Arsenic Toxicity and Its Remediation Strategies for Fighting the Environmental Threat

  • Vishvas Hare
  • Pankaj Chowdhary
  • Bhanu Kumar
  • D. C. Sharma
  • Vinay Singh Baghel


Arsenic (As) is an abundant element found ubiquitously in nature, primarily in the earth’s crust and also in the environment. Arsenic is necessary for living beings; however, it is also an emerging issue by virtue of the toxicity it causes in living beings, including humans and animals. Basically, the ground water is badly affected by As contamination, coming from sources including As-affected aquifers, and has severely threatened humanity around the world. Arsenic poisoning is worse in Bangladesh and Uttar Pradesh, where As(III) is found in higher concentrations in ground water, which is used by people. The dissolution process caused by oxidation and reduction reactions leads to the natural occurrence of As in groundwater. There are several review articles on As toxicity and exposure, but with scattered information and no systematic knowledge in a combined way. However, in this chapter we try to compile all the information in systematic manner, which will be helpful for people who are working for As mitigation and removal from environment for sustainable development. This chapter will be helpful in providing detailed knowledge on As occurrence, speciation, factors affecting As toxicity arising because of its biogeochemistry, and various physico-chemical and biological strategies for combating the environmental threats.


Arsenic toxicity Accumulation Arsenic speciation Health problems Remediation approaches 



The fellowship awarded from the University Grant Commission (UGC), Government of India (GOI), New Delhi, to Mr. Vishvas Hare for his Ph.D. work is duly acknowledged.


  1. Achal V, Pan XL, Fu QL, Zhang DY (2012) Biomineralization based remediation of As(III) contaminated soil by Sporosarcina ginsengisoli. J Hazard Mater 201:178–184CrossRefGoogle Scholar
  2. Barrett JC, Lamb PW, Wang TC, Lee TC (1989) Mechanisms of arsenic-induced cell transformation. Biol Trace Elem Res 21:421CrossRefGoogle Scholar
  3. Bennett WW, Teasdale PR, Panther JG, Welsh DT, Zhao HJ, Jolley DF (2012) Investigating arsenic speciation and mobilization in sediments with DGT and DET: a mesocosm evaluation of oxic-anoxic transitions. Environ Sci Technol 46(7):3981–3989CrossRefGoogle Scholar
  4. Bentley R, Chasteen TG (2002) Microbial methylation of metalloids: arsenic, antimony, and bismuth. Microbiol Mol Biol Rev 66:250–271CrossRefGoogle Scholar
  5. Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment industries. Ecotoxicol Environ Saf 147:102–109CrossRefGoogle Scholar
  6. Bharagava RN, Chowdhary P, Saxena G (2017) Bioremediation an eco-sustainable green technology, its applications and limitations Environmental pollutants and their bioremediation approaches, Bharagava, RN (ed)CRC Press, Taylor & Francis Group, Boca Raton, p. 1–22CrossRefGoogle Scholar
  7. Borgono JM, Vicent P, Venturino H et al (1997) Arsenic in the drinking water of the city of Antofagasta: epidemiological and clinical study before and after the installation of a treatment plant. Environ Health Perspect 19:103–105CrossRefGoogle Scholar
  8. Boyajian GE, Carreira LH (1997) Phytoremediation: a clean transition from laboratory to marketplace? Nat Biotechnol 15:127–128CrossRefGoogle Scholar
  9. Buschmann J, Kappeler A, Lindauer U, Kistler D, Berg M, Sigg L (2006) Arsenite and arsenate binding to dissolved humic acids: influence of pH, type of humic acid, and aluminum. Environ Sci Technol 40:6015–6020CrossRefGoogle Scholar
  10. Buschmann J, Berg M, Stengel C, Winkel L, Sampson ML, Trang PTK, Viet PH (2008) Contamination of drinking water resources in the Mekong delta floodplains: arsenic and other trace metals pose serious health risks to population. Environ Int 34:756–764CrossRefGoogle Scholar
  11. Cebrian ME, Albores A, Aguilar M, Blakely E (1983) Chronic arsenic poisoning in the North of Mexico. Hum Toxicol 2:121–133CrossRefGoogle Scholar
  12. Cervantes C, Ji GY, Ramirez JL, Silver S (1994) Resistance to arsenic compounds in microorganisms. FEMS Microbiol Rev 15(4):355–367CrossRefGoogle Scholar
