Advertisement

Studying Parasite Gene Function and Interaction Through Ribozymes and Riboswitches Design Mechanism

  • Harish Shukla
  • Timir TripathiEmail author
Chapter

Abstract

Riboswitches are short mRNA sequences that can change their structural conformation to regulate the expression of adjacent genes. They regulate various biological processes via utilizing their secondary structure and consist of two distinct regions: (i) an evolutionarily conserved ligand-binding aptamer region and (ii) a variable expression platform regulating the gene expression. Many ligands bind to riboswitches, and its accurate and selective recognition requires a specific architecture that completely matches a given molecule. In general, the ligand-binding site can be found within the adjacent junction or regions; however, certain ligands may interact with the distant riboswitch regions. Gene expressions can be regulated by switching between two alternative RNA conformations; one of these conformations is favored in the presence of bound metabolite, while the other is favored in its absence. Riboswitches can regulate genes via metabolic pathways that are involved in the biosynthesis of vitamins, amino acids, and purines. In the present chapter, we aim to explain the structure, functions, and biological significance of these molecules.

Keywords

Ribozymes Riboswitches Gene expression Structure Function 

References

  1. Abreu-Goodger C, Merino E (2005) RibEx: a web server for locating riboswitches and other conserved bacterial regulatory elements. Nucleic Acids Res 33:W690–W692PubMedPubMedCentralCrossRefGoogle Scholar
  2. Anderson P, Monforte J, Tritz R, Nesbitt S, Hearst J, Hampel A (1994) Mutagenesis of the hairpin ribozyme. Nucleic Acids Res 22:1096–1100PubMedPubMedCentralCrossRefGoogle Scholar
  3. Angelucci F, Dimastrogiovanni D, Boumis G, Brunori M, Miele AE, Saccoccia F, Bellelli A (2010) Mapping the catalytic cycle of Schistosoma mansoni thioredoxin glutathione reductase by X-ray crystallography. J Biol Chem 285:32557–32567PubMedPubMedCentralCrossRefGoogle Scholar
  4. Baird NJ, Ferre-D’Amare AR (2010) Idiosyncratically tuned switching behavior of riboswitch aptamer domains revealed by comparative small-angle X-ray scattering analysis. RNA 16:598–609PubMedPubMedCentralCrossRefGoogle Scholar
  5. Barrick JE, Corbino KA, Winkler WC, Nahvi A, Mandal M, Collins J, Lee M, Roth A, Sudarsan N, Jona I, Wickiser JK, Breaker RR (2004) New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc Natl Acad Sci U S A 101:6421–6426PubMedPubMedCentralCrossRefGoogle Scholar
  6. Barroso-delJesus A, Tabler M, Berzal-Herranz A (1999) Comparative kinetic analysis of structural variants of the hairpin ribozyme reveals further potential to optimize its catalytic performance. Antisense Nucleic Acid Drug Dev 9:433–440PubMedCrossRefGoogle Scholar
  7. Been MD, Wickham GS (1997) Self-cleaving ribozymes of hepatitis delta virus RNA. Eur J Biochem 247:741–753PubMedCrossRefGoogle Scholar
  8. Beisel CL, Smolke CD (2009) Design principles for riboswitch function. PLoS Comput Biol 5:e1000363PubMedPubMedCentralCrossRefGoogle Scholar
  9. Bengert P, Dandekar T (2004) Riboswitch finder – a tool for identification of riboswitch RNAs. Nucleic Acids Res 32:W154–W159PubMedPubMedCentralCrossRefGoogle Scholar
  10. Berzal-Herranz A, Joseph S, Burke JM (1992) In vitro selection of active hairpin ribozymes by sequential RNA-catalyzed cleavage and ligation reactions. Genes Dev 6:129–134PubMedCrossRefPubMedCentralGoogle Scholar
  11. Berzal-Herranz A, Joseph S, Chowrira BM, Butcher SE, Burke JM (1993) Essential nucleotide sequences and secondary structure elements of the hairpin ribozyme. EMBO J 12:2567–2573PubMedPubMedCentralCrossRefGoogle Scholar
  12. Bevilacqua PC (2003) Mechanistic considerations for general acid-base catalysis by RNA: revisiting the mechanism of the hairpin ribozyme. Biochemistry 42:2259–2265PubMedCrossRefPubMedCentralGoogle Scholar
  13. Blount KF, Uhlenbeck OC (2005) The structure-function dilemma of the hammerhead ribozyme. Annu Rev Biophys Biomol Struct 34:415–440PubMedCrossRefPubMedCentralGoogle Scholar
  14. Bouchard P, Legault P (2014) A remarkably stable kissing-loop interaction defines substrate recognition by the Neurospora Varkud Satellite ribozyme. RNA 20:1451–1464PubMedPubMedCentralCrossRefGoogle Scholar
  15. Brantl S (2004) Bacterial gene regulation: from transcription attenuation to riboswitches and ribozymes. Trends Microbiol 12:473–475PubMedCrossRefGoogle Scholar
