Advertisement

MicroRNA and Its Application in Asthma Studies

  • Fang Chen
  • Yan-Jing Qian
  • Jia-Ying Zhang
  • Fang Wang
  • Ting-Ting Xia
Chapter
Part of the Translational Bioinformatics book series (TRBIO, volume 12)

Abstract

Asthma is a respiratory disease that is closely associated with genetic and environmental conditions, and miRNA is known as the key regulator of epigenetics. This is a kind of small non-coding RNA, which is involved in the translation process of proteins indirectly, controlling the behavior of the body. Recent studies have found that a large number of asthmatic patients have abnormal miRNA expression, and that miRNA has played a key role in asthma, including in regulating the immune function, airway inflammation, and airway remodeling. Therefore, this article reviews the application of microRNA in asthma.

Keywords

Asthma miRNA Biomarker Application 

Abbreviations

3′-UTR

3′-untranslated region

AHR

airway hyperresponsiveness

ASM

airway smooth muscle

BD

bronchodilator

BDNF

brain-derived neurotrophic factor

BALF

bronchoalveolar lavage fluid

BSM

bronchial smooth muscle

DEP

diesel exhaust particles

ELISA

enzyme-linked immune sorbent assay

EOS

eosinophilic

FEV1

forced expired volume in one second

FVC

forced vital capacity

GCS

glucocorticosteroid

GSK-3β

glycogen synthase kinase-3β

HDM

house dust mite

HLA-G

Human Leucocyte Antigen G

IFN-γ

interferon-γ

IRAK1

IL-1 receptor associated kinase 1

KLF4

Krüppel-like factor 4

LPS

lipopolysaccharide

MAREs

Maf recognize elements

miRNA

microRNA

MyD88

myeloid differentiation factor 88

NE

neutrophilic

NFκβ

nuclear factor kappa beta

OVA

ovalbumin

PBMCs

peripheral blood mononuclear cells

PCR

polymerase Chain Reaction

PDCD4

programmed cell death protein 4

PEF

peak expiratory flow

PI3K

phosphatidylinositol 3-hydroxy kinase

PM

particulate matter

RISC

RNA-induced silencing complex

RT-PCR

reverse transcription-polymerase chain reaction

RUNX3

runt-related transcription factor 3

SHH

sonic hedgehog

SHIP1

SH2-containing inositol 1

SOCS1

suppressor of signaling cytokine1

SPP1

secreted phosphoprotein 1

stRNA

small tenporal RNA

T-Bet

T-box expressed in T cells

TCR

T cell antigen receptor

TLR4

Toll-like receptor 4

TRAF6

TNF receptor associated factor 6

TSLP

Thymic stromal lymphopoietin

VEGF

vascular endothelial growth factor

References

  1. 1.
    Haussecker D, Kay MA. miR-122 continues to blaze the trail for microRNA therapeutics. Mol Ther. 2010;18:240–2. [PubMed:20125164]CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res. 2014;42:D68–73. [PubMed:24275495]CrossRefPubMedGoogle Scholar
  3. 3.
    Friedman RC, et al. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105. [PubMed:18955434]CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Huo X, et al. Decreased epithelial and plasma miR-181b-5p expression associates with airway eosinophilic inflammation in asthma. Clin Exp Allergy. 2016;46:1281–90. [PubMed: 27192552]CrossRefPubMedGoogle Scholar
  5. 5.
    Elbehidy RM, et al. MicroRNA-21 as a novel biomarker in diagnosis and response to therapy in asthmatic children. Mol Immunol. 2016;71:107–14. [PubMed: 26874829]CrossRefPubMedGoogle Scholar
  6. 6.
    Li JJ, Tay HL, Maltby S, et al. MicroRNA-9 regulates steroid-resistant airway hyperresponsiveness by reducing protein phosphatase 2A activity. J Allergy Clin Immunol. 2015;136:462–73. [PubMed: 25772595]CrossRefPubMedGoogle Scholar
  7. 7.
    Wu XB, et al. Overexpression of microRNA-21 and microRNA-126 in the patients of bronchial asthma. Int J Clin Exp Med. 2014;7:1307–12. [PubMed: 24995087]PubMedPubMedCentralGoogle Scholar
  8. 8.
    Solberg OD, et al. Airway epithelial miRNA expression is altered in asthma. Am J Respir Crit Care Med. 2012;186:965–74. [PubMed:22955319]CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kim RY, Horvat JC, Pinkerton JW, et al. MicroRNA-21 drives severe, steroid-insensitive experimental asthma by amplifying phosphoinositide 3-kinase–mediated suppression of histone deacetylase 2. J Allergy Clin Immunol. 2017;139:519–32. [PubMed: 2744e8447]CrossRefPubMedGoogle Scholar
  10. 10.
    Williams AE, Larner-Svensson H, Perry MM, et al. MicroRNA expression profiling in mild asthmatic human airways and effect of corticosteroid therapy. PLoS One. 2009;4:e5889. [PubMed:19521514]CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Perry MM, Baker JE, Gibeon DS, et al. Airway smooth muscle hyperproliferation is regulated by microRNA-221 in severe asthma. Am J Respir Cell Mol Biol. 2014;50:7–17. [PubMed:23944957]PubMedPubMedCentralGoogle Scholar
  12. 12.
    Haj-Salem I, et al. MicroRNA-19a enhances proliferation of bronchial epithelial cells by targeting TGFbetaR2 gene in severe asthma. Allergy. 2015;70:212–9. [PubMed:25443138]CrossRefPubMedGoogle Scholar
  13. 13.
    Kho AT, et al. Circulating MicroRNAs: association with lung function in asthma. PLoS One. 2016;11:e0157998. [PubMed:27362794]CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Roff AN, Craig TJ, August A, et al. MicroRNA-570-3p regulates HuR and cytokine expression in airway epithelial cells. Am J Clin Exp Immunol. 2014;3:68–83. [PubMed:25143867]PubMedPubMedCentralGoogle Scholar