  13. Chakraborty AK, Saha KC (1987) Arsenical dermatitis from tube well water in West Bengal. Indian J Med Res 85:326–334Google Scholar
  14. Chauhan NS, Ranjan R, Purohit HJ, Kalia VC, Sharma R (2009) Identification of genes conferring arsenic resistance to Escherichia coli from an effluent treatment plant sludge. FEMS Microbiol Ecol 67:130–139CrossRefGoogle Scholar
  15. Chen J, Qin J, Zhu YG, de Lorenzo V, Rosen BP (2013) Engineering the soil bacterium Pseudomonas putida for arsenic methylation. Appl Environ Microbiol 79(14):4493–4495CrossRefGoogle Scholar
  16. Chowdhary P, Yadav A, Kaithwas G, Bharagava RN (2017a) Distillery wastewater: a major source of environmental pollution and its biological treatment for environmental safety. In: Singh R, Kumar S (eds) Green technologies and environmental sustainability. Springer International, Cham, pp 409–435CrossRefGoogle Scholar
  17. Chowdhary P, More N, Raj A, Bharagava RN (2017b) Characterization and identification of bacterial pathogens from treated tannery wastewater. Microbiol Res Int 5(3):30–36CrossRefGoogle Scholar
  18. Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Bas GC, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Kabir S, Quamruzzaman Q, Chakraborti D (2000) Groundwater arsenic contamination in Bangladesh, West Bengal, and India. Environ Health Perspect 108(5):393–397CrossRefGoogle Scholar
  19. Corsini A, Cavalca L, Crippa L, Zaccheo P, Andreoni V (2010) Impact of glucose on microbial community of a soil containing pyrite cinders: role of bacteria in arsenic mobilization under submerged condition. Soil Biol Biochem 42(5):699–707CrossRefGoogle Scholar
  20. Crameri A, Dawes G, Rodriguez E, Silver S, Stemmer WPC (1997) Molecular evolution of an arsenate detoxification pathway DNA shuffling. Nat Biotechnol 15:436CrossRefGoogle Scholar
  21. Cullen WR (1989) The metabolism of methyl arsine oxide and sulphide. Appl Organomet Chem 3:71–78CrossRefGoogle Scholar
  22. Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37(18):4182–4189CrossRefGoogle Scholar
  23. Dowdle PR, Laverman AM, Oremland RS (1996) Bacterial dissimilatory reduction of arsenic(V) to arsenic(III) in anoxic sediments. Appl Environ Microbiol 62(5):1664–1669Google Scholar
  24. Drahota P, Filippi M (2009) Secondary arsenic minerals in the environment: a review. Environ Int 35(8):1243–1255CrossRefGoogle Scholar
  25. Drewniak L, Styczek A, Majder-Lopatka M, Sklodowska A (2008) Bacteria, hyper tolerant to arsenic in the rocks of an ancient gold mine, and their potential role in dissemination of arsenic pollution. Environ Pollut 156(3):1069–1074CrossRefGoogle Scholar
  26. Du Laing G, Chapagain SK, Dewispelaere M, Meers E, Kazama F, Tack FMG, Rinklebe J, Verloo MG (2009) Presence and mobility of arsenic in estuarine wetland soils of the Scheldt estuary (Belgium). J Environ Monit 11(4):873–881CrossRefGoogle Scholar
  27. Environmental Protection Agency (EPA) (1984) Health assessment document for inorganic arsenic, final report, EPA 600/8-83-021F. USEPA, Environmental Criteria and Assessment Office, Research Triangle ParkGoogle Scholar
  28. Fitz WJ, Wenzel WW (2002) Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotechnol 99:259–278CrossRefGoogle Scholar
  29. Frankenberger Jr WT, Arshad M (2002) Volatilisation of arsenic. In: Frankenberger Jr WT (ed) Environmental chemistry of arsenic. Marcel Dekker, New York, pp 363–380Google Scholar
  30. Franzblau A, Lilis R (1989) Acute arsenic intoxication from environmental arsenic exposure. Arch Environ Health 44:385–390CrossRefGoogle Scholar
  31. Frohne T, Rinklebe J, Diaz-Bone RA, Du Laing G (2011) Controlled variation of redox conditions in a floodplain soil: impact on metal mobilization and biomethylation of arsenic and antimony. Geoderma 160(3–4):414–424CrossRefGoogle Scholar
  32. Ghosh M, Shen J, Rosen BP (1999) Pathways of As-III detoxification in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A 96:5001–5006CrossRefGoogle Scholar
  33. Gibney BP, Nusslein K (2007) Arsenic sequestration by nitrate respiring microbial communities in urban lake sediments. Chemosphere 70(2):329–336CrossRefGoogle Scholar
