Skip to main content

Bioremediation Approaches for Degradation and Detoxification of Polycyclic Aromatic Hydrocarbons

  • Chapter
  • First Online:
Emerging and Eco-Friendly Approaches for Waste Management

Abstract

Waste from industry is a noteworthy risk to the earth as it contains different poisonous, mutagenic and cancer-causing substances including polycyclic aromatic hydrocarbons (PAHs). PAHs are a class of different organic compounds with two or more intertwined benzene rings in a linear, angular or cluster array. Eviction of PAHs is crucial as these are persevering toxins with ubiquitous event and adverse natural impacts. There are several remedial techniques, which are productive and financially savvy in elimination of PAHs from the affected environment. These removal approaches are not just eco-friendly; they additionally display an emerging and new strategy in mitigating the ability of PAHs to cause potential risk to living beings. Accessible physical and synthetic techniques are neither eco-accommodating nor financially viable in this way. Natural strategies such as bioremediation techniques are most appropriate for biodegradation of PAHs. Such techniques require less chemicals, less time and less contribution of energy and are cost-effective and eco-accommodating. The lethal PAH mixes can be changed into non-harmful and more straightforward ones utilizing normally occurring microorganisms like algae, bacteria and fungi in a procedure called biodegradation. This chapter mainly focuses on the enhancement in biodegradation of hazardous PAHs by using bioremedial approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahirwae S, Dehariya K (2013) Isolation and characterization of hydrocarbon degrading microorganism from petroleum oil contaminated soil sites. Bull Environ Sci res 2(4):5–10

    Google Scholar 

  • Al-Baldawi IA, Abdullah SRS, Anuar N et al (2015) Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecol Eng 74:463–473

    Article  Google Scholar 

  • Alcalde M (2007) Laccase: biological functions, molecular structure and industrial applications. In: Polaina J, Maccabe AP (eds) Industrial enzymes: structure, function and applications, vol 26. Springer, Netherlands, pp 461–476

    Chapter  Google Scholar 

  • Ambrosoli R, Petruzzelli L, Luis Minati J et al (2005) Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions. Chemosphere 60(9):1231–1236

    Article  CAS  Google Scholar 

  • Arulazhagan P, Vasudevan N (2011) Role of nutrients in the utilization of polycyclic aromatic hydrocarbons by halotolerant bacterial strain. J Environ Sci 23(2):282–287

    Article  CAS  Google Scholar 

  • Baborová P, Möder M, Baldrian P et al (2006) Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res Microbiol 157(3):248–253

    Article  CAS  Google Scholar 

  • Baldrian P (2006) Fungal laccases occurrence and properties. FEMS Microbiol Rev 30:215–242

    Article  CAS  Google Scholar 

  • Bamforth SM, Singleto I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736

    Article  CAS  Google Scholar 

  • Bennet JW, Wunch KG, Faison BD (2002) Use of fungi biodegradation. Manual of environmental microbiology.2nd edn. ASM Press, Washington, DC, pp 960–971

    Google Scholar 

  • Bharagava RN, Chandra R (2010) Biodegradation of the major color containing compounds in distillery wastewater by an aerobic bacterial culture and characterization of their metabolites. Biodegradation J 21:703–711

    Article  CAS  Google Scholar 

  • Bharagava RN, Chandra R, Rai V (2009) Isolation and characterization of aerobic bacteria capable of the degradation of synthetic and natural melanoidins from distillery wastewater. World J Microbiol Biotechnol 25:737–744

    Article  CAS  Google Scholar 

  • Bharagava RN, Chowdhary P, Saxena G (2017) Bioremediation: an eco-sustainable green technology, its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–22

    Chapter  Google Scholar 

  • Borde X, Guieysse B, Delgado O et al (2003) Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants. Bioresour Technol 86(3):293–300

    Article  Google Scholar 

  • Boyd DR, Sharma ND, Hempenstall F et al (1999) Bis-cis-Dihydrodiols: a new class of metabolites from biphenyl dioxygenase catalyzed sequential asymmetric cis-dihydroxylation of polycyclic arenas and heteroarenes. J Organomet Chem 64:4005–4011