  16. Brantl S, Wagner EG (2002) An antisense RNA-mediated transcriptional attenuation mechanism functions in Escherichia coli. J Bacteriol 184:2740–2747PubMedPubMedCentralCrossRefGoogle Scholar
  17. Breaker RR (2011) Prospects for riboswitch discovery and analysis. Mol Cell 43:867–879PubMedPubMedCentralCrossRefGoogle Scholar
  18. Breaker RR, Gesteland RF, Cech TR, Atkins JF (2006) The RNA world. Cold Spring Harbor Laboratory Press, New YorkGoogle Scholar
  19. Butcher SE, Burke JM (1994) Structure-mapping of the hairpin ribozyme. Magnesium-dependent folding and evidence for tertiary interactions within the ribozyme-substrate complex. J Mol Biol 244:52–63PubMedCrossRefGoogle Scholar
  20. Buzayan JM, Gerlach WL, Bruening G (1986) Non-enzymatic cleavage and ligation of RNAs complementary to a plant virus satellite RNA. Nature 323:349–353CrossRefGoogle Scholar
  21. Cech TR, Zaug AJ, Grabowski PJ (1981) In vitro splicing of the ribosomal RNA precursor of Tetrahymena: involvement of a guanosine nucleotide in the excision of the intervening sequence. Cell 27:487–496PubMedCrossRefPubMedCentralGoogle Scholar
  22. Chang TH, Huang HD, Wu LC, Yeh CT, Liu BJ, Horng JT (2009) Computational identification of riboswitches based on RNA conserved functional sequences and conformations. RNA 15:1426–1430PubMedPubMedCentralCrossRefGoogle Scholar
  23. Cheah MT, Wachter A, Sudarsan N, Breaker RR (2007) Control of alternative RNA splicing and gene expression by eukaryotic riboswitches. Nature 447:497–500PubMedCrossRefPubMedCentralGoogle Scholar
  24. Chi YI, Martick M, Lares M, Kim R, Scott WG, Kim SH (2008) Capturing hammerhead ribozyme structures in action by modulating general base catalysis. PLoS Biol 6:e234PubMedPubMedCentralCrossRefGoogle Scholar
  25. Chowrira BM, Burke JM (1991) Binding and cleavage of nucleic acids by the “hairpin” ribozyme. Biochemistry 30:8518–8522PubMedCrossRefPubMedCentralGoogle Scholar
  26. Chowrira BM, Berzal-Herranz A, Burke JM (1991) Novel guanosine requirement for catalysis by the hairpin ribozyme. Nature 354:320–322PubMedCrossRefPubMedCentralGoogle Scholar
  27. Cochrane JC, Lipchock SV, Strobel SA (2007) Structural investigation of the GlmS ribozyme bound to its catalytic cofactor. Chem Biol 14:97–105PubMedCrossRefPubMedCentralGoogle Scholar
  28. Cochrane JC, Lipchock SV, Smith KD, Strobel SA (2009) Structural and chemical basis for glucosamine 6-phosphate binding and activation of the glmS ribozyme. Biochemistry 48:3239–3246PubMedPubMedCentralCrossRefGoogle Scholar
  29. Das SR, Piccirilli JA (2005) General acid catalysis by the hepatitis delta virus ribozyme. Nat Chem Biol 1:45–52PubMedCrossRefPubMedCentralGoogle Scholar
  30. de la Pena M, Garcia-Robles I (2010a) Ubiquitous presence of the hammerhead ribozyme motif along the tree of life. RNA 16:1943–1950PubMedPubMedCentralCrossRefGoogle Scholar
  31. de la Pena M, Garcia-Robles I (2010b) Intronic hammerhead ribozymes are ultraconserved in the human genome. EMBO Rep 11:711–716PubMedPubMedCentralCrossRefGoogle Scholar
  32. De la Pena M, Gago S, Flores R (2003) Peripheral regions of natural hammerhead ribozymes greatly increase their self-cleavage activity. EMBO J 22:5561–5570PubMedPubMedCentralCrossRefGoogle Scholar
  33. Desai SK, Gallivan JP (2004) Genetic screens and selections for small molecules based on a synthetic riboswitch that activates protein translation. J Am Chem Soc 126:13247–13254PubMedCrossRefGoogle Scholar
  34. DeYoung M, Siwkowski AM, Lian Y, Hampel A (1995) Catalytic properties of hairpin ribozymes derived from Chicory yellow mottle virus and arabis mosaic virus satellite RNAs. Biochemistry 34:15785–15791PubMedCrossRefGoogle Scholar
  35. Ding Y, Chan CY, Lawrence CE (2004) Sfold web server for statistical folding and rational design of nucleic acids. Nucleic Acids Res 32:W135–W141PubMedPubMedCentralCrossRefGoogle Scholar
  36. Dohno C, Kohyama I, Kimura M, Hagihara M, Nakatani K (2013) A synthetic riboswitch that operates using a rationally designed ligand-RNA pair. Angew Chem Int Ed Engl 52:9976–9979PubMedCrossRefGoogle Scholar
  37. Duhamel J, Liu DM, Evilia C, Fleysh N, Dinter-Gottlieb G, Lu P (1996) Secondary structure content of the HDV ribozyme in 95% formamide. Nucleic Acids Res 24:3911–3917PubMedPubMedCentralCrossRefGoogle Scholar
  38. Eddy SR (1998) Profile hidden Markov models. Bioinformatics 14:755–763PubMedCrossRefGoogle Scholar