  34. Giri AK, Patel RK, Mahapatra SS, Mishra PC (2013) Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus. Environ Sci Pollut Res 20(3):1281–1291CrossRefGoogle Scholar
  35. Goh KH, Lim TT (2005) Arsenic fractionation in a fine soil fraction and influence of various anions on its mobility in the subsurface environment. Appl Geochem 20:229–239CrossRefGoogle Scholar
  36. Gomez-Caminero A, Howe P, Hughes M, Kenyon E, Lewis DR, Moore M, Ng J, Aitio A, Beecking G (2001) Arsenic and arsenic compounds. The Environmental Health Criteria.2nd edn. World Health Organisation, FinlandGoogle Scholar
  37. Grantham DA, Jones JF (1977) Arsenic contamination of water wells in Nova Scotia. J Am Water Works Assoc 69:653–657CrossRefGoogle Scholar
  38. Guha Mazumder DN (2001) Arsenic and liver disease. J Indian Med Assoc 99(6):311–320Google Scholar
  39. Halim MA, Majumder RK, Nessa SA, Hiroshiro Y, Uddin MJ, Shimada J, Jinno K (2009) Hydrogeochemistry and arsenic contamination of groundwater in the Ganges Delta plain. Bangladesh J Hazard Mater 164:1335–1345CrossRefGoogle Scholar
  40. Hare V, Chowdhary P, Baghel VS (2017) Influence of bacterial strains on Oryza sativa grown under arsenic tainted soil: accumulation and detoxification response. Plant Physiol Biochem 119:93–102CrossRefGoogle Scholar
  41. Hitchcock AP, Obst M, Wang J, Lu YS, Tyliszczak T (2012) Advances in the detection of As in environmental samples using low energy X-ray fluorescence in a scanning transmission X-ray microscope: arsenic immobilization by an Fe(II)-oxidizing freshwater bacteria. Environ Sci Technol 46(5):2821–2829CrossRefGoogle Scholar
  42. Hoffman GR (1991) Genetic toxicology. In: Amdur MO, Doull J, Klaassen CD (eds) Toxicology. Pergamon Press, New York, pp 201–225Google Scholar
  43. Huang JH, Matzner E (2006) Dynamics of organic and inorganic arsenic in the solution phase of an acidic fen in Germany. Geochim Cosmochim Acta 70(8):2023–2033CrossRefGoogle Scholar
  44. Huang JH, Scherr F, Matzner E (2007) Demethylation of dimethylarsinic acid and arsenobetaine in different organic soils. Water Air Soil Pollut 182(1–4):31–41CrossRefGoogle Scholar
  45. Huang JH, Voegelin A, Pombo SA, Lazzaro A, Zeyer J, Kretzschmar R (2011) Influence of arsenate adsorption to ferrihydrite, goethite, and boehmite on the kinetics of arsenate reduction by Shewanella putrefaciens strain CN-32. Environ Sci Technol 45(18):7701–7709CrossRefGoogle Scholar
  46. Hug SMI, Sultana S, Chakraborty G, Chowdhury MTA (2011) A mitigation approach to alleviate arsenic accumulation in rice through balance fertilization. Appl Environ Soil Sci.
  47. Hutchinson J (1887) Arsenic cance. Br Med J 2:1280CrossRefGoogle Scholar
  48. Jackson BP, Miller WP (1999) Soluble arsenic and selenium species in fly ash/organic waste-amended soils using ion chromatography inductively coupled plasma spectrometry. Environ Sci Technol 33:270–275CrossRefGoogle Scholar
  49. Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci U S A 104:1720–1725CrossRefGoogle Scholar
  50. Jia Y, Huang H, Zhong M, Wang FH, Zhang LM, Zhu YG (2013) Microbial arsenic methylation in soil and rice rhizosphere. Environ Sci Technol 47(7):3141–3148CrossRefGoogle Scholar
  51. Jiang QQ, Singh BR (1994) Effect of different forms and sources of arsenic on crop yield and arsenic concentration. Water Air Soil Pollut 74:321–343Google Scholar
  52. Johnnson MO, Cohly HHP, Isokpehi RD, Awofolu OR (2010) The case for visual analytic of arsenic concentrations in foods. Int J Environ Res Public Health 7:1970–1983CrossRefGoogle Scholar
  53. Johnstone RM (1963) Sulfhydryl agents: arsenicals. In: Hochster RM, Quastel JH (eds) Metabolic inhibitors: a comprehensive treatise, vol 2. Academic, New York, pp 99–118CrossRefGoogle Scholar
  54. Jones CA, Langner HW, Anderson K, McDermott TR, Inskeep WP (2000) Rates of microbially mediated arsenate reduction and solubilization. Soil Sci Soc Am J 64(2):600–608CrossRefGoogle Scholar
  55. Joshi DN, Flora SJS, Kalia K (2009) Bacillus sp. strain DJ-1, potent arsenic hyper tolerant bacterium isolated from the industrial effluent of India. J Hazard Mater 166(2–3):1500–1505CrossRefGoogle Scholar
