biofilm formation in clinical isolates of Pseudomonas aeruginosa. J Basic Microbiol 57(3):193–203.  https://doi.org/10.1002/jobm.201600175 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aswathanarayan JB, Vittal RR (2017) Antimicrobial, biofilm inhibitory and anti-infective activity of metallic nanoparticles against pathogens MRSA and Pseudomonas aeruginosa PA01. Pharm Nanotechnol 5(2):148–153.  https://doi.org/10.2174/2211738505666170424121944 CrossRefPubMedGoogle Scholar
  3. Beladiya C, Tripathy RK, Bajaj P, Aggarwal G, Pande AH (2015) Expression, purification and immobilization of recombinant AiiA enzyme onto magnetic nanoparticles. Protein Expr Purif 113:56–62.  https://doi.org/10.1016/j.pep.2015.04.014 CrossRefPubMedGoogle Scholar
  4. Blango MG, Mulvey MA (2009) Bacterial landlines: contact-dependent signaling in bacterial populations. Curr Opin Microbiol 12:177–181.  https://doi.org/10.1016/j.mib.2009.01.011 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bodelon G, Montes-Garcia V, Lopez-Puente V, Hill EH, Hamon C, Sanz-Ortiz MN (2016) Detection and imaging of quorum sensing in Pseudomonas aeruginosa biofilm communities by surface-enhanced resonance Raman scattering. Nat Mater 15:1203–1211.  https://doi.org/10.1038/nmat4720 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chao Y, Zhang T (2012) Surface-enhanced Raman scattering (SERS) revealing chemical variation during biofilm formation: from initial attachment to mature biofilm. Anal Bioanal Chem 404:1465–1475.  https://doi.org/10.1007/s00216-012-6225-y CrossRefPubMedPubMedCentralGoogle Scholar
  7. Chen J, Wiley BJ, Xia Y (2007) One-dimensional nanostructures of metals: large-scale synthesis and some potential applications. Langmuir 23:4120–4129.  https://doi.org/10.1021/la063193y CrossRefPubMedGoogle Scholar
  8. Choi O, Deng KK, Kim NJ, Ross L, Surampalli RY, Hu Z (2008) The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res 42:3066–3074.  https://doi.org/10.1016/j.watres.2008.02.021 CrossRefPubMedGoogle Scholar
  9. Claussen A, Abdali S, Berg RW, Givskov M, Sams T (2013) Detection of the quorum sensing signal molecule N-Dodecanoyl-dl-homoserine lactone below 1 nanomolar concentrations using surface enhanced Raman spectroscopy. Curr Phys Chem 3:199–210.  https://doi.org/10.2174/1877946811303020010 CrossRefGoogle Scholar
  10. Costas C, Lopez-Puente V, Bodelon G, Gonzalez-Bello C, Perez-Juste, Pastoriza-Santos I, Liz Martin LM (2015) Using surface enhanced Raman scattering to analyze the interactions of protein receptors with bacterial quorum sensing modulators. ACS Nano 9:5567–5576.  https://doi.org/10.1021/acsnano.5b01800 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Davies D (2003) Understanding biofilm resistance to antibacterial agents. Nat Rev Drug Discov 2:114–122.  https://doi.org/10.1038/nrd1008 CrossRefPubMedGoogle Scholar
  12. Dibrov P, Dzioba J, Gosink KK, Häse CC (2002) Chemiosmotic mechanism of antimicrobial activity of Ag+ in Vibrio cholerae. Antimicrob Agents Chemother 46:2668–2670.  https://doi.org/10.1128/AAC.46.8.2668-2670.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Eustis S, El-Sayed MA (2006) Why gold nanoparticles are more precious than pretty gold: noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem Soc Rev 35:209–217.  https://doi.org/10.1039/b514191e CrossRefPubMedGoogle Scholar
  14. Fernandes R, Roy V, Wu HC, Bentley WE (2010) Engineered biological nanofactories trigger quorum sensing response in targeted bacteria. Nat Nanotechnol 5:213–217.  https://doi.org/10.1038/nnano.2009.457 CrossRefPubMedGoogle Scholar
  15. Feynman R (1991) There’s plenty of room at the bottom. Science 254:1300–1301.  https://doi.org/10.1126/science.254.5036.1300 CrossRefGoogle Scholar