  39. Eddy SR (2011) Accelerated profile HMM searches. PLoS Comput Biol 7:e1002195PubMedPubMedCentralCrossRefGoogle Scholar
  40. Eiler D, Wang J, Steitz TA (2014) Structural basis for the fast self-cleavage reaction catalyzed by the twister ribozyme. Proc Natl Acad Sci U S A 111:13028–13033PubMedPubMedCentralCrossRefGoogle Scholar
  41. Epshtein V, Mironov AS, Nudler E (2003) The riboswitch-mediated control of sulfur metabolism in bacteria. Proc Natl Acad Sci U S A 100:5052–5056PubMedPubMedCentralCrossRefGoogle Scholar
  42. Epstein LM, Gall JG (1987) Self-cleaving transcripts of satellite DNA from the newt. Cell 48:535–543PubMedCrossRefGoogle Scholar
  43. Fedor MJ (2000) Structure and function of the hairpin ribozyme. J Mol Biol 297:269–291PubMedCrossRefGoogle Scholar
  44. Feldstein PA, Buzayan JM, Bruening G (1989) Two sequences participating in the autolytic processing of satellite tobacco ringspot virus complementary RNA. Gene 82:53–61PubMedCrossRefGoogle Scholar
  45. Feldstein PA, Buzayan JM, van Tol H, Gough GR, Gilham PT, Bruening G (1990) Specific association between an endoribonucleolytic sequence from a satellite RNA and a substrate analogue containing a 2′-5′phosphodiester. Proc Natl Acad Sci 87:2623–2627PubMedCrossRefGoogle Scholar
  46. Ferbeyre G, Smith JM, Cedergren R (1998) Schistosome satellite DNA encodes active hammerhead ribozymes. Mol Cell Biol 18:3880–3888PubMedPubMedCentralCrossRefGoogle Scholar
  47. Ferre-D’Amare AR (2010) The glmS ribozyme: use of a small molecule coenzyme by a gene-regulatory RNA. Q Rev Biophys 43:423–447PubMedPubMedCentralCrossRefGoogle Scholar
  48. Ferre-D’Amare AR, Scott WG (2010) Small self-cleaving ribozymes. Cold Spring Harb Perspect Biol 2:a003574PubMedPubMedCentralGoogle Scholar
  49. Ferre-D’Amare AR, Zhou K, Doudna JA (1998) Crystal structure of a hepatitis delta virus ribozyme. Nature 395:567–574PubMedCrossRefGoogle Scholar
  50. Flinders J, Dieckmann T (2001) A pH controlled conformational switch in the cleavage site of the VS ribozyme substrate RNA. J Mol Biol 308:665–679PubMedCrossRefGoogle Scholar
  51. Forster AC, Davies C, Sheldon CC, Jeffries AC, Symons RH (1988) Self-cleaving viroid and newt RNAs may only be active as dimers. Nature 334:265–267PubMedCrossRefGoogle Scholar
  52. Ganguly A, Thaplyal P, Rosta E, Bevilacqua PC, Hammes-Schiffer S (2014) Quantum mechanical/molecular mechanical free energy simulations of the self-cleavage reaction in the hepatitis delta virus ribozyme. J Am Chem Soc 136:1483–1496PubMedPubMedCentralCrossRefGoogle Scholar
  53. Gelfand MS, Mironov AA, Jomantas J, Kozlov YI, Perumov DA (1999) A conserved RNA structure element involved in the regulation of bacterial riboflavin synthesis genes. Trends Genet 15:439–442PubMedCrossRefGoogle Scholar
  54. Grasby JA, Mersmann K, Singh M, Gait MJ (1995) Purine functional groups in essential residues of the hairpin ribozyme required for catalytic cleavage of RNA. Biochemistry 34:4068–4076PubMedCrossRefGoogle Scholar
  55. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33:D121–D124PubMedCrossRefGoogle Scholar
  56. Grundy FJ, Lehman SC, Henkin TM (2003) The L box regulon: lysine sensing by leader RNAs of bacterial lysine biosynthesis genes. Proc Natl Acad Sci U S A 100:12057–12062PubMedPubMedCentralCrossRefGoogle Scholar
  57. Guo HC, Collins RA (1995) Efficient trans-cleavage of a stem-loop RNA substrate by a ribozyme derived from neurospora VS RNA. EMBO J 14:368–376PubMedPubMedCentralCrossRefGoogle Scholar
  58. Hampel A (1998) The hairpin ribozyme: discovery, two-dimensional model, and development for gene therapy. Prog Nucleic Acid Res Mol Biol 58:1–39PubMedGoogle Scholar
  59. Hampel A, Cowan JA (1997) A unique mechanism for RNA catalysis: the role of metal cofactors in hairpin ribozyme cleavage. Chem Biol 4:513–517PubMedCrossRefGoogle Scholar
  60. Hampel KJ, Tinsley MM (2006) Evidence for preorganization of the glmS ribozyme ligand binding pocket. Biochemistry 45:7861–7871PubMedCrossRefGoogle Scholar
  61. Hampel A, Tritz R (1989) RNA catalytic properties of the minimum (-)sTRSV sequence. Biochemistry 28:4929–4933PubMedCrossRefGoogle Scholar
  62. Hampel A, Tritz R, Hicks M, Cruz P (1990) ‘Hairpin’ catalytic RNA model: evidence for helices and sequence requirement for substrate RNA. Nucleic Acids Res 18:299–304PubMedPubMedCentralCrossRefGoogle Scholar
  63. Hartig JS (2010) Turning riboswitches loose. Chembiochem: Eur J Chem Biol 11:640–641CrossRefGoogle Scholar
