Nanoparticles as Quorum Sensing Inhibitor: Prospects and Limitations

  • Faizan Abul Qais
  • Mohammad Shavez Khan
  • Iqbal Ahmad


The emergence and worldwide spread of multi-drug resistant bacterial pathogens and slow pace of drug discovery with novel mode of action has necessitated search for alternative or new strategies to combat bacterial infection. Targeting virulence and pathogenicity of pathogens controlled by quorum sensing (QS) is considered as a promising anti-infective drug target. Several molecules both natural and synthetic were reported to interfere quorum sensing and are potential candidates for anti-infective drugs. The inhibition of QS might successfully attenuate and eradicate the microbial pathogens in combination with host immune system. It is expected that QS inhibition will exert less selection pressure for development of resistance among pathogenic bacteria. The recent progress in nanobiotechnology have given a greater hope for the development of novel anti-QS agents/formulations with improved therapeutic potential, enhanced targeted delivery with lesser toxicity to host system. The improved action of nano-formulations is a fascinating ability compared to their bulk. Recently, nanoparticles such as metal nanoparticles are reported to exhibit promising anti-QS activity both in vitro and in vivo. Nanomaterials are also been tested as vehicle for targeted delivery of conventionally used antimicrobial agents. There is greater scope of manipulation in nano-based formulations according to desired needs making such therapeutic strategies more efficient. Of note, the risks associated with the application of nanoparticles in drug delivery, diagnostics, production of improved biocompatible material or preventing biofilm formation on medical devices, etc. are needed to be scrutinized. In this article, we have made an attempt to review the recent advancements in nanoparticle as anti-QS agents and progress made on nano-based formulations with promising prospects and limitations.


Quorum sensing Nanoparticles Anti-QS agents Drug delivery Bacterial infection Multi-drug resistance 