  16. Gajjar P, Pettee B, Britt DW, Huang W, Johnson WP, Anderson J (2009) Antimicrobial activities of commercial nanoparticles against an environmental soil microbe, Pseudomonas putida KT2440. J Biol Eng 3:9–22.  https://doi.org/10.1186/1754-1611-3-9 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Garcia-Lara B, Saucedo Mora MA, Roldan Sanchez JA, Perez-Eretza B, Ramasamy M, Lee J, Coria-Jimenez R, Tapia M, Varela-Guerrero V, Garcia-Contreras R (2015) Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett Appl Microbiol 61(3):299–305.  https://doi.org/10.1111/lam.12456 CrossRefPubMedGoogle Scholar
  18. Gupta A, Terrell JL, Fernandes R, Dowling MB, Payne GF, Raghavan SR, Bentley WE (2013) Encapsulated fusion protein confers “sense and respond” activity to chitosan–alginate capsules to manipulate bacterial quorum sensing. Biotechnol Bioeng 110:552–562.  https://doi.org/10.1002/bit.24711 CrossRefPubMedGoogle Scholar
  19. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021.  https://doi.org/10.1016/j.biomaterials.2004.10.012 CrossRefPubMedGoogle Scholar
  20. Gupta D, Singh A, Khan AU (2017) Nanoparticles as efflux pump and biofilm inhibitor to rejuvenate bactericidal effect of conventional antibiotics. Nanoscale Res Lett 12:454.  https://doi.org/10.1186/s11671-017-2222-6 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Gutierrez FM, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Gay YA (2010) Synthesis, characterization, and evaluation of antimicrobial and cytotoxic effect of silver and titanium nanoparticles. Nanomedicine 6:681–688.  https://doi.org/10.1016/j.nano.2010.02.001 CrossRefGoogle Scholar
  22. Hebert CG, Gupta A, Fernandes R, Tsao CY, Valdes JJ, Bentely WE (2010) Biological nanofactories target and activate epithelial cell surfaces for modulating bacterial quorum sensing and interspecies signaling. ACS Nano 4:6923–6931.  https://doi.org/10.1021/nn1013066 CrossRefPubMedGoogle Scholar
  23. Hill EH, Liz-Marzan LM (2017) Toward plasmonic monitoring of surface effects on bacterial quorum-sensing. Curr Opin Colloid Interface Sci 32:1–10.  https://doi.org/10.1016/j.cocis.2017.04.003 CrossRefGoogle Scholar
  24. Hu X, Chan CT (2004) Photonic crystals with silver nanowires as a near-infrared superlens. Appl Phys Lett 85:1520–1522.  https://doi.org/10.1063/1.1784883 CrossRefGoogle Scholar
  25. Hu L, Kim HS, Lee J-Y, Peumans P, Cui Y (2010) Scalable coating and properties of transparent, flexible silver nanowire electrodes. ACS Nano 4:2955–2963.  https://doi.org/10.1021/nn1005232 CrossRefPubMedGoogle Scholar
  26. Huang Y, Duan X, Cui Y, Lauhon LJ, Kim K-H, Lieber CM (2001) Logic gates and computation from assembled nanowire building blocks. Science 294:1313–1317.  https://doi.org/10.1126/science.1066192 CrossRefPubMedGoogle Scholar
  27. Ilk S, Saglam N, Ozgen M, Korkusuzda F (2017) Chitosan nanoparticles enhances the anti-quorum sensing activity of kaempferol. Int J Biol Macromol 94:653–662.  https://doi.org/10.1016/j.ijbiomac.2016.10.068 CrossRefPubMedGoogle Scholar
  28. Jamieson T, Bakhshi R, Petrova D, Pocock R, Imani M, Seifalian AM (2007) Biological applications of quantum dots. Biomaterials 28:4717–4732.  https://doi.org/10.1016/j.biomaterials.2007.07.014 CrossRefPubMedGoogle Scholar
  29. Joe MM, Benson A, Sarvanan VS, Tongmin S (2015) In vitro antibacterial activity of nanoemulsion formulation on biofilm, AHL production, hydrolytic enzyme activity, and pathogenicity of Pectobacterium carotovorum sub sp. Carotovorum. Physiol Mol Plant Pathol 91:46–55.  https://doi.org/10.1016/j.pmpp.2015.05.009 CrossRefGoogle Scholar
  30. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140.  https://doi.org/10.3109/1040841X.2010.532479 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245.  https://doi.org/10.1016/j.biotechadv.2012.10.004 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kim JH, Choi DC, Yeon KM, Kim SR, Lee CH (2011) Enzyme-immobilized nanofiltration membrane to mitigate biofouling based on quorum quenching. Environ Sci Technol 45:1601–1607.  https://doi.org/10.1021/es103483j CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kolar M, Urbanek K, Latal T (2001) Antibiotic selective pressure and development of bacterial resistance. Int J Antimicrob Agents 17:357–363CrossRefPubMedGoogle Scholar