  64. Haseloff J, Gerlach WL (1988) Simple RNA enzymes with new and highly specific endoribonuclease activities. Nature 334:585–591PubMedCrossRefGoogle Scholar
  65. Haseloff J, Gerlach WL (1989) Sequences required for self-catalysed cleavage of the satellite RNA of tobacco ringspot virus. Gene 82:43–52PubMedCrossRefGoogle Scholar
  66. Havill JT, Bhatiya C, Johnson SM, Sheets JD, Thompson JS (2014) A new approach for detecting riboswitches in DNA sequences. Bioinformatics 30:3012–3019PubMedPubMedCentralCrossRefGoogle Scholar
  67. Joseph S, Burke JM (1993) Optimization of an anti-HIV hairpin ribozyme by in vitro selection. J Biol Chem 268:24515–24518PubMedGoogle Scholar
  68. Joseph S, Berzal-Herranz A, Chowrira BM, Butcher SE, Burke JM (1993) Substrate selection rules for the hairpin ribozyme determined by in vitro selection, mutation, and analysis of mismatched substrates. Genes Dev 7:130–138PubMedCrossRefGoogle Scholar
  69. Kath-Schorr S, Wilson TJ, Li NS, Lu J, Piccirilli JA, Lilley DM (2012) General acid-base catalysis mediated by nucleobases in the hairpin ribozyme. J Am Chem Soc 134:16717–16724PubMedPubMedCentralCrossRefGoogle Scholar
  70. Ke A, Zhou K, Ding F, Cate JH, Doudna JA (2004) A conformational switch controls hepatitis delta virus ribozyme catalysis. Nature 429:201–205PubMedCrossRefGoogle Scholar
  71. Ketzer P, Kaufmann JK, Engelhardt S, Bossow S, von Kalle C, Hartig JS, Ungerechts G, Nettelbeck DM (2014) Artificial riboswitches for gene expression and replication control of DNA and RNA viruses. Proc Natl Acad Sci U S A 111:E554–E562PubMedPubMedCentralCrossRefGoogle Scholar
  72. Khvorova A, Lescoute A, Westhof E, Jayasena SD (2003) Sequence elements outside the hammerhead ribozyme catalytic core enable intracellular activity. Nat Struct Biol 10:708–712PubMedCrossRefGoogle Scholar
  73. Klein DJ, Ferre-D’Amare AR (2006) Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science 313:1752–1756PubMedCrossRefGoogle Scholar
  74. Kuo MY, Sharmeen L, Dinter-Gottlieb G, Taylor J (1988) Characterization of self-cleaving RNA sequences on the genome and antigenome of human hepatitis delta virus. J Virol 62:4439–4444PubMedPubMedCentralGoogle Scholar
  75. Lai MM (1995) The molecular biology of hepatitis delta virus. Annu Rev Biochem 64:259–286PubMedCrossRefGoogle Scholar
  76. Lambowitz AM, Belfort M (2015) Mobile bacterial group II introns at the crux of eukaryotic evolution. Microbiol Spectr 3:MDNA3-0050-2014PubMedPubMedCentralGoogle Scholar
  77. Lambowitz AM, Zimmerly S (2004) Mobile group II introns. Annu Rev Genet 38:1–35PubMedCrossRefGoogle Scholar
  78. Lee KY, Lee BJ (2017) Structural and biochemical properties of novel self-cleaving ribozymes. Molecules 22:E678PubMedCrossRefGoogle Scholar
  79. Li S, Lunse CE, Harris KA, Breaker RR (2015) Biochemical analysis of hatchet self-cleaving ribozymes. RNA 21:1845–1851PubMedPubMedCentralCrossRefGoogle Scholar
  80. Lian Y, De Young MB, Siwkowski A, Hampel A, Rappaport J (1999) The sCYMV1 hairpin ribozyme: targeting rules and cleavage of heterologous RNA. Gene Ther 6:1114–1119PubMedCrossRefGoogle Scholar
  81. Lilley DM (2004) The Varkud satellite ribozyme. RNA 10:151–158PubMedPubMedCentralCrossRefGoogle Scholar
  82. Lincoln TA, Joyce GF (2009) Self-sustained replication of an RNA enzyme. Science 323:1229–1232PubMedPubMedCentralCrossRefGoogle Scholar
  83. Liu Y, Wilson TJ, McPhee SA, Lilley DM (2014) Crystal structure and mechanistic investigation of the twister ribozyme. Nat Chem Biol 10:739–744PubMedCrossRefGoogle Scholar
  84. Loh E, Dussurget O, Gripenland J, Vaitkevicius K, Tiensuu T, Mandin P, Repoila F, Buchrieser C, Cossart P, Johansson J (2009) A trans-acting riboswitch controls expression of the virulence regulator PrfA in Listeria monocytogenes. Cell 139:770–779PubMedCrossRefGoogle Scholar
  85. Lorenz R, Bernhart SH, Honer Zu Siederdissen C, Tafer H, Flamm C, Stadler PF, Hofacker IL (2011) Vienna RNA package 2.0. Algorithm Mol Biol 6:26CrossRefGoogle Scholar
  86. Lu C, Smith AM, Fuchs RT, Ding F, Rajashankar K, Henkin TM, Ke A (2008) Crystal structures of the SAM-III/S(MK) riboswitch reveal the SAM-dependent translation inhibition mechanism. Nat Struct Mol Biol 15:1076–1083PubMedPubMedCentralCrossRefGoogle Scholar
  87. Lunse CE, Schmidt MS, Wittmann V, Mayer G (2011) Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus. ACS Chem Biol 6:675–678PubMedCrossRefGoogle Scholar
