Privacy-Assured Large-Scale Navigation from Encrypted Approximate Shortest Path Recommendation

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 747)

Abstract

As the fast-paced market of smart phones, navigation application is becoming more popular especially when traveling to a new place. As a key function, shortest path recommendation enables a user routing efficiently in an unfamiliar place. However, the source and destination are always critical private information. They can be used to infer a user’s personal life. Sharing such information with an app may raise severe privacy concerns.

In this paper, we propose a practical navigation system that preserves user’s privacy while achieving practical shortest path recommendation. The proposed system is based on graph encryption schemes that enable privacy assured approximate shortest path queries on large-scale encrypted graphs. We first leverage a data structure called a distance oracle to create sketch information, and we further add path information to the data structure and design three structured encryption schemes. The first scheme is based on oblivious storage. The second scheme takes advantage of the latest cryptographic techniques to find the minimal distance and achieves optimal communication complexity. The third scheme adopts homomorphic encryption scheme and achieves efficient communication overhead and computation overhead on the client side. We also evaluated our construction. The results show that the computation overhead and communication overhead are reasonable and practical.

Keywords

Private navigation Distance oracle Oblivious storage PIR Homomorphic computation 

Notes

Acknowledgement

This work was supported by the Natural Science Foundation of China (Project No. 61572412) and the Microsoft Azure Research Grant.

References

  1. 1.
    Real datasets for spatial databases: Road networks and points of interest. https://www.cs.utah.edu/~lifeifei/SpatialDataset.htm
  2. 2.
    Aguilar-Melchor, C., Barrier, J., Fousse, L., Killijian, M.-O.: XPIR: private information retrieval for everyone. In: Proceedings of PETS (2015)Google Scholar
  3. 3.
    Boneh, D., Mazieres, D., Popa, R.A.: Remote oblivious storage: making oblivious ram practical (2011)Google Scholar
  4. 4.
    Das Sarma, A., Gollapudi, S., Najork, M., Panigrahy, R.: A sketch-based distance oracle for web-scale graphs. In: Proceedings of ACM WSDM, pp. 401–410 (2010)Google Scholar
  5. 5.
    Erkin, Z., Franz, M., Guajardo, J., Katzenbeisser, S., Lagendijk, I., Toft, T.: Privacy-preserving face recognition. In: Goldberg, I., Atallah, M.J. (eds.) PETS 2009. LNCS, vol. 5672, pp. 235–253. Springer, Heidelberg (2009).  https://doi.org/10.1007/978-3-642-03168-7_14CrossRefGoogle Scholar
  6. 6.
    Gupta, T., Crooks, N., Mulhern, W., Setty, S.T., Alvisi, L., Walfish, M.: Scalable and private media consumption with popcorn. In: Proceedings of NSDI (2016)Google Scholar
  7. 7.
    Kim, S., Kim, J., Koo, D., Kim, Y., Yoon, H., Shin, J.: Efficient privacy-preserving matrix factorization via fully homomorphic encryption. In Proceedings of ACM ASIACCS (2016)Google Scholar
  8. 8.
    Krumm, J.: A survey of computational location privacy. Pers. Ubiquit. Comput. 13(6), 391–399 (2009)CrossRefGoogle Scholar
  9. 9.
    Meng, X., Kamara, S., Nissim, K., Kollios, G.: Grecs: graph encryption for approximate shortest distance queries. In: Proceedings of ACM CCS (2015)Google Scholar
  10. 10.
    Microsoft Trustworthy Computing. Location based services and privacy (2011). http://www.microsoft.com/en-us/download/confirmation.aspx?id=3250
  11. 11.
    Mouratidis, K., Yiu, M.L.: Shortest path computation with no information leakage (2012)Google Scholar
  12. 12.
    Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N., Boneh, D.: Privacy-preserving matrix factorization. In: Proceedings of ACM CCS (2013)Google Scholar
  13. 13.
    Rahulamathavan, Y., Phan, R.C.-W., Chambers, J.A., Parish, D.J.: Facial expression recognition in the encrypted domain based on local fisher discriminant analysis. IEEE Trans. Affect. Comput. 4(1), 83–92 (2013)CrossRefGoogle Scholar
  14. 14.
    Shin, K.G., Ju, X., Chen, Z., Hu, X.: Privacy protection for users of location-based services. IEEE Wirel. Commun. 19(1), 1536–1284 (2012)CrossRefGoogle Scholar
  15. 15.
    Stefanov, E., Van Dijk, M., Shi, E., Fletcher, C., Ren, L., Yu, X., Devadas, S.: Path ORAM: an extremely simple oblivious RAM protocol. In: Proceedings of ACM CCS, pp. 299–310 (2013)Google Scholar
  16. 16.
    Wang, Q., Ren, K., Du, M., Li, Q., Mohaisen, A.: SecGDB: Graph Encryption for Exact Shortest Distance Queries with Efficient Updates. In: Kiayias, A. (ed.) FC 2017. LNCS, vol. 10322, pp. 79–97. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-70972-7_5CrossRefGoogle Scholar
  17. 17.
    Williams, P., Sion, R.: Usable pir. In: Proceedings of NDSS (2008)Google Scholar
  18. 18.
    Wu, D.J., Zimmerman, J., Planul, J., Mitchell, J.C.: Privacy-preserving shortest path computation. arXiv preprint arXiv:1601.02281 (2016)
  19. 19.
    Xi, Y., Schwiebert, L., Shi, W.: Privacy preserving shortest path routing with an application to navigation. Pervasive Mob. Comput. 13, 142–149 (2014)CrossRefGoogle Scholar
  20. 20.
    Xie, D., Li, G., Yao, B., Wei, X., Xiao, X., Gao, Y., Guo, M.: Practical private shortest path computation based on oblivious storage. In: Proceedings of IEEE ICDE, pp. 361–372 (2016)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Computer ScienceCity University of Hong KongHong Kong, S.A.R.China
  2. 2.City University of Hong Kong, Shenzhen Research InstituteShenzhenChina

Personalised recommendations