Silver nanoparticles


Acylhomoserine lactone


Carbon nanotubes


Quorum sensing


Quorum sensing inhibitor


Homoserine lactone


Solid lipid nanoparticles


Multi-drug resistance


  1. Agnihotri S, Mukherji S, Mukherji S (2014) Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv 4:3974–3983. CrossRefGoogle Scholar
  2. Ahmad I, Husain FM (2014) Bacterial virulence, biofilm and quorum sensing as promising targets for anti-pathogenic drug discovery and the role of natural products. In: Bhutani KK, Govil JN (ed) Biotechnology. Drug discovery, vol 7. Studium Press LLC, USA, pp 107–149 ISBN:1-62699-015-8Google Scholar
  3. Ahmad I, Khan MS, Altaf MM, Qais FA, Ansari FA, Rumbaugh KP (2017) Biofilms: an overview of their significance in plant and soil health. In: Ahmad I, Husain FM (eds) Biofilms in plant and soil health. Wiley, Hoboken, pp 1–26. ISBN: 978-1-119-24634-3CrossRefGoogle Scholar
  4. Ahmed S, Ahmad M, Swami BL, Ikram S (2016) A review on plants extract mediated synthesis of silver nanoparticles for antimicrobial applications: a green expertise. J Adv Res 7:17–28. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Ali SG, Ansari MA, Khan HM, Jalal M, Mahdi AA, Cameotra SS (2017) Crataeva nurvala nanoparticles inhibit virulence factors and biofilm formation in clinical isolates of Pseudomonas aeruginosa. J Basic Microbiol 57:193–203. CrossRefPubMedPubMedCentralGoogle Scholar
  6. Al-Shabib NA, Husain FM, Ahmad I, Khan MS, Khan RA, Khan JM (2017) Rutin inhibits mono and multi-species biofilm formation by foodborne drug resistant Escherichia coli and Staphylococcus aureus. Food Control 79:325–332. CrossRefGoogle Scholar
  7. Al-Shabib NA, Husain FM, Ahmed F, Khan RA, Ahmad I, Alsharaeh E, Khan MS, Hussain A, Rehman MT, Yusuf M, Hassan I (2016) Biogenic synthesis of zinc oxide nanostructures from Nigella sativa seed: prospective role as food packaging material inhibiting broad-spectrum quorum sensing and biofilm. Sci Rep 6:36761. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Anju S, Sarada J (2016) Quorum sensing inhibiting activity of silver nanoparticles synthesized by Bacillus isolate. Int J Pharm Bio Sci 6:47–53Google Scholar
  9. Arunkumar M, Mahesh N, Balakumar S, Sivakumar R, Priyadharshni S (2013) Antiquorum sensing and antibacterial activity of silver nanoparticles synthesized by mutant Klebsiella pneumoniae MTCC 3354. Asian J Chem 25:9961–9964. CrossRefGoogle Scholar
  10. Asfour HZ (2017) Anti-quorum sensing natural compounds. J Micros Ultrastr.
  11. Bae E, Park HJ, Yoon J, Kim Y, Choi K, Yi J (2011) Bacterial uptake of silver nanoparticles in the presence of humic acid and AgNO3. Korean J Chem Eng 28:267–271. CrossRefGoogle Scholar
  12. Bazaka K, Jacob MV, Crawford RJ, Ivanova EP (2012) Efficient surface modification of biomaterial to prevent biofilm formation and the attachment of microorganisms. Appl Microbiol Biotechnol 95:299–311. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Bhardwaj AK, Vinothkumar K, Rajpara N (2013) Bacterial quorum sensing inhibitors: attractive alternatives for control of infectious pathogens showing multiple drug resistance. Recent Pat Antiinfect Drug Discov 8:68–83. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Bondì ML, Craparo EF (2010) Solid lipid nanoparticles for applications in gene therapy: a review of the state of the art. Expert Opin Drug Deliv 7:7–18. CrossRefPubMedPubMedCentralGoogle Scholar
  15. Chaudhari AA, Jasper SL, Dosunmu E, Miller ME, Arnold RD, Singh SR, Pillai S (2015) Novel pegylated silver coated carbon nanotubes kill Salmonella but they are non-toxic to eukaryotic cells. J Nanobiotechnol 13:23. CrossRefGoogle Scholar
  16. Chetoni P, Burgalassi S, Monti D, Tampucci S, Tullio V, Cuffini AM, Muntoni E, Spagnolo R, Zara GP, Cavalli R (2016) Solid lipid nanoparticles as promising tool for intraocular tobramycin delivery: pharmacokinetic studies on rabbits. Eur J Pharm Biopharm 109:214–223. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Ciofu O, Giwercman B, Høiby N, Pedersen SS (1994) Development of antibiotic resistance in Pseudomonas aeruginosa during two decades of antipseudomonal treatment at the Danish CF Center. APMIS 102:674–680. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Corr SA (2013) Metal oxide nanoparticles. Nanoscience 2:180–234. CrossRefGoogle Scholar