    Article  CAS  Google Scholar 

  • Cajthaml T, Moder M, Kacer P et al (2002) Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J Chromatogr A 974:213–222

    Article  CAS  Google Scholar 

  • Caldini G, Cenci G, Manenti R et al (1995) The ability of an environmental isolate of Pseudomonas fluorescens to utilize chrysene and other four-ring polynuclear aromatic hydrocarbons. Appl Microbiol Biotechnol 44(1):225–229

    Article  CAS  Google Scholar 

  • Cerniglia CE, Gibson DT (1977) Metabolism of naphthalene by Cunninghamella elegans. Appl Environ Microbiol 34:363–370

    CAS  Google Scholar 

  • Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2079–2110

    Chapter  Google Scholar 

  • Chan SMN, Luan T, Wong MH et al (2006) Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environ Toxicol Chem 25:1772–1779

    Article  CAS  Google Scholar 

  • Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts 17:326–342

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN, Kapley A, Purohit JH (2011) Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant during the degradation and detoxification of tannery wastewater. Bioresour Technol 102:2333–2341

    Article  CAS  Google Scholar 

  • Chandra R, Bharagava RN, Kapley A, Purohit HJ (2012) Characterization of Phragmites communis rhizosphere bacterial communities and metabolic products during the two stage sequential treatment of post methanated distillery effluent by bacteria and wetland plants. Bioresour Technol 103:78–86

    Article  CAS  Google Scholar 

  • Chang BV, Shiung LC, Yuan SY (2002) Anaerobic biodegradation of polycyclic aromatic hydrocarbons in soil. Chemosphere 48:717–724

    Article  CAS  Google Scholar 

  • Chen YC, Banks MK, Schwab AP (2003) Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switch grass (Panicum virgatum). Environ Sci Technol 37(24):5778–5782

    Article  CAS  Google Scholar 

  • Chen Y, Xie XG, Ren CG et al (2013) Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari. Bioresour Technol 129:568–574

    Article  CAS  Google Scholar 

  • Chowdhary P, Yadav A, Kaithwas G, Bharagava RN (2017a) Distillery wastewater: a major source of environmental pollution and its biological treatment for environmental safety. Green technologies and environmental sustainability. Springer International, Cham, pp 409–435

    Chapter  Google Scholar 

  • Chowdhary P, More N, Raj A, Bharagava RN (2017b) Characterization and identification of bacterial pathogens from treated tannery wastewater. Microbiol Res Int 5:30–36

    Article  Google Scholar 

  • Chowdhary P, Raj A, Bharagava RN (2018) Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: a review. Chemosphere 194:229–246

    Article  CAS  Google Scholar 

  • Chulalaksananukul S, Gadd GM, Sangvanich P et al (2006) Biodegradation of benzo(a) pyrene by a newly isolated Fusarium sp. FEMS Microbiol Lett 262(1):99–106

    Article  CAS  Google Scholar 

  • Clemente AR, Anazawa TA, Durrant LR (2001) Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Braz J Microbiol 32(4):255–261

    Article  CAS  Google Scholar 

  • Covino S, Svobodova K, Kresinova Z et al (2010) In vivo and in vitro polycyclic aromatic hydrocarbons degradation by Lentinus (Panus) tigrinus CBS 577.79. Bioresour Technol 101(9):3004–3012

    Article  CAS  Google Scholar 

  • Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011 Article ID 941810, pp 13

    Google Scholar 

  • Dean-Ross D, Moody J, Cerniglia CE (2002) Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol Ecol 41:1–7

    Article  CAS  Google Scholar 

  • Desai SS, Nityanand C (2011) Microbial laccases and their applications: a review. Asian J Biotechnol 3(2):98–124

    Article  CAS  Google Scholar 

  • Dua M, Singh A, Sethunathan N et al (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59(2–3):143–152

    CAS  Google Scholar 

  • Dzantor EK, Chekol T, Vough L (2000) Feasibility of using forage grasses and legumes for phytoremediation of organic pollutants. J Environ Sci Health A 35(9):1645–1661

    Article  Google Scholar 

  • Eggert C, Temp U, Eriksson KE (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62(4):1151–1158