  15. 15.
    Levänen B, Bhakta NR, Paredes PT, et al. Altered microRNA profiles in bronchoalveolar lavage fluid exosomes in asthmatic patients. J Allergy Clin Immunol. 2013;131:894–903. [PubMed:23333113]CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Polikepahad S, et al. Proinflammatory role for let-7 microRNAS in experimental asthma. J Biol Chem. 2010;285:30139–49. [PubMed: 20630862]CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kumar M, et al. Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J Allergy Clin Immunol. 2011;128:1077–85. e1–10. [PubMed: 21616524]CrossRefPubMedGoogle Scholar
  18. 18.
    Mattes J, et al. Antagonism of microRNA-126 suppresses the effector function of TH2 cells and the development of allergic airways disease. Proc Natl Acad Sci U S A. 2009;106:18704–9. [PubMed: 19843690]CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Sheedy FJ, et al. Negative regulation of TLR4 via targeting of the proinflammatory tumor suppressor PDCD4 by the microRNA miR-21. Nat Immunol. 2010;11:141–7. [PubMed: 19946272]CrossRefPubMedGoogle Scholar
  20. 20.
    Chiba Y, Misawa M. MicroRNAs and their therapeutic potential for human diseases: MiR-133a and bronchial smooth muscle hyperresponsiveness in asthma. J Pharmacol Sci. 2010;114:264–8. [PubMed: 20953121]CrossRefPubMedGoogle Scholar
  21. 21.
    Collison A, et al. Inhibition of house dust mite-induced allergic airways disease by antagonism of microRNA-145 is comparable to glucocorticoid treatment. J Allergy Clin Immunol. 2011;128:160–7. e4. [PubMed: 21571357]CrossRefPubMedGoogle Scholar
  22. 22.
    Takyar S, et al. VEGF controls lung Th2 inflammation via the miR-1-Mpl (myeloproliferative leukemia virus oncogene)-P-selectin axis. J Exp Med. 2013;210:1993–2010. [PubMed: 24043765]CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Jardim MJ, et al. Distinct microRNA expression in human airway cells of asthmatic donors identifies a novel asthma-associated gene. Am J Respir Cell Mol Biol. 2012;47:536–42. [PubMed: 22679274]CrossRefPubMedGoogle Scholar
  24. 24.
    Mohamed JS, Lopez MA, Boriek AM. Mechanical stretch up-regulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3β. J Biol Chem. 2010;285:29336–47. [PubMed: 20525681]CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Pagdin T, Lavender P. MicroRNAs in lung diseases. Thorax. 2012;67:183–4. [PubMed: 21836155]CrossRefPubMedGoogle Scholar
  26. 26.
    Radzikinas K, et al. A Shh/miR-206/BDNF cascade coordinates innervation and formation of airway smooth muscle. J Neurosci. 2011;31:15407–15. [PubMed: 22031887]CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Steiner DF, et al. MicroRNA-29 regulates T-box transcription factors and interferon-gamma production in helper T cells. Immunity. 2011;35:169–81. [PubMed: 21820330]CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Fan L, Wang X, Fan L, et al. MicroRNA-145 influences the balance of Th1/Th2 via regulating RUNX3 in asthma patients. Exp Lung Res. 2016;42:417–24. [PubMed: 27902892]CrossRefPubMedGoogle Scholar
  29. 29.
    Simpson LJ, Ansel KM. MicroRNA regulation of lymphocyte tolerance and autoimmunity. J Clin Invest. 2015;125:2242–9. [PubMed: 26030228]CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Panganiban RPL, Pinkerton MH, Maru SY, et al. Differential microRNA epression in asthma and the role of miR-1248 in regulation of IL-5. Am J Clin Exp Immunol. 2012;1:154. [PubMed: 23885321]PubMedPubMedCentralGoogle Scholar
  31. 31.
    Sharma A, Kumar M, Ahmad T, et al. Antagonism of mmu-mir-106a attenuates asthma features in allergic murine model. J Appl Physiol. 2012;113:459–64. [PubMed: 22700801]CrossRefPubMedGoogle Scholar
  32. 32.
    Lu TX, Munitz A, Rothenberg ME. MicroRNA-21 is up-regulated in allergic airway inflammation and regulates IL-12p35 expression. J Immunol. 2009;182:4994. [PubMed:19342679]CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Bleck B, Grunig G, Chiu A, et al. MicroRNA-375 regulation of thymic stromal lymphopoietin by diesel exhaust particles and ambient particulate matter in human bronchial epithelial cells. J Immunol. 2013;190:3757. [PubMed: 23455502]CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Panganiban RP, et al. Circulating microRNAs as biomarkers in patients with allergic rhinitis and asthma. J Allergy Clin Immunol. 2016;137:1423–32. [PubMed:27025347]CrossRefPubMedGoogle Scholar
  35. 35.
    Maes T, et al. Asthma inflammatory phenotypes show differential microRNA expression in sputum. J Allergy Clin Immunol. 2016;137:1433–46. [PubMed:27155035]CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Fang Chen
    • 1
  • Yan-Jing Qian
    • 1
  • Jia-Ying Zhang
    • 2
  • Fang Wang
    • 2
  • Ting-Ting Xia
    • 1
  1. 1.The First Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
  2. 2.First Clinical Medical College of Zhejiang Chinese Medical UniversityHangzhouChina

Personalised recommendations