  19. Daum N, Tscheka C, Neumeyer A, Schneider M (2012) Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4:52–65. CrossRefPubMedPubMedCentralGoogle Scholar
  20. Davis ME, Shin DM (2008) Nanoparticle therapeutics: an emerging treatment modality for cancer. Nat Rev Drug Discov 7:771–782. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Defoirdt T, Brackman G, Coenye T (2013) Quorum sensing inhibitors: how strong is the evidence? Trends Microbiol 21:619–624. CrossRefPubMedGoogle Scholar
  22. Díaz E, Jiménez JI, Nogales J (2013) Aerobic degradation of aromatic compounds. Curr Opin Biotechnol 24:431–442. CrossRefPubMedPubMedCentralGoogle Scholar
  23. Fernandez-Garcia M, Martinez-Arias A, Hanson JC, Rodriguez JA (2004) Nanostructured oxides in chemistry: characterization and properties. Chem Rev 104:4063–4104. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Forier K, Raemdonck K, De Smedt SC, Demeester J, Coenye T, Braeckmans K (2014) J Control Release 190:607–623. CrossRefPubMedPubMedCentralGoogle Scholar
  25. Fuqua WC, Winans SC, Greenberg EP (1994) Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176:269–275. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Galloway WR, Hodgkinson JT, Bowden SD, Welch M, Spring DR (2010) Quorum sensing in gram-negative bacteria: small-molecule modulation of AHL and AI-2 quorum sensing pathways. Chem Rev 111:28–67. CrossRefPubMedPubMedCentralGoogle Scholar
  27. García Lara B, Saucedo Mora MÁ, Roldán Sánchez JA, Pérez Eretza B, Ramasamy M, Lee J, Coria Jimenez R, Tapia M, Varela Guerrero V, García Contreras R (2015) Inhibition of quorum sensing dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. Lett Appl Microbiol 61:299–305. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gurunathan S, Han JW, Dayem AA, Eppakayala V, Kim JH (2012) Oxidative stress-mediated antibacterial activity of graphene oxide and reduced graphene oxide in Pseudomonas aeruginosa. Int J Nanomedicine 7:5901–5914. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Haddad PS, Seabra AB (2012) Biomedical applications of magnetic nanoparticles. In: Martinez AI (ed) Iron oxides: structure, properties and applications, vol 1. Nova Science Publishers, Inc., New York, pp 165–188Google Scholar
  30. Hentzer M, Givskov M (2003) Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112:1300–1307. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Huma N, Shankar P, Kushwah J, Bhushan A, Joshi J, Mukherjee T, Raju SC, Purohit HJ, Kalia VC (2011) Diversity and polymorphism in AHL-lactonase gene (aiiA) of Bacillus. J Microbiol Biotechnol 21:1001–1011. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Husain FM, Ahmad I, Baig MH, Khan MS, Khan MS, Hassan I, Al-Shabib NA (2016) Broad-spectrum inhibition of AHL-regulated virulence factors and biofilms by sub-inhibitory concentrations of ceftazidime. RSC Adv 6:27952–27962. CrossRefGoogle Scholar
  33. Husain FM, Ahmad I, Khan MS, Al-Shabib NA (2015) Trigonella foenum-graceum (seed) extract interferes with quorum sensing regulated traits and biofilm formation in the strains of Pseudomonas aeruginosa and Aeromonas hydrophila. Evid Based Complement Alternat Med 27:879540. CrossRefGoogle Scholar
  34. Iravani S, Korbekandi H, Mirmohammadi SV, Zolfaghari B (2014) Synthesis of silver nanoparticles: chemical, physical and biological methods. Res Pharm Sci 9:385–406PubMedPubMedCentralGoogle Scholar
  35. Janczak CM, Aspinwall CA (2012) Composite nanoparticles: the best of two worlds. Anal Bioanal Chem 402:83–89. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Jones N, Ray B, Ranjit KT, Manna AC (2008) Antibacterial activity of ZnO nanoparticle suspensions on a broad spectrum of microorganisms. FEMS Microbiol Lett 279:71–76. CrossRefPubMedPubMedCentralGoogle Scholar