  56. Juhasz AL, Naidu R, Zhu YG, Wang LS, Jiang JY, Cao ZH (2003) Toxicity tissues associated with geogenic arsenic in the groundwater-soil-plant-human continuum. Bull Environ Contam Toxicol 71:1100–1107CrossRefGoogle Scholar
  57. Kabata-Pendias A, Adriano DC (1995) Trace metals. In: Rechcigl JE (ed) Soil amendments and environmental quality. CRC Press, Boca Raton, pp 139–167Google Scholar
  58. Kabata-Pendias A, Pendias H (1984) Trace elements in soils and plants, vol 315. CRC Press, Boca RatonGoogle Scholar
  59. Kertulis-Tartar GM, Ma LQ, Tu C, Chirenje T (2006) Phytoremediation of an arsenic-contaminated site using Pteris vitrata L.: a two-year study. Int J Phytoremediation 8:311–322CrossRefGoogle Scholar
  60. Khan MA, Islam MR, Panaullah GM, Duxbury JM, Jahiruddin M, Loeppert RH (2009) Fate of irrigation-water arsenic in rice soils of Bangladesh. Plant Soil 322:263–277CrossRefGoogle Scholar
  61. Kile ML, Houseman EA, Breton CV, Smith T, Quamruizzaman Q, Rahman M, Mahiuddin G, Christini DC (2007) Dietary arsenic exposure in Bangladesh. Environ Health Perspect 115:889–893CrossRefGoogle Scholar
  62. Kitchin KT (2001) Recent advances in arsenic carcinogenesis: modes of action, animal model systems, and methylated arsenic metabolites. Toxicol Appl Pharmacol 172:249–261CrossRefGoogle Scholar
  63. Kostal J, Yang R, Wu CH, Mulchandani A, Chen W (2004) Enhanced arsenic accumulation in engineered bacterial cells expressing ArsR. Appl Environ Microbiol 70:4582–4587CrossRefGoogle Scholar
  64. Krafft T, Macy JM (1998) Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur J Biochem 255:647–653CrossRefGoogle Scholar
  65. Kramer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141CrossRefGoogle Scholar
  66. Kuehnelt D, Goessler W (2003) Organ arsenic compounds in the terrestrial environment. In: Craig PJ (ed) Organometallic compounds in the environment. Wiley, Heidelberg, pp 223–275CrossRefGoogle Scholar
  67. Labrenz M, Druschel GK, Thomsen-Ebert T, Gilbert B, Welch SA, Kemner KM, Logan GA, Summons RE, De Stasio G, Bond PL, Lai B, Kelly SD, Banfield JF (2000) Formation of sphalerite (ZnS) deposits in natural biofilms of sulfate-reducing bacteria. Science 290(5497):1744–1747CrossRefGoogle Scholar
  68. Lafferty BJ, Loeppert RH (2005) Methyl arsenic adsorption and desorption behavior on iron oxides. Environ Sci Technol 39(7):2120–2127CrossRefGoogle Scholar
  69. Langner HW, Inskeep WP (2000) Microbial reduction of arsenate in the presence of ferrihydrite. Environ Sci Technol 34:3131–3136CrossRefGoogle Scholar
  70. Lee JS, Lee SW, Chon HT, Kim KW (2008) Evaluation of human exposure to arsenic due to rice ingestion in the vicinity abandoned Myungbong Au-Ag mine site. Korea J Geochem Explor 96:231–235CrossRefGoogle Scholar
  71. Leung HM, Ye ZH, Wong MH (2006) Interactions of mycorrhizal fungi with Pteris vittata (As hyperaccumulator) in As-contaminated soils. Environ Pollut 139:1–8CrossRefGoogle Scholar
  72. Liao SJ, Zhou JX, Wang H, Chen X, Wang HF, Wang GJ (2013) Arsenite oxidation using biogenic manganese oxides produced by a deep-sea manganese-oxidizing bacterium, Marinobacter sp MnI7-9. Geomicrobiol J 30(2):150–159CrossRefGoogle Scholar
  73. Liu WJ, Zhu YG, Smith FA, Smith SE (2004) Do phosphorus nutrition and iron plaque alter arsenate (As) uptake by rice seedlings in hydroponic culture? New Phytol 162:481–488CrossRefGoogle Scholar
  74. Liu Y, Zhu YG, Chen BD, Christie P, Li XL (2005) Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza 15:187–192CrossRefGoogle Scholar
  75. Liu WJ, Zhu YG, Hu Y, Williams PN, Gault AG, Meharg AA, Charnock JM, Smith FA (2006) Arsenic sequestration in iron plaque, its accumulation and speciation in mature rice plants (Oryza sativa L.) Environ Sci Technol 40:5730–5736CrossRefGoogle Scholar
  76. Lloyd JR, Oremland RS (2006) Microbial transformations of arsenic in the environment: from soda lakes to aquifers. Elements 2(2):85–90CrossRefGoogle Scholar
  77. Macur PE, Wheeler JT, McDermott TR, Inskeep WP (2001) Microbial population associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environ Sci Technol 35:3676–3682CrossRefGoogle Scholar
