Receive Buffer Pre-division Based Flow Control for MPTCP

  • Jiangping Han
  • Kaiping Xue
  • Hao Yue
  • Peilin Hong
  • Nenghai Yu
  • Fenghua Li
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 747)

Abstract

Multipath TCP (MPTCP) enables terminals utilizing multiple interfaces for data transmission simultaneously, which provides better performance and brings many benefits. However, using multiple paths brings some new challenges. The asymmetric parameters among different subflows may cause the out-of-order problem and load imbalance problem, especially in wireless network which has more packet loss. Thus it will significantly degrade the performance of MPTCP. In this paper, we propose a Receive Buffer Pre-division based flow control mechanism (RBP) for MPTCP. RBP divides receive buffer according to the prediction of receive buffer occupancy of each subflow, and controls the data transmission on each subflow using the divided buffer and the number of out-of-order packets, which can significantly improve the performance of MPTCP. We use the NS-3 simulations to verify the performance of our scheme, and the simulation results show that RBP algorithm can significantly increase the global throughput of MPTCP.

Keywords

MPTCP Receive buffer Pre-division Flow control Wireless Out-of-order 

Notes

Acknowledgment

This work is supported by the National Natural Science Foundation of China under Grant No. 61379129 and No. 61671420, the Fund of Science and Technology on Communication Networks Laboratory under Grant No. KX162600024, Youth Innovation Promotion Association CAS under Grant No. 2016394, and the Fundamental Research Funds for the Central Universities.

References

  1. 1.
    Habak, K., Harras, K.A., Youssef, M.: Bandwidth aggregation techniques in heterogeneous multi-homed devices: a survey. Comput. Netw. 92, 168–188 (2015)CrossRefGoogle Scholar
  2. 2.
    Lee, W., Koo, J., Park, Y., Choi, S.: Transfer time, energy, and quota-aware multi-RAT operation scheme in smartphone. IEEE Trans. Veh. Technol. 65(1), 307–317 (2016)CrossRefGoogle Scholar
  3. 3.
    Zheng, X., Cai, Z., Li, J., Gao, H.: Scheduling flows with multiple service frequency constraints. IEEE Internet Things J. 4(2), 496–504 (2017)CrossRefGoogle Scholar
  4. 4.
    Amer, P., Becke, M., Dreibholz, T., Ekiz, N., Iyengar, J., Natarajan, P., Stewart, R., Tuexen, M.: Load sharing for the stream control transmission protocol (SCTP). IETF Personal Draft, draft-tuexen-tsvwgsctp-multipath-13 (2016)Google Scholar
  5. 5.
    Li, M., Lukyanenko, A., Ou, Z., Ylä-Jääski, A., Tarkoma, S., Coudron, M., Secci, S.: Multipath transmission for the internet: a survey. IEEE Commun. Surv. Tutor. 18(4), 2887–2925 (2016)CrossRefGoogle Scholar
  6. 6.
    Shailendra, S., Bhattacharjee, R., Bose, S.K.: MPSCTP: a simple and efficient multipath algorithm for SCTP. IEEE Commun. Lett. 15(10), 1139–1141 (2011)CrossRefGoogle Scholar
  7. 7.
    Ford, A., Raiciu, C., Handley, M., Bonaventure, O.: TCP extensions for multipath operation with multiple addresses. IETF RFC, RFC6824 (2013)Google Scholar
  8. 8.
    Xue, K., Han, J., Ni, D., Wei, W., Cai, Y., Xu, Q., Hong, P.: DPSAF: forward prediction based dynamic packet scheduling and adjusting with feedback for multipath TCP in lossy heterogeneous networks. IEEE Trans. Veh. Technol. 67(2), 1521–1534 (2017)CrossRefGoogle Scholar
  9. 9.
    Adhari, H., Dreibholz, T., Becke, M., Rathgeb, E.P., Tüxen, M.: Evaluation of concurrent multipath transfer over dissimilar paths. In: Proceedings of 2011 IEEE Workshops of International Conference on Advanced Information Networking and Applications (WAINA 2011), pp. 708–714. IEEE (2011)Google Scholar
  10. 10.
    Barré, S., et al.: Implementation and assessment of modern host-based multipath solutions. Ph.D. dissertation, UCL (2011)Google Scholar
  11. 11.
    Mirani, F.H., Boukhatem, N., Tran, M.A.: A data-scheduling mechanism for multi-homed mobile terminals with disparate link latencies. In: Proceedings of the 72nd IEEE Vehicular Technology Conference Fall (VTC 2010-Fall), pp. 1–5. IEEE (2010)Google Scholar
  12. 12.
    Ni, D., Xue, K., Hong, P., Shen, S.: Fine-grained forward prediction based dynamic packet scheduling mechanism for multipath TCP in lossy networks. In: Proceedings of the 23rd International Conference on Computer Communication and Networks (ICCCN), pp. 1–7. IEEE (2014)Google Scholar
  13. 13.
    Ni, D., Xue, K., Hong, P., Zhang, H., Lu, H.: OCPS: offset compensation based packet scheduling mechanism for multipath TCP. In: Proceedings of 2015 IEEE International Conference on Communications (ICC 2015), pp. 6187–6192. IEEE (2015)Google Scholar
  14. 14.
    Iyengar, J.R., Amer, P.D., Stewart, R.: Concurrent multipath transfer using SCTP multihoming over independent end-to-end paths. IEEE/ACM Trans. Netw. 14(5), 951–964 (2006)CrossRefGoogle Scholar
  15. 15.
    Kühlewind, M., Wagner, D.P., Espinosa, J.M.R., Briscoe, B.: Using data center TCP (DCTCP) in the internet. In: Proceedings of 2014 IEEE Globecom Workshops (GC Wkshps), pp. 583–588. IEEE (2014)Google Scholar
  16. 16.
    NS3 simulator. www.nsnam.org/
  17. 17.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Jiangping Han
    • 1
    • 2
  • Kaiping Xue
    • 1
    • 2
  • Hao Yue
    • 3
  • Peilin Hong
    • 1
  • Nenghai Yu
    • 1
  • Fenghua Li
    • 4
  1. 1.Department of EEISUniversity of Science and Technology of ChinaHefeiChina
  2. 2.Science and Technology on Communication Networks LaboratoryShijiazhuangChina
  3. 3.Department of Computer ScienceSan Francisco State UniversitySan FranciscoUSA
  4. 4.State Key Laboratory of Information Security, Institute of Information EngineeringChinese Academy of SciencesBeijingChina

Personalised recommendations