  37. Kalia VC (2013) Quorum sensing inhibitors: an overview. Biotechnol Adv 31:224–245. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and-lactonase. Open Microbiol J 5:1–13. CrossRefPubMedPubMedCentralGoogle Scholar
  39. Ke X, Miller LC, Bassler BL (2015) Determinants governing ligand specificity of the Vibrio harveyi LuxN quorum sensing receptor. Mol Microbiol 95:127–142. CrossRefPubMedPubMedCentralGoogle Scholar
  40. Khan MF, Ansari AH, Hameedullah M, Ahmad E, Husain FM, Zia Q, Baig U, Zaheer MR, Alam MM, Khan AM, AlOthman ZA (2016) Sol-gel synthesis of thorn-like ZnO nanoparticles endorsing mechanical stirring effect and their antimicrobial activities: potential role as nano-antibiotics. Sci Rep 6:27689. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Knetsch ML, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers 3:340–366. CrossRefGoogle Scholar
  42. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011a) Cellular response to metal oxide nanoparticles in bacteria. J Biomed Nanotechnol 7:102–103CrossRefPubMedCentralPubMedGoogle Scholar
  43. Kumar A, Pandey AK, Singh SS, Shanker R, Dhawan A (2011b) Engineered ZnO and TiO2 nanoparticles induce oxidative stress and DNA damage leading to reduced viability of Escherichia coli. Free Radic Biol Med 51:1872–1881. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Leung YH, Ng A, Xu X, Shen Z, Gethings LA, Wong MT, Chan C, Guo MY, Ng YH, Djurišić AB, Lee PK (2014) Mechanisms of antibacterial activity of MgO: non-ROS mediated toxicity of MgO nanoparticles towards Escherichia coli. Small 10:1171–1183. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lewis K (2007) Persister cells, dormancy and infectious disease. Nat Rev Microbiol 5:48–56. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Loo CY, Rohanizadeh R, Young PM, Traini D, Cavaliere R, Whitchurch CB, Lee WH (2015) Combination of silver nanoparticles and curcumin nanoparticles for enhanced anti-biofilm activities. J Agric Food Chem 64:2513–2522. CrossRefPubMedPubMedCentralGoogle Scholar
  47. Mahapatra O, Bhagat M, Gopalakrishnan C, Arunachalam KD (2008) Ultrafine dispersed CuO nanoparticles and their antibacterial activity. J Exp Nanosci 3:185–193. CrossRefGoogle Scholar
  48. Maheshwari M, Ahmad I, Althubiani AS (2016) Multidrug resistance and transferability of bla CTX-M among extended-spectrum β-lactamase-producing enteric bacteria in biofilm. J Glob Antimicrob Resist 6:142–149. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Masurkar SA, Chaudhari PR, Shidore VB, Kamble SP (2012) Effect of biologically synthesised silver nanoparticles on Staphylococcus aureus biofilm quenching and prevention of biofilm formation. IET Nanobiotechnol 6:110–114. CrossRefPubMedPubMedCentralGoogle Scholar
  50. Mehnert W, Mäder K (2012) Solid lipid nanoparticles: production, characterization and applications. Adv Drug Deliv Rev 64:83–101. CrossRefGoogle Scholar
  51. Miller KP, Wang L, Chen YP, Pellechia PJ, Benicewicz BC, Decho AW (2015) Engineering nanoparticles to silence bacterial communication. Front Microbiol 6:189. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Mohamed-Ahmed AA, Ginn C, Croft S, Brocchini S (2013) Anti-infectives. In: Fundamentals of pharmaceutical nanoscience. Springer, New York, pp 429–464CrossRefGoogle Scholar
  53. Monteiro DR, Gorup LF, Takamiya AS, Ruvollo-Filho AC, de Camargo ER, Barbosa DB (2009) The growing importance of materials that prevent microbial adhesion: antimicrobial effect of medical devices containing silver. Int J Antimicrob Agents 34:103–110. CrossRefPubMedPubMedCentralGoogle Scholar
  54. MuÈller RH, MaÈder K, Gohla S (2000) Solid lipid nanoparticles (SLN) for controlled drug delivery–a review of the state of the art. Eur J Pharm Biopharm 50:161–177. CrossRefGoogle Scholar
  55. Müller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 1:54. CrossRefGoogle Scholar