  78. Mahimairaja S, Bolan NS, Adriano DC, Robinson B (2005) Arsenic contamination and its risk management in complex environmental settings. Adv Agron 86:1–82CrossRefGoogle Scholar
  79. Maki T, Hasegawa H, Watarai H, Ueda K (2004) Classification for dimethylarsenate-decomposing bacteria using a restrict fragment length polymorphism analysis of 16S rRNA genes. Anal Sci 20:61–68CrossRefGoogle Scholar
  80. Martinez-Villegas N, Briones-Gallardo R, Ramos-Leal JA, Avalos-Borja M, Castanon-Sandoval AD, Razo-Flores E, Villalobos M (2013) Arsenic mobility controlled by solid calcium arsenates: a case study in Mexico showcasing a potentially widespread environmental problem. Environ Pollut 176:114–122CrossRefGoogle Scholar
  81. Maurel C, Verdoucq L, Luu DT, Santoni V (2008) Plant aquaporins: membrane channels with multiple integrated functions. Annu Rev Plant Biol 59:595–624CrossRefGoogle Scholar
  82. McBride BC, Wolfe RS (1971) Biosynthesis of dimethylasrine by a methanobacterium. Biochemistry 10:4312–4317CrossRefGoogle Scholar
  83. McCabe M, Maguire D, Nowak M (1983) The effects of arsenic compounds on human and bovine lymphocyte mitogenesis in vitro. Environ Res 31:323CrossRefGoogle Scholar
  84. Meharg AA (2004) Arsenic in rice-understanding a new disaster for South-East Asia. Trends Plant Sci 9:415–417CrossRefGoogle Scholar
  85. Meharg AA, Hartley-Whitaker J (2002) Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytol 154:29–43CrossRefGoogle Scholar
  86. Meharg AA, Williams PN, Adomako E, Lawgali YY, Deacon C, Villada A, Cambell RCJ, Sun G, Zhu YG, Feldmann J, Raab A, Zhao FJ, Islam R, Hossain S, Yanai J (2009) Geographical variation in total and inorganic arsenic content of polished (white) rice. Environ Sci Technol 43:1612–1617CrossRefGoogle Scholar
  87. Meng XY, Qin J, Wang LH, Duan GL, Sun GX, Wu HL, Chu CC, Ling HQ, Rosen BP, Zhu YG (2011) Arsenic biotransformation and volatilization in transgenic rice. New Phytol 191:49–56CrossRefGoogle Scholar
  88. Mestrot A, Planer-Friedrich B, Feldmann J (2013) Biovolatilisation: a poorly studied pathway of the arsenic biogeochemical cycle. Environ Sci: Processes Impacts 15(9):1639–1651Google Scholar
  89. Meunier L, Koch I, Reimer KJ (2011) Effects of organic matter and ageing on the bioaccessibility of arsenic. Environ Pollut 159:2530–2536CrossRefGoogle Scholar
  90. Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health C 34(1):1–34CrossRefGoogle Scholar
  91. Miteva E (2002) Accumulation and effect of arsenic on tomatoes. Commun Soil Sci Plant Anal 33(11):1917–1926CrossRefGoogle Scholar
  92. Miyatake M, Hayashi S (2011) Characteristics of arsenic removal by Bacillus cereus strain W2. Resour Process 58(3):101–107CrossRefGoogle Scholar
  93. Mokgalaka-Matlala NS, Flores-Tavizon E, Castillo-Michel H, Peralta-Videa JR, Gardea-Torresdey JL (2008) Toxicity of Arsenic(III) and (V) on plant growth, element uptake, and total amylolytic activity of Mesquite (Prosopis Juliflora 9 P. Velutina). Int J Phytoremed 10(1):47–60CrossRefGoogle Scholar
  94. Moore MM, Harrington-Brock K, Doerr CL (1997) Relative genotoxic potency of arsenic and its methylated metabolites. Mutat Resuscitation 386:279CrossRefGoogle Scholar
  95. Morton WE, Dunnette DA, Nriagu JO (1994) Arsenic in the environment. II. human health and ecosystem effects. Wiley, New York, pp 17–34Google Scholar
  96. Mukai H, Ambe Y, Muku T, Takeshita K, Fukuma T (1986) Seasonal-variation of methylarsenic compounds in airborne particulate matter. Nature 324(6094):239–241CrossRefGoogle Scholar
  97. Mukhopadhyay R, Rosen BP, Pung LT, Silver S (2002) Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol Rev 26(3):311–325CrossRefGoogle Scholar
  98. Nagvi SM, Vaishnavi C, Singh H (1994) Toxicity and metabolism of arsenic in vertebrates. In: Nriagu JO (ed) Arsenic in the environment. Part II: human health and ecosystem effects. Wiley, New York, pp 55–91Google Scholar