    CAS  Google Scholar 

  • Eisenman HC, Mues M, Weber SE et al (2007) Cryptococcus neoformans laccase catalyses melanin synthesis from both D-and L-DOPA. Microbiology 153(12):3954–3962

    Article  CAS  Google Scholar 

  • El A, Haleem D, Al-Thani RF et al (2009) Isolation and characterization of polyaromatic hydrocarbons-degrading bacteria from different Qatari soils. Afr J Microbiol Res 3:761–766

    Google Scholar 

  • Epelde L, Mijangos I, Becenil J et al (2009) Soil microbial community as bio-indicator of the recovery of soil functioning derived from metal phytoextraction with sorghum. Soil Biol Biochem 41:1788–1794

    Article  CAS  Google Scholar 

  • Erden E, Ucar CM, Gezer T et al (2009) Screening for ligninolytic enzymes from autochthonous fungi and applications for decolorization of remazole marine blue. Braz J Microbiol 40(2):346–353

    Article  CAS  Google Scholar 

  • Fernando Bautista L, Sanz R, Carmen Molina M et al (2009) Effect of different non-ionic surfactants on the biodegradation of PAHs by diverse aerobic bacteria. Int Biodeterior Biodegrad 63(7):913–922

    Article  CAS  Google Scholar 

  • Francesc X, Boldu P, Kuhn A et al (2001) Isolation and characterization of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res 105(4):477–484

    Article  Google Scholar 

  • Gratia E, Weekers F, Margesin R et al (2006) Selection of a cold-adopted bacterium for bioremediation of wastewater at low temperature. Extremophiles 13:763–768

    Article  CAS  Google Scholar 

  • Grishchenkov VG, Townsend RT, McDonald TJ et al (2000) Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. Process Biochem 35(9):889–896

    Article  CAS  Google Scholar 

  • Hadibarata T, Tachibana S, Itoh K (2009) Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium. J Hazard Mater 164(2–3):911–917

    Article  CAS  Google Scholar 

  • Haeseler F, Blanchet D, Werner P et al (2001) Ecotoxicological characterization of metabolites produced during PAH biodegradation in contaminated soils. In: Magar VS, Johnson G, Ong SK, Leeson A (eds) Bioremediation of energetics phenolics and polycyclic aromatic hydrocarbons, vol 6(3). Batelle Press, San Diego, pp 227–234, 313 pp

    Google Scholar 

  • Hamamura N, Ward DM, Inskeep WP (2013) Effects of petroleum mixture types on soil bacterial population dynamics associated with the biodegradation of hydrocarbons in soil environments. FEMS Microbiol Ecol 85:168–178

    Article  Google Scholar 

  • Hammel KE (1995) Mechanisms for polycyclic aromatic hydrocarbon degradation by lignolytic fungi. Environ Health Perspect 103:41–43

    Article  CAS  Google Scholar 

  • Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11(3):349–355

    Article  CAS  Google Scholar 

  • Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1–3):1–15

    Article  CAS  Google Scholar 

  • Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192

    Article  CAS  Google Scholar 

  • Hernández RL, González-Franco AC, Crawford DL et al (2008) Review of environmental organopollutants degradation by white-rot basidiomycete mushrooms. Tecnociencia Chihuahua 2(1):32–39

    Google Scholar 

  • Higuchi T (2004) Microbial degradation of lignin: role of lignin peroxidase, manganese peroxidase, and laccase. Proc Jpn Acad, Ser B 80(5):204–214

    Article  CAS  Google Scholar 

  • Hofrichhter M, Vares T, Kalsi M et al (1999) Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid state fermentation of wheat straw with the white rot fungus Nematoloma forwardii. Appl Environ Microbiol 65(5):1864–1870

    Google Scholar 

  • Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30:454–466

    Article  CAS  Google Scholar 

  • Hong YW, Yuan DX, Lin QM et al (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull 56(8):1400–1405

    Article  CAS  Google Scholar 

  • Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26:201–221

    Article  CAS  Google Scholar 

  • Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88

    Article  CAS  Google Scholar 

  • Kafilzadeh F, Sahragard P, Jamali H et al (2011) Isolation and identification of hydrocarbons degrading bacteria in soil around Shiraz Refinery. Afr J Microbiol Res 4(19):3084–3089