  56. Nafee N, Husari A, Maurer CK, Lu C, de Rossi C, Steinbach A, Hartmann RW, Lehr CM, Schneider M (2014) Antibiotic-free nanotherapeutics: ultra-small, mucus-penetrating solid lipid nanoparticles enhance the pulmonary delivery and anti-virulence efficacy of novel quorum sensing inhibitors. J Control Release 192:131–140. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Nagy A, Harrison A, Sabbani S, Munson RS Jr, Dutta PK, Waldman WJ (2011) Silver nanoparticles embedded in zeolite membranes: release of silver ions and mechanism of antibacterial action. Int J Nanomedicine 6:1833–1852. CrossRefPubMedPubMedCentralGoogle Scholar
  58. Naik K, Kowshik M (2014) Anti quorum sensing activity of AgCl-TiO2 nanoparticles with potential use as active food packaging material. J Appl Microbiol 117:972–983. CrossRefPubMedPubMedCentralGoogle Scholar
  59. Nealson KH, Platt T, Hastings JW (1970) Cellular control of the synthesis and activity of the bacterial luminescent system. J Bacteriol 104:313–322PubMedPubMedCentralGoogle Scholar
  60. Olson ME, Ceri H, Morck DW, Buret AG, Read RR (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66:86–92PubMedPubMedCentralGoogle Scholar
  61. Phelan VV, Liu WT, Pogliano K, Dorrestein PC (2012) Microbial metabolic exchange [mdash] the chemotype-to-phenotype link. Nat Chem Biol 8:26–35. CrossRefGoogle Scholar
  62. Prateeksha BR, Shoeb M, Sharma S, Naqvi AH, Gupta VK, Singh BN (2017) Scaffold of selenium Nanovectors and honey phytochemicals for inhibition of Pseudomonas aeruginosa quorum sensing and biofilm formation. Front Cell Infect Microbiol 7:93. CrossRefPubMedPubMedCentralGoogle Scholar
  63. Radzig MA, Nadtochenko VA, Koksharova OA, Kiwi J, Lipasova VA, Khmel IA (2013) Antibacterial effects of silver nanoparticles on gram-negative bacteria: influence on the growth and biofilms formation, mechanisms of action. Colloids Surf B Biointerfaces 102:300–306. CrossRefPubMedPubMedCentralGoogle Scholar
  64. Raghunath A, Perumal E (2017) Metal oxide nanoparticles as antimicrobial agents: a promise for the future. Int J Antimicrob Agents 49:137–152. CrossRefPubMedPubMedCentralGoogle Scholar
  65. Rajamanikandan S, Jeyakanthan J, Srinivasan P (2017) Molecular docking, molecular dynamics simulations, computational screening to design quorum sensing inhibitors targeting LuxP of Vibrio harveyi and its biological evaluation. Appl Biochem Biotechnol 181:192–218. CrossRefPubMedPubMedCentralGoogle Scholar
  66. Rampioni G, Leoni L, Williams P (2014) The art of antibacterial warfare: deception through interference with quorum sensing–mediated communication. Bioorg Med Chem 55:60–68. CrossRefGoogle Scholar
  67. Ren TT, Li XY, Yu HQ (2013) Effect of N-acy-l-homoserine lactones-like molecules from aerobic granules on biofilm formation by Escherichia coli K12. Bioresour Technol 129:655–658. CrossRefPubMedPubMedCentralGoogle Scholar
  68. Rodriguez JA, Fernández-García M (2007) Synthesis, properties, and applications of oxide nanomaterials. Wiley, HobokenCrossRefGoogle Scholar
  69. Romero M, Acuña L, Otero A (2012) Patents on quorum quenching: interfering with bacterial communication as a strategy to fight infections. Recent Pat Biotechnol 6:2–12. CrossRefPubMedPubMedCentralGoogle Scholar
  70. Roux A, Payne SM, Gilmore MS (2009) Microbial telesensing: probing the environment for friends, foes, and food. Cell Host Microbe 6:115–124. CrossRefPubMedPubMedCentralGoogle Scholar
  71. Rudrappa T, Bais HP (2008) Curcumin, a known phenolic from Curcuma longa, attenuates the virulence of Pseudomonas aeruginosa PAO1 in whole plant and animal pathogenicity models. J Agric Food Chem 56:1955–1962. CrossRefPubMedPubMedCentralGoogle Scholar
  72. Sadiq IM, Chandrasekaran N, Mukherjee A (2010) Studies of effect of TiO2 nanoparticles on growth and membrane permeability of Escherichia coli, Pseudomonas aeruginosa and Bacillus subtilis. Curr Nanosci 6:381–387. CrossRefGoogle Scholar
  73. Sajid M, Khan MS, Cameotra SS, Ahmad I (2014) Drug delivery systems that eradicate and/or prevent biofilm formation. In: Antibiofilm agents. Springer, Berlin/Heidelberg, pp 407–424CrossRefGoogle Scholar
  74. Sawai J, Himizu K, Yamamoto O (2005) Kinetics of bacterial death by heated dolomite powder slurry. Soil Biol Biochem 37:1484–1489. CrossRefGoogle Scholar