  99. Nagy R, Karandashov V, Chague V, Kalinkevich K, Tamasloukht M, Xu G, Jakobsen I, Levy AA, Amrhein N, Bucher M (2005) The characterization of novel mycorrhizaspecific phosphate transporters from Lycopersicon esculentum and Solanum tuberosum uncovers functional redundancy in symbiotic phosphate transporter in solanaceous species. Plant J 42:236–250CrossRefGoogle Scholar
  100. Ning RY (2002) Arsenic ermoval by reverse osmosis. Desalinisation 143:237–241CrossRefGoogle Scholar
  101. Nordstrom S, Beckman L, Nordenson I (1979) Occupational and environmental risks in and around a smelter in northern Sweden. Hereditas 90:297CrossRefGoogle Scholar
  102. Omoregie EO, Couture RM, Van Cappellen P, Corkhill CL, Charnock JM, Polya DA, Vaughan D, Vanbroekhoven K, Lloyd JR (2013) Arsenic bioremediation by biogenic iron oxides and sulfides. Appl Environ Microbiol 79(14):4325–4335CrossRefGoogle Scholar
  103. Paez-Espino D, Tamames J, de Lorenzo V, Canovas D (2009) Microbial responses to environmental arsenic. Biometals 22(1):117–130CrossRefGoogle Scholar
  104. Pierzynski GM, Sims JT, Vance GF (2005) Soils and environmental quality.3rd edn. CRC Press, Boca Raton, p 569CrossRefGoogle Scholar
  105. Prasad KS, Srivastava P, Subramanian V, Paul J (2011) Biosorption of As (III) ion on Rhodococcus sp. WB-12: biomass characterization and kinetic studies. Sep Sci Technol 46(16):2517–2525CrossRefGoogle Scholar
  106. Qiming Y, Matheickal Jose T, Yin P, Kaewsarn P (1999) Heavy metal uptake capacities of common marine macro algal biomas. Water Res 36(6):1534–1537Google Scholar
  107. Raskin I, Kumar PBAN (1994) Bioconcentration of heavy metals by plants. Curr Opin Biotechnol 5:285–290CrossRefGoogle Scholar
  108. Rhine ED, Phelps CD, Young LY (2006) Anaerobic arsenite oxidation by novel denitrifying isolates. Environ Microbiol 8:889–908CrossRefGoogle Scholar
  109. Rittle KA, Drever JI, Colberg PJS (1995) Precipitation of arsenic during bacterial sulfate reduction. Geomicrobiol J 13:1–11CrossRefGoogle Scholar
  110. Rosen B (2002) Biochemistry of arsenic detoxification. FEBS Lett 529:86–92CrossRefGoogle Scholar
  111. Salido AL, Hasty KL, Lim JM, Butcher DJ (2003) Phytoremediation of arsenic and lead in contaminated soil using Chinese Brake Ferns (Pteris vittata) and Indian mustard (Brassica juncea). Int J Phytoremediation 5:89–103CrossRefGoogle Scholar
  112. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668CrossRefGoogle Scholar
  113. Santini JM, Sly LI, Schnagl RD, Macy JM (2000) A new chemolitoautotrophic arsenite oxidizing bacterium isolated from a gold-mine: phylogenetic, physiological, and preliminary biochemical studies. Appl Environ Microbiol 66:92–97CrossRefGoogle Scholar
  114. Santra A, Das Gupta J, De BK et al (1999) Hepatic damage caused by chronic arsenic toxicity in experimental animals. Ind Soc Gastroenterol 18:152Google Scholar
  115. Sauge-Merle S, Cuine S, Carrier P, Lecomte-Pradines C, Luu DT, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494CrossRefGoogle Scholar
  116. Schultz A, Jonas U, Hammer E, Schauer F (2001) Dehalogenation of chlorinated hydroxybiphenyls by fungal laccase. Appl Environ Microbiol 67:4377–4381CrossRefGoogle Scholar
  117. Senn DB, Hemond HF (2002) Nitrate controls on iron and arsenic in an urban lake. Science 296(5577):2373–2376CrossRefGoogle Scholar
  118. Shah D, Shen MWY, Chen W, Da Silva NA (2010) Enhanced arsenic accumulation in Saccharomyces cerevisiae overexpressing transporters Fps1p or Hxt7p. J Biotechnol 150(1):101–107CrossRefGoogle Scholar
  119. Sharples JM, Meharg AA, Chambers SM, Cairney JWG (2000) Symbiotic solution to arsenic contamination. Nature 404:951–952CrossRefGoogle Scholar
  120. Singh OV, Labana S, Pandey G, Budhiraja R, Jain RK (2003) Phytoremediation: an overview of metallic ion decontamination from soil. Appl Microbiol Biotechnol 61:405–412CrossRefGoogle Scholar
  121. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T (2004) Identification of human brain tumour initiating cells. Nature 432:396–401CrossRefGoogle Scholar
  122. Singh S, Lee W, DaSilva NA, Mulchandani A, Chen W (2008a) Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana Phytochelatin synthase. Biotechnol Bioeng 99:333–340CrossRefGoogle Scholar