  88. Mandal M, Breaker RR (2004) Gene regulation by riboswitches. Nat Rev Mol Cell Biol 5:451–463PubMedCrossRefGoogle Scholar
  89. Mandal M, Boese B, Barrick JE, Winkler WC, Breaker RR (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577–586PubMedCrossRefGoogle Scholar
  90. Martick M, Scott WG (2006) Tertiary contacts distant from the active site prime a ribozyme for catalysis. Cell 126:309–320PubMedPubMedCentralCrossRefGoogle Scholar
  91. Martick M, Horan LH, Noller HF, Scott WG (2008) A discontinuous hammerhead ribozyme embedded in a mammalian messenger RNA. Nature 454:899–902PubMedPubMedCentralCrossRefGoogle Scholar
  92. McCarthy TJ, Plog MA, Floy SA, Jansen JA, Soukup JK, Soukup GA (2005) Ligand requirements for glmS ribozyme self-cleavage. Chem Biol 12:1221–1226PubMedCrossRefPubMedCentralGoogle Scholar
  93. McCown PJ, Roth A, Breaker RR (2011) An expanded collection and refined consensus model of glmS ribozymes. RNA 17:728–736PubMedPubMedCentralCrossRefGoogle Scholar
  94. Michel F, Ferat JL (1995) Structure and activities of group II introns. Annu Rev Biochem 64:435–461PubMedCrossRefPubMedCentralGoogle Scholar
  95. Michel F, Jacquier A, Dujon B (1982) Comparison of fungal mitochondrial introns reveals extensive homologies in RNA secondary structure. Biochimie 64:867–881PubMedCrossRefPubMedCentralGoogle Scholar
  96. Michiels PJ, Schouten CH, Hilbers CW, Heus HA (2000) Structure of the ribozyme substrate hairpin of Neurospora VS RNA: a close look at the cleavage site. RNA 6:1821–1832PubMedPubMedCentralCrossRefGoogle Scholar
  97. Miranda-Rios J, Navarro M, Soberon M (2001) A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria. Proc Natl Acad Sci U S A 98:9736–9741PubMedPubMedCentralCrossRefGoogle Scholar
  98. Mironov AS, Gusarov I, Rafikov R, Lopez LE, Shatalin K, Kreneva RA, Perumov DA, Nudler E (2002) Sensing small molecules by nascent RNA: a mechanism to control transcription in bacteria. Cell 111:747–756PubMedCrossRefPubMedCentralGoogle Scholar
  99. Mukherjee S, Sengupta S (2016) Riboswitch scanner: an efficient pHMM-based web-server to detect riboswitches in genomic sequences. Bioinformatics 32:776–778PubMedCrossRefPubMedCentralGoogle Scholar
  100. Muranaka N, Yokobayashi Y (2010) A synthetic riboswitch with chemical band-pass response. Chem Commun (Camb) 46:6825–6827CrossRefGoogle Scholar
  101. Nahvi A, Sudarsan N, Ebert MS, Zou X, Brown KL, Breaker RR (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9:1043PubMedCrossRefPubMedCentralGoogle Scholar
  102. Nakano S, Chadalavada DM, Bevilacqua PC (2000) General acid-base catalysis in the mechanism of a hepatitis delta virus ribozyme. Science 287:1493–1497PubMedCrossRefPubMedCentralGoogle Scholar
  103. Nesbitt S, Hegg LA, Fedor MJ (1997) An unusual pH-independent and metal-ion-independent mechanism for hairpin ribozyme catalysis. Chem Biol 4:619–630PubMedCrossRefPubMedCentralGoogle Scholar
  104. Nguyen LA, Wang J, Steitz TA (2017) Crystal structure of pistol, a class of self-cleaving ribozyme. Proc Natl Acad Sci U S A 114:1021–1026PubMedPubMedCentralCrossRefGoogle Scholar
  105. Nissen P, Hansen J, Ban N, Moore PB, Steitz TA (2000) The structural basis of ribosome activity in peptide bond synthesis. Science 289:920–930PubMedCrossRefPubMedCentralGoogle Scholar
  106. Nudler E (2006) Flipping riboswitches. Cell 126:19–22PubMedCrossRefPubMedCentralGoogle Scholar
  107. Nudler E, Mironov AS (2004) The riboswitch control of bacterial metabolism. Trends Biochem Sci 29:11–17PubMedCrossRefPubMedCentralGoogle Scholar
  108. Orelle C, Carlson ED, Szal T, Florin T, Jewett MC, Mankin AS (2015) Protein synthesis by ribosomes with tethered subunits. Nature 524:119–124PubMedCrossRefPubMedCentralGoogle Scholar
  109. Peebles CL, Perlman PS, Mecklenburg KL, Petrillo ML, Tabor JH, Jarrell KA, Cheng HL (1986) A self-splicing RNA excises an intron lariat. Cell 44:213–223PubMedCrossRefPubMedCentralGoogle Scholar
  110. Perez-Ruiz M, Barroso-DelJesus A, Berzal-Herranz A (1999) Specificity of the hairpin ribozyme. Sequence requirements surrounding the cleavage site. J Biol Chem 274:29376–29380PubMedCrossRefGoogle Scholar
  111. Perreault J, Weinberg Z, Roth A, Popescu O, Chartrand P, Ferbeyre G, Breaker RR (2011) Identification of hammerhead ribozymes in all domains of life reveals novel structural variations. PLoS Comput Biol 7:e1002031PubMedPubMedCentralCrossRefGoogle Scholar