  75. Schaefer AL, Lappala CR, Morlen RP, Pelletier DA, Lu TY, Lankford PK, Harwood CS, Greenberg EP (2013) LuxR-and LuxI-type quorum-sensing circuits are prevalent in members of the Populus deltoides microbiome. Appl Environ Microbiol 79:5745–5752. CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sharma BK, Saha A, Rahaman L, Bhattacharjee S, Tribedi P (2015) Silver inhibits the biofilm formation of Pseudomonas aeruginosa. Adv Microbiol 5:677–685. CrossRefGoogle Scholar
  77. Shrestha PM, Rotaru AE, Summers ZM, Shrestha M, Liu F, Lovley DR (2013) Transcriptomic and genetic analysis of direct interspecies electron transfer. Appl Environ Microbiol 79:2397–2404. CrossRefPubMedPubMedCentralGoogle Scholar
  78. Siddiqui MF, Rzechowicz M, Harvey W, Zularisam AW, Anthony GF (2015) Quorum sensing based membrane biofouling control for water treatment: a review. J Water Proc Eng 7:112–122. CrossRefGoogle Scholar
  79. Sifri CD (2008) Quorum sensing: bacteria talk sense. Clin Infect Dis 47:1070–1076. CrossRefPubMedPubMedCentralGoogle Scholar
  80. Singh BR, Singh BN, Singh A, Khan W, Naqvi AH, Singh HB (2015) Mycofabricated biosilver nanoparticles interrupt Pseudomonas aeruginosa quorum sensing systems. Sci Rep 5:13719. CrossRefPubMedPubMedCentralGoogle Scholar
  81. Singh R, Nalwa HS (2011) Medical applications of nanoparticles in biological imaging, cell labeling, antimicrobial agents, and anticancer nanodrugs. J Biomed Nanotechnol 7:489–503. CrossRefPubMedPubMedCentralGoogle Scholar
  82. Thill A, Zeyons O, Spalla O, Chauvat F, Rose J, Auffan M, Flank AM (2006) Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environ Sci Technol 40:6151–6156. CrossRefPubMedPubMedCentralGoogle Scholar
  83. Tran N, Mir A, Mallik D, Sinha A, Nayar S, Webster TJ (2010) Bactericidal effect of iron oxide nanoparticles on Staphylococcus aureus. Int J Nanomedicine 5:277–283. CrossRefPubMedPubMedCentralGoogle Scholar
  84. Valcárcel M, López-Lorente ÁI (2016) Recent advances and trends in analytical nanoscience and nanotechnology. Trends Anal Chem 84:1–2. CrossRefGoogle Scholar
  85. Wagh MS, Patil RH, Thombre DK, Kulkarni MV, Gade WN, Kale BB (2013) Evaluation of anti-quorum sensing activity of silver nanowires. Appl Microbiol Biotechnol 97:3593–3601. CrossRefGoogle Scholar
  86. Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1:172–179. CrossRefPubMedPubMedCentralGoogle Scholar
  87. Yong YC, Wu XY, Sun JZ, Cao YX, Song H (2015) Engineering quorum sensing signaling of Pseudomonas for enhanced wastewater treatment and electricity harvest: a review. Chemosphere 140:18–25. CrossRefPubMedPubMedCentralGoogle Scholar
  88. Zaidi S, Misba L, Khan AU (2017) Nano-therapeutics: a revolution in infection control in post antibiotic era. Nanomedicine 13:2281–2301. CrossRefPubMedPubMedCentralGoogle Scholar
  89. Zhang L, Jiang Y, Ding Y, Povey M, York D (2007) Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J Nanopart Res 9:479–489. CrossRefGoogle Scholar
  90. Zhang W, Li C (2015) Exploiting quorum sensing interfering strategies in gram-negative bacteria for the enhancement of environmental applications. Front Microbiol 6:1535. CrossRefPubMedPubMedCentralGoogle Scholar
  91. Zhu X, Hondroulis E, Liu W, Li CZ (2013) Biosensing approaches for rapid genotoxicity and cytotoxicity assays upon nanomaterial exposure. Small 9:1821–1830. CrossRefPubMedPubMedCentralGoogle Scholar
  92. Zia Q, Farzuddin M, Ansari MA, Alam M, Ali A, Ahmad I, Owais M (2010) Novel drug delivery systems for antifungal compounds. In: Combating fungal infections, polisher. Springer, Berlin/Heidelberg, pp 485–528CrossRefGoogle Scholar
  93. Zou X, Deng P, Zhou C, Hou Y, Chen R, Liang F, Liao L (2017) Preparation of a novel antibacterial chitosan-poly (ethylene glycol) cryogel/silver nanoparticles composites. J Biomater Sci Polym Ed 27:1–4. CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Faizan Abul Qais
    • 1
  • Mohammad Shavez Khan
    • 1
  • Iqbal Ahmad
    • 1
  1. 1.Department of Agricultural MicrobiologyFaculty of Agricultural Sciences, Aligarh Muslim UniversityAligarhIndia

Personalised recommendations