  123. Singh S, Mulchandani A, Chen W (2008b) Highly selective and rapid arsenic removal by metabolically engineered Escherichia coli cells expressing Fucus vesiculosus metallothionein. Appl Environ Microbiol 74:2924–2927CrossRefGoogle Scholar
  124. Singh S, Kang SH, Lee W, Mulchandani A, Chen W (2010) Systematic engineering of phytochelatin synthesis and arsenic transport for enhanced arsenic accumulation in E. coli. Biotechnol Bioeng 105(4):780–785Google Scholar
  125. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRefGoogle Scholar
  126. Smith E, Naidu R, Alston AM (1999) Chemistry of As in soil: I. Sorption of arsenate and arsenite by four Australian soils. J Environ Qual 28:1719–1726CrossRefGoogle Scholar
  127. Smith SE, Christophersen HM, Pope S, Smith FA (2010) Arsenic uptake and toxicity in plants: integrating mycorrhizal influences. Plant Soil 327:1–21CrossRefGoogle Scholar
  128. Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919CrossRefGoogle Scholar
  129. Southwick JW, Western AE, Beck MM (1981) Community health associated with arsenic in drinking water in Millard Country, Utah, EPA-600/1-81-064, NTIS No. PB82-108374. USEPA, Health Effects Laboratory, CincinnatiGoogle Scholar
  130. Squibb KS, Fowler BA (1983) The toxicity of arsenic and its compounds. In: Fowler BA (ed) Biological and environmental effects of arsenic. Elsevier, New York, pp 233–269CrossRefGoogle Scholar
  131. Srivastava PK, Vaish A, Dwivedi S, Chakrabarty D, Singh N, Tripathi RD (2011) Biological removal of arsenic pollution by soil fungi. Sci Total Environ 409(12):2430–2442CrossRefGoogle Scholar
  132. Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627CrossRefGoogle Scholar
  133. Stolz JF, Basu P, Oremland RS (2002) Microbial transformation of elements: the case of arsenic and selenium. Int Microbiol 5:201–207CrossRefGoogle Scholar
  134. Stolz JF, Basu P, Santini JM, Oremland RS (2006) Arsenic and selenium in microbial metabolism. Annu Rev Microbiol 60:107–130CrossRefGoogle Scholar
  135. Suhendrayatna A, Ohki TK, Maeda S (1999) Arsenic compounds in the freshwater green microalga Chlorella vulgaris after exposure to arsenite. Appl Organomet Chem 13:127–133CrossRefGoogle Scholar
  136. Sun WJ, Sierra-Alvarez R, Milner L, Oremland R, Field JA (2009) Arsenite and ferrous iron oxidation linked to chemo lithotrophic denitrification for the immobilization of arsenic in anoxic environments. Environ Sci Technol 43(17):6585–6591CrossRefGoogle Scholar
  137. Takahashi Y, Minamikawa R, Hattori KH, Kurishima K, Kiho N, Yuita K (2004) Arsenic behaviour in paddy elds during the cycle of ooded and non-ooded periods. Environ Sci Technol 38:1038–1044CrossRefGoogle Scholar
  138. Tamaki S, Frankenberger WT (1992) Environmental biochemistry of arsenic. Rev Environ Contam Toxicol 124:79–110Google Scholar
  139. Tripathi RD, Srivastava S, Mishra S, Singh N, Tuli R, Gupta DK, Maathuis FJM (2007) Arsenic hazards: strategies for tolerance and remediation by plants. Trends Biotechnol 25:158–165CrossRefGoogle Scholar
  140. Tsai SL, Singh S, Chen W (2009) Arsenic metabolism by microbes in nature and the impact on arsenic remediation. Curr Opin Biotechnol 20:659–667CrossRefGoogle Scholar
  141. Tseng WP (1977) Effects and dose–response relationships of skin cancer and Blackfoot disease with arsenic. Environ Health Perspect 19:109–119CrossRefGoogle Scholar
  142. Uppanan P (2000) Screening and characterization of bacteria capable of biotransformation of toxic arsenic compound in soil, M.Sc. Thesis, Mahidol University, ThailandGoogle Scholar
  143. US Department of Agriculture (1974) Wood preservatives. In: The pesticide review. Washington, DC, p. 21Google Scholar
  144. US Environmental Protection Agency (1975) Interim primary drinking water standards. Fed Regist 40(11):990Google Scholar
  145. Valentine JL, Reisbord LS, Kang HK, Schluchter MD (1985) Arsenic effects of population health histories. In: Mills CF, Bremner IM, Chesters KJ (eds) Trace elements in man and animals. Commonwealth Agricultural Bureau, Slough, pp 289–294Google Scholar
  146. Van Hullebusch ED, Zandvoort MH, Lens PNL (2003) Metal immobilisation by biofilms: mechanisms and analytical tools. Rev Environ Sci Biotechnol 2:9–33CrossRefGoogle Scholar