  112. Perrotta AT, Been MD (1996) Core sequences and a cleavage site wobble pair required for HDV antigenomic ribozyme self-cleavage. Nucleic Acids Res 24:1314–1321PubMedPubMedCentralCrossRefGoogle Scholar
  113. Prody GA, Bakos JT, Buzayan JM, Schneider IR, Bruening G (1986) Autolytic processing of dimeric plant virus satellite RNA. Science 231:1577–1580PubMedCrossRefGoogle Scholar
  114. Pyle AM (2005) Capping by branching: a new ribozyme makes tiny lariats. Science 309:1530–1531PubMedCrossRefGoogle Scholar
  115. Pyle AM (2010) The tertiary structure of group II introns: implications for biological function and evolution. Crit Rev Biochem Mol Biol 45:215–232PubMedPubMedCentralCrossRefGoogle Scholar
  116. Rastogi T, Beattie TL, Olive JE, Collins RA (1996) A long-range pseudoknot is required for activity of the Neurospora VS ribozyme. EMBO J 15:2820–2825PubMedPubMedCentralCrossRefGoogle Scholar
  117. Ren A, Kosutic M, Rajashankar KR, Frener M, Santner T, Westhof E, Micura R, Patel DJ (2014) In-line alignment and Mg(2)(+) coordination at the cleavage site of the env22 twister ribozyme. Nat Commun 5:5534PubMedPubMedCentralCrossRefGoogle Scholar
  118. Ren A, Vusurovic N, Gebetsberger J, Gao P, Juen M, Kreutz C, Micura R, Patel DJ (2016) Pistol ribozyme adopts a pseudoknot fold facilitating site-specific in-line cleavage. Nat Chem Biol 12:702–708PubMedPubMedCentralCrossRefGoogle Scholar
  119. Robart AR, Zimmerly S (2005) Group II intron retroelements: function and diversity. Cytogenet Genome Res 110:589–597PubMedCrossRefGoogle Scholar
  120. Rodionov DA, Vitreschak AG, Mironov AA, Gelfand MS (2002) Comparative genomics of thiamin biosynthesis in procaryotes. New genes and regulatory mechanisms. J Biol Chem 277:48949–48959PubMedCrossRefGoogle Scholar
  121. Rosenstein SP, Been MD (1990) Self-cleavage of hepatitis delta virus genomic strand RNA is enhanced under partially denaturing conditions. Biochemistry 29:8011–8016PubMedCrossRefGoogle Scholar
  122. Roth A, Breaker RR (2009) The structural and functional diversity of metabolite-binding riboswitches. Annu Rev Biochem 78:305–334PubMedPubMedCentralCrossRefGoogle Scholar
  123. Roth A, Nahvi A, Lee M, Jona I, Breaker RR (2006) Characteristics of the glmS ribozyme suggest only structural roles for divalent metal ions. RNA 12:607–619PubMedPubMedCentralCrossRefGoogle Scholar
  124. Roth A, Weinberg Z, Chen AG, Kim PB, Ames TD, Breaker RR (2013) A widespread self-cleaving ribozyme class is revealed by bioinformatics. Nat Chem Biol 10:56–60PubMedPubMedCentralCrossRefGoogle Scholar
  125. Rubino L, Tousignant ME, Steger G, Kaper JM (1990) Nucleotide sequence and structural analysis of two satellite RNAs associated with chicory yellow mottle virus. J Gen Virol 71(Pt 9):1897–1903PubMedCrossRefGoogle Scholar
  126. Ruffner DE, Stormo GD, Uhlenbeck OC (1990) Sequence requirements of the hammerhead RNA self-cleavage reaction. Biochemistry 29:10695–10702PubMedCrossRefGoogle Scholar
  127. Rupert PB, Ferre-D’Amare AR (2001) Crystal structure of a hairpin ribozyme-inhibitor complex with implications for catalysis. Nature 410:780–786PubMedCrossRefGoogle Scholar
  128. Ryder SP, Strobel SA (1999) Nucleotide analog interference mapping of the hairpin ribozyme: implications for secondary and tertiary structure formation. J Mol Biol 291:295–311PubMedCrossRefGoogle Scholar
  129. Salehi-Ashtiani K, Luptak A, Litovchick A, Szostak JW (2006) A genomewide search for ribozymes reveals an HDV-like sequence in the human CPEB3 gene. Science 313:1788–1792PubMedCrossRefGoogle Scholar
  130. Saville BJ, Collins RA (1990) A site-specific self-cleavage reaction performed by a novel RNA in Neurospora mitochondria. Cell 61:685–696PubMedCrossRefGoogle Scholar
  131. Saville BJ, Collins RA (1991) RNA-mediated ligation of self-cleavage products of a Neurospora mitochondrial plasmid transcript. Proc Natl Acad Sci U S A 88:8826–8830PubMedPubMedCentralCrossRefGoogle Scholar
  132. Schmelzer C, Schweyen RJ (1986) Self-splicing of group II introns in vitro: mapping of the branch point and mutational inhibition of lariat formation. Cell 46:557–565PubMedCrossRefGoogle Scholar
  133. Schmidt S, Beigelman L, Karpeisky A, Usman N, Sorensen US, Gait MJ (1996) Base and sugar requirements for RNA cleavage of essential nucleoside residues in internal loop B of the hairpin ribozyme: implications for secondary structure. Nucleic Acids Res 24:573–581PubMedPubMedCentralCrossRefGoogle Scholar
  134. Scott WG (2007) Ribozymes. Curr Opin Struct Biol 17:280–286PubMedCrossRefGoogle Scholar