    Google Scholar 

  • Kalmis E, Yasa I, Kalyoncu F et al (2008) Ligninolytic enzyme activities in mycelium of some wild and commercial mushrooms. Afr J Biotechnol 7(23):4314–4320

    CAS  Google Scholar 

  • Kalyani DC, Patil PS, Jadhav JP et al (2008) Biodegradation of reactive textile dye red BLI by an isolated bacterium Pseudomonas sp.SUK1. Bioresour Technol 99(11):4635–4641

    Article  CAS  Google Scholar 

  • Kang Z, Buchenauer H (2000) Ultra structural and cytochemical studies on cellulose, xylan and pectin degradation in wheat spikes infected by Fusarium culmorum. J Phytopathol 148(5):263–275

    Article  CAS  Google Scholar 

  • Ke L, Luo LJ, Wang P, Luan TG, Tam NFY (2010) Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum. Bioresour Technol 101:6950–6961

    Article  CAS  Google Scholar 

  • Kumar G, Singla R, Kumar R (2010) Plasmid associated anthracene degradation by pseudomonas sp. isolated from filling station site. Nat Sci 8(4):89–94

    Google Scholar 

  • Langfelder K, Streibel M, Jahn B et al (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38(2):143–158

    Article  CAS  Google Scholar 

  • Lau KL, Tsang YY, Chiu SW (2003) Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52(9):1539–1546

    Article  CAS  Google Scholar 

  • Lei AP, Hu ZL, Wong YS et al (2007) Removal of fluoranthene and pyrene by different microalgal species. Bioresour Technol 98(2):273–280

    Article  CAS  Google Scholar 

  • Levinson W, Stormo K, Tao H et al (1994) Hazardous waste clean-up and treatment with encapsulated or entrapped microorganisms. In: Chaudry GR (ed) Biological degradation and bioremediation of toxic chemicals. Chapman and Hall, London, pp 455–469

    Google Scholar 

  • Li JL, Chen BH (2009) Effects of non-ionic surfactants on biodegradation of phenanthrene by marine bacteria of Neptunomnas naphthovorans. J Hazard Mater 162(1):66–73

    Article  CAS  Google Scholar 

  • Lu L, Zhao M, Wang T (2012) Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04. Bioresour Technol 115:35–40

    Article  CAS  Google Scholar 

  • Lundstedt S, Persson Y, Oberg LG (2006) Transformation of PAHs during ethanol- Fenton treatment of an aged gasworks soil. Chemosphere 65:1288–1294

    Article  CAS  Google Scholar 

  • Makela M, Galkin S, Hatakka A et al (2002) Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzym Microb Technol 30(4):542–549

    Article  CAS  Google Scholar 

  • Marco-Urrea E, Pérez-Trujillo M, Vicent T et al (2009) Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74(6):765–772

    Article  CAS  Google Scholar 

  • Martínez AT (2002) Molecular biology and structure-function of lignin degrading heme peroxidases. Enzym Microb Technol 30(4):425–444

    Article  Google Scholar 

  • Martínez AT, Speranza M, Ruiz-Dueñas FJ et al (2005) Biodegradation of lignocellulosics: microbial chemical and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8(3):195–204

    Google Scholar 

  • Martínez AT, Ruiz-dueñas FJ, Martínez MJ et al (2009) Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 20(3):348–357

    Article  CAS  Google Scholar 

  • McCutcheon SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. Wiley-Inter Science, Hoboken, p 987

    Book  Google Scholar 

  • Mohamed I, Ali A, Khalil NM et al (2012) Biodegradation of some polycyclic aromatic hydrocarbons by Aspergillus terreus. Afr J Microbiol Res 6(16):3783–3790

    Google Scholar 

  • Morehead NR, Eadie BJ, Lake B et al (1986) The sorption of PAH onto dissolved organic matter in Lake Michigan waters. Chemosphere 15:403–412. https://doi.org/10.1016/0045-6535(86)90534-5