  34. Lee JH, Kim YG, Cho MH, Lee J (2014a) ZnO nanoparticles inhibit Pseudomonas aeruginosa biofilm formation and virulence factor production. Microbiol Res 169:888–896.  https://doi.org/10.1016/j.micres.2014.05.005 CrossRefPubMedGoogle Scholar
  35. Lee B, Yeon KM, Shim J, Kim SR, Lee CH, Lee J, Kim J (2014b) Effective antifouling using quorum-quenching acylase stabilized in magnetically-separable mesoporous silica. Biomacromolecules 15:1153–1159.  https://doi.org/10.1016/j.jconrel.2014.06.055 CrossRefPubMedGoogle Scholar
  36. Lee J, Lee I, Nam J, Hwang DS, Yeon KM, Kim J (2017) Immobilization and stabilization of acylase on carboxylated polyaniline nanofibers for highly effective antifouling application via quorum quenching. ACS Appl Mater Interfaces 9:15424–15432.  https://doi.org/10.1021/bm401595q CrossRefPubMedGoogle Scholar
  37. Lellouche J, Kahana E, Elias S, Gedanken A, Banin E (2009) Antibiofilm activity of nanosized magnesium fluoride. Biomaterials 30:5969–5978.  https://doi.org/10.1016/j.biomaterials.2009.07.037 CrossRefPubMedGoogle Scholar
  38. Lu HD, Spiegel A, Hurley A, Perez LJ, Maisel K, Ensign LM, Hanes J, Bassler BL, Semmelhack MF, Prud’homme RK (2015) Modulating Vibrio cholerae quorum sensing controlled communication using autoinducer loaded nanoparticles. Nano Lett 15:2235–2241.  https://doi.org/10.1021/acs.nanolett.5b00151 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Miller KP, Wang L, Chen Y, Pellechia PJ, Benicewicz BC, Decho AW (2015) Engineering nanoparticles to silence bacterial communication. Front Microbiol 6:189.  https://doi.org/10.3389/fmicb.2015.00189 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Moghimi SM (2005) Nanomedicine: prospective diagnostic and therapeutic potential. Asia Pacific Biotech News 9:1072–1077.  https://doi.org/10.1517/14712598.5.1.1 CrossRefGoogle Scholar
  41. Mohanty A, Tan CH, Cao B (2016) Impacts of nanomaterials on bacterial quorum sensing: differential effects on different signals. Environ Sci Nano 3:351–356.  https://doi.org/10.1039/C5EN00273G CrossRefGoogle Scholar
  42. Murphy CJ, Gole AM, Hunyadi SE, Orendorff CJ (2006) One-dimensional colloidal gold and silver nanostructures. Inorg Chem 45:7544–7554.  https://doi.org/10.1021/ic0519382 CrossRefPubMedGoogle Scholar
  43. Nafee N, Husari A, Maurer CK, Lu C, de Rossi C, Steinbach A, Hartmann RW, Lehr CM, Schneider M (2014) Antibiotic-free nanotherapeutics: ultra-small, mucuspenetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release 192:131–140.  https://doi.org/10.1016/j.jconrel.2014.06.055 CrossRefPubMedGoogle Scholar
  44. Naik K, Kowshik M (2014) Anti-quorum sensing activity of AgCl-TiO2 nanoparticles with potential use as active food packaging material. J Appl Microbiol 117:972–983.  https://doi.org/10.1111/jam.12589 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nallathamby PD, Lee KJ, Desai T, Xu XH (2010) Study of the multidrug membrane transporter of single living Pseudomonas aeruginosa cells using size-dependent plasmonic nanoparticle optical probes. Biochemistry 49:5942–5953.  https://doi.org/10.1021/bi100268k CrossRefPubMedPubMedCentralGoogle Scholar
  46. Padwal P, Bandyopadhyaya R, Mehra S (2014) Polyacrylic acid-coated iron oxide nanoparticles for targeting drug resistance in mycobacteria. Langmuir 30:15266–15276.  https://doi.org/10.1021/la503808d CrossRefPubMedGoogle Scholar
  47. Parak WJ, Gerion D, Pellegrino T, Zanchet D, Micheel C, Williams CS, Boudreau R, Le Gros MA, Larabell CA, Alivisatos AP (2003) Biological applications of colloidal nanocrystals. Nanotechnology 14:15–27.  https://doi.org/10.1088/0957-4484/14/7/201 CrossRefGoogle Scholar