  135. Scott WG, Martick M, Chi YI (2009) Structure and function of regulatory RNA elements: ribozymes that regulate gene expression. Biochim Biophys Acta 1789:634–641PubMedCrossRefGoogle Scholar
  136. Seehafer C, Kalweit A, Steger G, Graf S, Hammann C (2010) From alpaca to zebrafish: hammerhead ribozymes wherever you look. RNA 17:21–26PubMedCrossRefGoogle Scholar
  137. Sekiguchi A, Komatsu Y, Koizumi M, Ohtsuka E (1991) Mutagenesis and self-ligation of the self-cleavage domain of the satellite RNA minus strand of tobacco ringspot virus and its binding to polyamines. Nucleic Acids Res 19:6833–6838PubMedPubMedCentralCrossRefGoogle Scholar
  138. Serganov A, Patel DJ (2009) Amino acid recognition and gene regulation by riboswitches. Biochim Biophys Acta 1789:592–611PubMedPubMedCentralCrossRefGoogle Scholar
  139. Sharmeen L, Kuo MY, Dinter-Gottlieb G, Taylor J (1988) Antigenomic RNA of human hepatitis delta virus can undergo self-cleavage. J Virol 62:2674–2679PubMedPubMedCentralGoogle Scholar
  140. Shih IH, Been MD (2002) Catalytic strategies of the hepatitis delta virus ribozymes. Annu Rev Biochem 71:887–917PubMedCrossRefGoogle Scholar
  141. Shippy R, Siwkowski A, Hampel A (1998) Mutational analysis of loops 1 and 5 of the hairpin ribozyme. Biochemistry 37:564–570PubMedCrossRefGoogle Scholar
  142. Silverman SK (2003) Rube Goldberg goes (ribo)nuclear? Molecular switches and sensors made from RNA. RNA 9:377–383PubMedPubMedCentralCrossRefGoogle Scholar
  143. Siwkowski A, Shippy R, Hampel A (1997) Analysis of hairpin ribozyme base mutations in loops 2 and 4 and their effects on cis-cleavage in vitro. Biochemistry 36:3930–3940PubMedCrossRefGoogle Scholar
  144. Siwkowski A, Humphrey M, De-Young MB, Hampel A (1998) Screening for important base identities in the hairpin ribozyme by in vitro selection for cleavage. BioTechniques 24:278–284PubMedCrossRefGoogle Scholar
  145. Stahley MR, Strobel SA (2005) Structural evidence for a two-metal-ion mechanism of group I intron splicing. Science 309:1587–1590PubMedCrossRefGoogle Scholar
  146. Steitz TA, Moore PB (2003) RNA, the first macromolecular catalyst: the ribosome is a ribozyme. Trends Biochem Sci 28:411–418PubMedCrossRefGoogle Scholar
  147. Stormo GD, Ji Y (2001) Do mRNAs act as direct sensors of small molecules to control their expression? Proc Natl Acad Sci U S A 98:9465–9467PubMedPubMedCentralCrossRefGoogle Scholar
  148. Strobel SA, Cochrane JC (2007) RNA catalysis: ribozymes, ribosomes, and riboswitches. Curr Opin Chem Biol 11:636–643PubMedPubMedCentralCrossRefGoogle Scholar
  149. Sudarsan N, Barrick JE, Breaker RR (2003) Metabolite-binding RNA domains are present in the genes of eukaryotes. RNA 9:644–647PubMedPubMedCentralCrossRefGoogle Scholar
  150. Sudarsan N, Hammond MC, Block KF, Welz R, Barrick JE, Roth A, Breaker RR (2006) Tandem riboswitch architectures exhibit complex gene control functions. Science 314:300–304PubMedCrossRefGoogle Scholar
  151. Suh YA, Kumar PK, Taira K, Nishikawa S (1993) Self-cleavage activity of the genomic HDV ribozyme in the presence of various divalent metal ions. Nucleic Acids Res 21:3277–3280PubMedPubMedCentralCrossRefGoogle Scholar
  152. Suslov NB, DasGupta S, Huang H, Fuller JR, Lilley DM, Rice PA, Piccirilli JA (2015) Crystal structure of the Varkud satellite ribozyme. Nat Chem Biol 11:840–846PubMedPubMedCentralCrossRefGoogle Scholar
  153. Talini G, Gallori E, Maurel MC (2009) Natural and unnatural ribozymes: back to the primordial RNA world. Res Microbiol 160:457–465PubMedCrossRefGoogle Scholar
  154. Tang J, Breaker RR (2000) Structural diversity of self-cleaving ribozymes. Proc Natl Acad Sci U S A 97:5784–5789PubMedPubMedCentralCrossRefGoogle Scholar
  155. Tanner NK, Schaff S, Thill G, Petit-Koskas E, Crain-Denoyelle AM, Westhof E (1994) A three-dimensional model of hepatitis delta virus ribozyme based on biochemical and mutational analyses. Curr Biol 4:488–498PubMedCrossRefGoogle Scholar
  156. Teixeira A, Tahiri-Alaoui A, West S, Thomas B, Ramadass A, Martianov I, Dye M, James W, Proudfoot NJ, Akoulitchev A (2004) Autocatalytic RNA cleavage in the human beta-globin pre-mRNA promotes transcription termination. Nature 432:526–530PubMedCrossRefGoogle Scholar
  157. Thill G, Vasseur M, Tanner NK (1993) Structural and sequence elements required for the self-cleaving activity of the hepatitis delta virus ribozyme. Biochemistry 32:4254–4262PubMedCrossRefGoogle Scholar