    Article  CAS  Google Scholar 

  • Mostafa MES, Ghareib MM, Abou-EL-Souod GW (2012) Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. J Bioremed Biodegr 3(1):1–9

    CAS  Google Scholar 

  • Mrozik A, Piotrowska-Seget Z, Labuzek S (2003) Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Pol J Environ Stud 12(1):15–25

    CAS  Google Scholar 

  • Mtui G, Nakamura Y (2004) Lignin-degrading enzymes from mycelial cultures of basidiomycete fungi isolated in Tanzania. J Chem Eng Jpn 37(1):113–118

    Article  CAS  Google Scholar 

  • Mulla SI, Ameen F, Tallur PN, Bharagava RN, Bangeppagari M, Eqani SAMAS, Bagewadi ZK, Mahadevan GD, Yu CP, Ninnekar HZ (2017) Aerobic degradation of fenvalerate by a Gram-positive bacterium Bacillus flexus strain XJU-4. 3 Biotech 7:320–328

    Article  Google Scholar 

  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Current Science 94:736–747

    Google Scholar 

  • Nagai M, Kawata M, Watanabe H et al (2003) Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology 149(9):2455–2462

    Article  CAS  Google Scholar 

  • Ndimele PE, Oni AJ, Jibuike CC (2010) Comparative toxicity of crude oil-plus dispersant to Tilapia guineensis. Res J Environ Toxicol 4(1):13–22

    Article  CAS  Google Scholar 

  • Neelofur M, Shyam PV, Mahesh M (2014) Enhance the biodegradation of anthracene by mutation from bacillus species. BioMed Res 1(1)

    Google Scholar 

  • Nesterenko MA, Kirzhner F, Zimmels Y et al (2012) Eichhornia crassipes capability to remove naphthalene from waste water in the absence of bacteria. Chemosphere 87(10):1186–1191

    Article  CAS  Google Scholar 

  • Newman L, Reynolds C (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230

    Article  CAS  Google Scholar 

  • Okai M, Kihara I, Yokoyama Y et al (2015) Isolation and characterization of benzo[a]pyrene degrading bacteria from the Tokyo bay area and Tama river in Japan. FEMS Microbiol Lett 362 fnv143 362(18):1–7

    Article  Google Scholar 

  • Osono T, Hirose D (2011) Colonization and lignin decomposition of pine needle litter by Lophodermium pinastri. Forest Pathol 41:156–162

    Article  Google Scholar 

  • Oyadomari M, Shinohara H, Johjima T et al (2003) Electrochemical characterization of lignin peroxidase from the white-rot basidiomycete Phanerochaete chrysosporium. J Mol Catal B Enzym 21(4–6):291–297

    Article  CAS  Google Scholar 

  • Parrish ZD, Banks MK, Schwab AP (2004) Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int J Phytomediation 6:119–137

    Article  CAS  Google Scholar 

  • Piontek K, Smith AT, Blodig W (2001) Lignin peroxidase structure and function. Biochem Soc Trans 29(2):111–116

    Article  CAS  Google Scholar 

  • Quan X, Tang Q, He M et al (2009) Biodegradation of polycyclic aromatic hydrocarbons in sediments from the Dalian River watershed, China. J Environ Sci 21:865–871

    Article  CAS  Google Scholar 

  • Ranocha P, Chabannes M, Chamayou S et al (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol 129(1):145–155

    Article  CAS  Google Scholar 

  • Reisen F, Arey J (2002) Reactions of hydroxyl radicals and ozone with acenaphthene and acenaphthylene. Environ Sci Technol 36:4302–4311

    Article  CAS  Google Scholar 

  • Ross DD, Moody J, Cerniglia CE (2002) Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol Eco 41(1):1–7

    Article  Google Scholar 

  • Russell JR, Huang J, Anand P et al (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084

    Article  CAS  Google Scholar 

  • Saxena G, Bharagava RN (2017). Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches, Bharagava RN Environmental pollutants and their bioremediation approaches. CRC Press, Taylor & Francis Group, Boca Raton (9781138628892)

    Google Scholar 

  • Singh A, Ward OP (2004) Biodegradation and bioremediation. Series: Soil Biology, vol 2. Springer-Verlag, New York, p 310