  147. Wallace IS, Choi WG, Roberts DM (2006) The structure, function and regulation of the nodulin 26-like intrinsic protein family of plant aquaglyceroporins. Biochim Biophys Acta 1758:1165–1175CrossRefGoogle Scholar
  148. Wang S, Mulligan CN (2006) Effect of natural organic matter on arsenic release from soil and sediments into groundwater. Environ Geochem Health 28:197–214CrossRefGoogle Scholar
  149. Wang SL, Zhao XY (2009) On the potential of biological treatment for arsenic contaminated soils and groundwater. J Environ Manag 90(8):2367–2376CrossRefGoogle Scholar
  150. Warwick P, Inam E, Evans N (2005) Arsenic’s interactions with humic acid. Environ Chem 2:119–124CrossRefGoogle Scholar
  151. WHO Arsenic Compounds (2001) Environmental health criteria 224.2nd edn. World Health Organisation, GenevaGoogle Scholar
  152. Williams PN, Islam MR, Adomako EE, Raab A, Hossain SA, Zhu YG, Feldmann J, Meharg AA (2006) Increase in rice grain arsenic for regions of Bangladesh irrigating paddies with elevated arsenic in ground waters. Environ Sci Technol 40:4903–4908CrossRefGoogle Scholar
  153. Wysocki R, Che’ry C, Wawrzycka D, Hulle VM, Cornelis R, Thevelein J, Tama’s M (2001) The glycerol channel Fps1p mediates the uptake of arsenite and antimonite in Saccharomyces cerevisiae. Mol Microbiol 40(6):1391–1401CrossRefGoogle Scholar
  154. Xie ZM, Luo Y, Wang YX, Xie XJ, Su CL (2013) Arsenic resistance and bioaccumulation of an indigenous bacterium isolated from aquifer sediments of Datong Basin, northern China. Geomicrobiol J 30(6):549–556CrossRefGoogle Scholar
  155. Xu C, Zhou TQ, Kuroda M, Rosen BP (1998) Metalloid resistance mechanisms in prokaryotes. J Biochem 123:16–23CrossRefGoogle Scholar
  156. Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with mycorrhiza-enhanced expression. J Exp Bot 58:2491–2501CrossRefGoogle Scholar
  157. Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in the environment, their threats on ecosystem and bioremediation approaches. In: Das S, Singh HR (eds) Handbook of metal-microbe interaction and bioremediation. CRC Press, Taylor & Francis Group, Boca Raton, pp 128–141CrossRefGoogle Scholar
  158. Yamamura S, Watanabe M, Kanzaki M, Soda S, Ike M (2008) Removal of arsenic from contaminated soils by microbial reduction of arsenate and quinone. Environ Sci Technol 42(16):6154–6159CrossRefGoogle Scholar
  159. Yang T, Chen ML, Liu LH, Wang JH, Dasgupta PK (2012) Iron(III) modification of Bacillus subtilis membranes provides record sorption capacity for arsenic and endows unusual selectivity for As(V). Environ Sci Technol 46(4):2251–2256CrossRefGoogle Scholar
  160. Zaldivar R (1980) A morbid condition involving cardiovascular, brochopulmonary, digestive and neural lesions in children and young adults after dietary arsenic exposure. Zentralbl Bacteriologie 1 Abt Originale B: Hyg Krankenhaushygiene Betriebshygiene Praventive Med 170:44–56Google Scholar
  161. Zaloga GP, Deal J, Spurling T, Richter J, Chernow B (1985) Case report: unusual manifestations of arsenic intoxication. Am J Med Sci 289:210–214CrossRefGoogle Scholar
  162. Zhao FJ, Ma JF, Meharg AA, McGrath SP (2009) Arsenic uptake and metabolism in plants. New Phytol 181, 777–7794CrossRefGoogle Scholar
  163. Zobrist J, Dowdle PR, Davis JA, Oremland RS (2000) Mobilization of arsenite by dissimilatory reduction of arsenate. Environ Sci Technol 34:4747–4753CrossRefGoogle Scholar
  164. Zouboulis AI, Katsoyiannis IA (2005) Recent advances in the bioremediation of arsenic- contaminated ground waters. Environ Int 31:213–219CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Vishvas Hare
    • 1
  • Pankaj Chowdhary
    • 1
  • Bhanu Kumar
    • 2
  • D. C. Sharma
    • 3
  • Vinay Singh Baghel
    • 1
  1. 1.Department of Environmental Microbiology (DEM)Babasaheb Bhimrao Ambedkar University (A Central University)LucknowIndia
  2. 2.Pharmacognosy and Ethnopharmacology DivisionCSIR-National Botanical Research InstituteLucknowIndia
  3. 3.Department of MicrobiologyDr Shakuntala Mishra National Rehabilitation UniversityLucknowIndia

Personalised recommendations