Neural Energy Properties and Mental Exploration Based on Neural Energy Field Gradient

  • Yihong Wang
  • Xuying Xu
  • Rubin Wang
Conference paper
Part of the Advances in Cognitive Neurodynamics book series (ICCN)


Neural coding problem is one of the most important basic problems of cognitive neuroscience. The classic coding theories based on firing rate now encounter their own bottlenecks. Energy coding method studies the coding problem by the energy characteristics of neural systems which possesses the advantages of globality and economy. This research analyzed the energy coding theory in computational level and applied it to mental exploration and path optimization. First, we defined and calculated the neural energy supply and consumption based on the Hodgkin-Huxley model during two activity states using ion-counting and power integral method. Then the energy properties of each ion channel are analyzed. The energy efficiency of a neuron is 76% and above 100% under these two circumstances. Finally, we study the mental exploration by energy method and constructed an effective model to find and optimize the path to the target.


Energy coding Mental exploration Neural energy field Place cells 


  1. 1.
    Borst, A., Theunissen, F.E.: Information theory and neural coding. Nat. Neurosci. 2, 947–957 (1999)CrossRefPubMedGoogle Scholar
  2. 2.
    Jacobs, A., et al.: Ruling out and ruling in neural codes. Proc. Natl. Acad. Sci. U. S. A. 106, 5936–5941 (2009)CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Wang, R., Tsuda, I., Zhang, Z.: A new work mechanism on neuronal activity. Int. J. Neural Sys. 25, 1450037 (2015)CrossRefGoogle Scholar
  4. 4.
    Moujahid, A., d’Anjou, A., Torrealdea, F.J.: Energy and information in Hodgkin-Huxley neurons. Phys. Rev. E. 83, 031912 (2011)CrossRefGoogle Scholar
  5. 5.
    O'Keefe, J., Nadel, L.: The Hippocampus as a Cognitive Map. Oxford University Press, Oxford (1978)Google Scholar
  6. 6.
    Redish, A.D.: Beyond the Cognitive Map. The MIT Press, Cambridge (1999)Google Scholar
  7. 7.
    Hopfield, J.J.: Neurodynamics of mental exploration. Proc. Natl. Acad. Sci. U. S. A. 107, 1648–1653 (2010)CrossRefPubMedGoogle Scholar
  8. 8.
    Attwell, D., Laughlin, S.B.: An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab. 21, 1133–1145 (2001)CrossRefPubMedGoogle Scholar
  9. 9.
    Moujahid, A., D’Anjou, A., Graña, M.: Energy demands of diverse spiking cells from the neocortex, hippocampus, and thalamus. Front. Comput. Neurosci. 8, 1–12 (2014)CrossRefGoogle Scholar
  10. 10.
    Wang, Y., Wang, R., Xu, X.: Neural energy supply-consumption properties based on Hodgkin-Huxley model. Neural Plast. 2017, 6207141 (2017)PubMedPubMedCentralGoogle Scholar
  11. 11.
    Wang, Y., Wang, R., Zhu, Y.: Optimal path-finding through mental exploration based on neural energy field gradients. Cogn. Neurodyn. 11, 99–111 (2017)CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Yihong Wang
    • 1
  • Xuying Xu
    • 2
  • Rubin Wang
    • 1
  1. 1.East China University of Science and Technology, Science SchoolShanghaiChina
  2. 2.Institute of Cognitive NeurodynamicsEast China University of Science and Technology,ShanghaiChina

Personalised recommendations