  48. Prateeksha SBR, Shoeb M, Sharma S, Naqvi AH, Gupta VK, Singh BN (2017) Scaffold of selenium nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Front Cell Infect Microbiol 7:93.  https://doi.org/10.3389/fcimb.2017.00093 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Qin X, Engwer C, Desai S, Vila-Sanjurjo C, Goycoole FM (2017) An investigation of the interactions between an E. coli bacterial quorum sensing biosensor and chitosan-based nanocapsules. Colloids Surf B: Biointerfaces 149:358–368.  https://doi.org/10.1016/j.colsurfb.2016.10.031 CrossRefPubMedGoogle Scholar
  50. Rana D, Matsuura T (2010) Surface modifications for antifouling membranes. Chem Rev 110:2448–2471.  https://doi.org/10.1021/cr800208y CrossRefPubMedGoogle Scholar
  51. Rasmussen TB, Givskov M (2006) Quorum sensing inhibitors: a bargain of effects. Microbiology 152:895–904.  https://doi.org/10.1099/mic.0.28601-0 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Reading NC, Sperandio V (2006) Quorum sensing: the many languages of bacteria. FEMS Microbiol Lett 254:1–11.  https://doi.org/10.1111/j.1574-6968.2005.00001.x CrossRefPubMedGoogle Scholar
  53. Samia ACS, Dayal S, Burda C (2006) Quantum dot-based energy transfer: perspectives and potential for applications in photodynamic therapy. Photochem Photobiol 82:617–625.  https://doi.org/10.1562/2005-05-11-IR-525 CrossRefPubMedGoogle Scholar
  54. Singh BR, Singh A, Khan W, Naqvi AH, Singh HB (2015) Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep 5:13719.  https://doi.org/10.1038/srep13719 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Venkadesaperumal G, Rucha S, Sundar K, Shetty PH (2016) Anti-quorum sensing activity of spice oil nanoemulsions against food borne pathogens. LWT Food Sci Technol 66:225–231.  https://doi.org/10.1016/j.lwt.2015.10.044 CrossRefGoogle Scholar
  56. Vinoj G, Pati R, Sonawane A, Vaseeharan B (2015) In vitro cytotoxic effects of gold nanoparticles coated with functional acyl homoserine lactone lactonase protein from Bacillus licheniformis and their antibiofilm activity against Proteus species. Antimicrob Agents Chemother 59:763–771.  https://doi.org/10.1128/AAC.03047-14 CrossRefPubMedPubMedCentralGoogle Scholar
  57. Wagh (nee Jagtap) MS, Patil RH, Thombre DK, Kulkarni MV (2013) Evaluation of anti-quorum sensing activity of silver nanowires. Appl Microbiol Biotechnol 97:3593.  https://doi.org/10.1007/s00253-012-4603-1 CrossRefGoogle Scholar
  58. Whitehead NA, Barnard AM, Slater H, Simpson NJ, Salmond GP (2001) Quorum sensing in Gram-negative bacteria. FEMS Microbiol Rev 25:365–404.  https://doi.org/10.1111/j.1574-6976.2001.tb00583.x CrossRefPubMedGoogle Scholar
  59. Whitesides GM (2003) The ‘right’ size in Nanobiotechnology. Nat Biotechnol 21:1161–1165.  https://doi.org/10.1038/nbt872 CrossRefPubMedGoogle Scholar
  60. Xia Y, Yang P, Sun Y, Wu Y, Mayers B, Gates B, Yin Y, Kim F, Yan H (2003) One-dimensional nanostructures: synthesis, characterization and applications. Adv Mater 15:353–389.  https://doi.org/10.1002/adma.200390087 CrossRefGoogle Scholar
  61. Yeon KM, Cheong WS, Oh HS, Lee WN, Hwang BK, Lee CH, Beyenal H, Lewandowski Z (2009) Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environ Sci Technol 43:380–385.  https://doi.org/10.1021/es8019275 CrossRefPubMedGoogle Scholar
  62. Zhai T, Fang X, Liao M, Xu X, Zeng H, Yoshio B, Golberg D (2009) A comprehensive review of one-dimensional metal-oxide nanostructure photodetectors. Sensors 9:6504–6529.  https://doi.org/10.3390/s9080650 CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zhang C, Ye BC (2014) Real-time measurement of quorum-sensing signal autoinducer 3OC6HSL by a FRET-based nanosensor. Bioprocess Biosyst Eng 37(5):849–855.  https://doi.org/10.1007/s00449-013-1055-7 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • A. Jamuna Bai
    • 1
  • V. Ravishankar Rai
    • 1
  1. 1.Department of Studies in MicrobiologyUniversity of MysoreMysoreIndia

Personalised recommendations