    Google Scholar 

  • Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56(1–2):69–80

    Article  CAS  Google Scholar 

  • Thomson ISI, Ndimele PE (2010) A review on phytoremediation of petroleum hydrocarbon. Pak J Biol Sci 13(15):715–722

    Article  Google Scholar 

  • Ukiwe LN, Egereonu UU, Njoku PC et al (2013) Polycyclic aromatic hydrocarbons degradation techniques: a review. Int J Chem 5(4):43–45

    Article  CAS  Google Scholar 

  • Uzoamaka GO, Floretta T, Florence MO (2009) Hydrocarbon degradation potentials of indigenous fungal isolates from petroleum contaminated soils. J Phy Nat Sci 3:1–6

    Google Scholar 

  • Venkatesagowda B, Ponugupaty E, Barbosa AM (2012) Diversity of plant oil seed-associated fungi isolated from seven oil – bearing seeds and their potential for the production of lipolytic enzymes. World J Microbiol Biotechnol 28:71–80

    Article  CAS  Google Scholar 

  • Walker JD, Colwell RR, Vaituzis Z et al (1975) Petroleum-degrading a chlorophyllous algae Prototheca zopfi. Nature 254:423–424

    Article  CAS  Google Scholar 

  • Walter U, Beyer M, Klein J et al (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl Microbiol Biotechnol 34:671–676

    Article  CAS  Google Scholar 

  • Wang XC, Zhao HM (2007) Uptake and biodegradation of polycyclic aromatic hydrocarbons by marine seaweed. J Coast Res 50:1056–1061

    Google Scholar 

  • Ward OP, Singh A, Van Hamme J (2003) Accelerated biodegradation of petroleum hydrocarbon waste. J Ind Microbiol Biotechnol 30(5):260–270

    Article  CAS  Google Scholar 

  • Warshawsky D, Radike M, Jayasimhulu K et al (1988) Metabolism of benzo[a]pyrene by a dioxygenase system of freshwater green alga Selenastrum capricornutum. Biochem Biophys Res Commun 152:540–544

    Article  CAS  Google Scholar 

  • Warshawsky D, La Dow K, Schneider J (2007) Enhanced degradation of benzo[a]pyrene by Mycobacterium sp. in conjunction with green algae. Chemosphere 69(3):500–506

    Article  CAS  Google Scholar 

  • Wesenberg D, Kyriakides I, Aghatos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:151–187

    Article  CAS  Google Scholar 

  • Wu YR, He TT, Lun JS et al (2009) Removal of benzo[a]pyrene by a fungus Aspergillus sp. BAP14. World J Microbiol Biotechnol 25(8):1395–1401

    Article  CAS  Google Scholar 

  • Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206:73–93. https://doi.org/10.1016/j.taap.2004.11.006

    Article  CAS  Google Scholar 

  • Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in environment, threats on ecosystem and bioremediation approaches in: handbook of metal-microbe interactions and bioremediation. In: Das S, Dash HR (eds). CRC Press, Taylor & Francis Group, Boca Raton, pp 813–841

    Google Scholar 

  • Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18(3):257–266

    Article  CAS  Google Scholar 

  • Yuan SY, Chang JS, Yen JH et al (2001) Biodegradation of phenanthrene in river sediment. Chemosphere 43(3):273–278

    Article  CAS  Google Scholar 

  • Zeyaullah MD, Atif M, Islam B et al (2009) Bioremediation: a tool for environmental cleaning. Afr J Microbiol Res 36:310–314

    Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge TEQIP-II and G.B. Pant Engineering College, Pauri, Garhwal, for financial supports and providing other facilities.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Agrawal, P.K., Shrivastava, R., Verma, J. (2019). Bioremediation Approaches for Degradation and Detoxification of Polycyclic Aromatic Hydrocarbons. In: Bharagava, R., Chowdhary, P. (eds) Emerging and Eco-Friendly Approaches for Waste Management . Springer, Singapore. https://doi.org/10.1007/978-981-10-8669-4_6

Download citation

Publish with us

Policies and ethics