  158. Topp S, Gallivan JP (2007) Guiding bacteria with small molecules and RNA. J Am Chem Soc 129:6807–6811PubMedPubMedCentralCrossRefGoogle Scholar
  159. Toro N, Jimenez-Zurdo JI, Garcia-Rodriguez FM (2007) Bacterial group II introns: not just splicing. FEMS Microbiol Rev 31:342–358PubMedCrossRefGoogle Scholar
  160. Uhlenbeck OC (1987) A small catalytic oligoribonucleotide. Nature 328:596–600PubMedCrossRefGoogle Scholar
  161. Valadkhan S (2007) The spliceosome: a ribozyme at heart? Biol Chem 388:693–697PubMedCrossRefGoogle Scholar
  162. Veeraraghavan N, Ganguly A, Golden BL, Bevilacqua PC, Hammes-Schiffer S (2011) Mechanistic strategies in the HDV ribozyme: chelated and diffuse metal ion interactions and active site protonation. J Phys Chem B 115:8346–8357PubMedPubMedCentralCrossRefGoogle Scholar
  163. Vogel J, Wagner EG (2007) Target identification of small noncoding RNAs in bacteria. Curr Opin Microbiol 10:262–270PubMedCrossRefPubMedCentralGoogle Scholar
  164. Webb CH, Riccitelli NJ, Ruminski DJ, Luptak A (2009) Widespread occurrence of self-cleaving ribozymes. Science 326:953PubMedPubMedCentralCrossRefGoogle Scholar
  165. Weinberg Z, Wang JX, Bogue J, Yang J, Corbino K, Moy RH, Breaker RR (2010) Comparative genomics reveals 104 candidate structured RNAs from bacteria, archaea, and their metagenomes. Genome Biol 11:R31PubMedPubMedCentralCrossRefGoogle Scholar
  166. Weinberg Z, Kim PB, Chen TH, Li S, Harris KA, Lunse CE, Breaker RR (2015) New classes of self-cleaving ribozymes revealed by comparative genomics analysis. Nat Chem Biol 11:606–610PubMedPubMedCentralCrossRefGoogle Scholar
  167. Werstuck G, Green MR (1998) Controlling gene expression in living cells through small molecule-RNA interactions. Science 282:296–298PubMedCrossRefGoogle Scholar
  168. Wieland M, Hartig JS (2008) Artificial riboswitches: synthetic mRNA-based regulators of gene expression. Chembiochem: Eur J Chem Biol 9:1873–1878CrossRefGoogle Scholar
  169. Wilson TJ, Lilley DM (2010) Do the hairpin and VS ribozymes share a common catalytic mechanism based on general acid-base catalysis? A critical assessment of available experimental data. RNA 17:213–221PubMedCrossRefGoogle Scholar
  170. Wilson TJ, McLeod AC, Lilley DM (2007) A guanine nucleobase important for catalysis by the VS ribozyme. EMBO J 26:2489–2500PubMedPubMedCentralCrossRefGoogle Scholar
  171. Winkler W, Nahvi A, Breaker RR (2002) Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression. Nature 419:952–956PubMedCrossRefGoogle Scholar
  172. Winkler WC, Nahvi A, Roth A, Collins JA, Breaker RR (2004) Control of gene expression by a natural metabolite-responsive ribozyme. Nature 428:281–286PubMedCrossRefGoogle Scholar
  173. Wu HN, Lin YJ, Lin FP, Makino S, Chang MF, Lai MM (1989) Human hepatitis delta virus RNA subfragments contain an autocleavage activity. Proc Natl Acad Sci U S A 86:1831–1835PubMedPubMedCentralCrossRefGoogle Scholar
  174. Xin Y, Hamelberg D (2010) Deciphering the role of glucosamine-6-phosphate in the riboswitch action of glmS ribozyme. RNA 16:2455–2463PubMedPubMedCentralCrossRefGoogle Scholar
  175. Yanofsky C (1981) Attenuation in the control of expression of bacterial operons. Nature 289:751–758PubMedCrossRefPubMedCentralGoogle Scholar
  176. Young KJ, Gill F, Grasby JA (1997) Metal ions play a passive role in the hairpin ribozyme catalysed reaction. Nucleic Acids Res 25:3760–3766PubMedPubMedCentralCrossRefGoogle Scholar
  177. Young KJ, Vyle JS, Pickering TJ, Cohen MA, Holmes SC, Merkel O, Grasby JA (1999) The role of essential pyrimidines in the hairpin ribozyme-catalysed reaction. J Mol Biol 288:853–866PubMedCrossRefPubMedCentralGoogle Scholar
  178. Zhang S, Ganguly A, Goyal P, Bingaman JL, Bevilacqua PC, Hammes-Schiffer S (2014) Role of the active site guanine in the glmS ribozyme self-cleavage mechanism: quantum mechanical/molecular mechanical free energy simulations. J Am Chem Soc 137:784–798PubMedCentralCrossRefGoogle Scholar
  179. Zimmerly S, Semper C (2015) Evolution of group II introns. Mob DNA 6:7PubMedPubMedCentralCrossRefGoogle Scholar
  180. zu Putlitz J, Yu Q, Burke JM, Wands JR (1999) Combinatorial screening and intracellular antiviral activity of hairpin ribozymes directed against hepatitis B virus. J Virol 73:5381–5387PubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Molecular and Structural Biophysics Laboratory, Department of BiochemistryNorth-Eastern Hill UniversityShillongIndia

Personalised recommendations