Bioremediation Approaches for Degradation and Detoxification of Polycyclic Aromatic Hydrocarbons

  • Pavan Kumar Agrawal
  • Rahul Shrivastava
  • Jyoti Verma


Waste from industry is a noteworthy risk to the earth as it contains different poisonous, mutagenic and cancer-causing substances including polycyclic aromatic hydrocarbons (PAHs). PAHs are a class of different organic compounds with two or more intertwined benzene rings in a linear, angular or cluster array. Eviction of PAHs is crucial as these are persevering toxins with ubiquitous event and adverse natural impacts. There are several remedial techniques, which are productive and financially savvy in elimination of PAHs from the affected environment. These removal approaches are not just eco-friendly; they additionally display an emerging and new strategy in mitigating the ability of PAHs to cause potential risk to living beings. Accessible physical and synthetic techniques are neither eco-accommodating nor financially viable in this way. Natural strategies such as bioremediation techniques are most appropriate for biodegradation of PAHs. Such techniques require less chemicals, less time and less contribution of energy and are cost-effective and eco-accommodating. The lethal PAH mixes can be changed into non-harmful and more straightforward ones utilizing normally occurring microorganisms like algae, bacteria and fungi in a procedure called biodegradation. This chapter mainly focuses on the enhancement in biodegradation of hazardous PAHs by using bioremedial approaches.


Polycyclic aromatic hydrocarbons Enzymatic approach Biodegradation Bioremediation 



We gratefully acknowledge TEQIP-II and G.B. Pant Engineering College, Pauri, Garhwal, for financial supports and providing other facilities.


  1. Ahirwae S, Dehariya K (2013) Isolation and characterization of hydrocarbon degrading microorganism from petroleum oil contaminated soil sites. Bull Environ Sci res 2(4):5–10Google Scholar
  2. Al-Baldawi IA, Abdullah SRS, Anuar N et al (2015) Phytodegradation of total petroleum hydrocarbon (TPH) in diesel-contaminated water using Scirpus grossus. Ecol Eng 74:463–473CrossRefGoogle Scholar
  3. Alcalde M (2007) Laccase: biological functions, molecular structure and industrial applications. In: Polaina J, Maccabe AP (eds) Industrial enzymes: structure, function and applications, vol 26. Springer, Netherlands, pp 461–476CrossRefGoogle Scholar
  4. Ambrosoli R, Petruzzelli L, Luis Minati J et al (2005) Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions. Chemosphere 60(9):1231–1236CrossRefGoogle Scholar
  5. Arulazhagan P, Vasudevan N (2011) Role of nutrients in the utilization of polycyclic aromatic hydrocarbons by halotolerant bacterial strain. J Environ Sci 23(2):282–287CrossRefGoogle Scholar
  6. Baborová P, Möder M, Baldrian P et al (2006) Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res Microbiol 157(3):248–253CrossRefGoogle Scholar
  7. Baldrian P (2006) Fungal laccases occurrence and properties. FEMS Microbiol Rev 30:215–242CrossRefGoogle Scholar
  8. Bamforth SM, Singleto I (2005) Bioremediation of polycyclic aromatic hydrocarbons: current knowledge and future directions. J Chem Technol Biotechnol 80:723–736CrossRefGoogle Scholar
  9. Bennet JW, Wunch KG, Faison BD (2002) Use of fungi biodegradation. Manual of environmental microbiology.2nd edn. ASM Press, Washington, DC, pp 960–971Google Scholar
  10. Bharagava RN, Chandra R (2010) Biodegradation of the major color containing compounds in distillery wastewater by an aerobic bacterial culture and characterization of their metabolites. Biodegradation J 21:703–711CrossRefGoogle Scholar
  11. Bharagava RN, Chandra R, Rai V (2009) Isolation and characterization of aerobic bacteria capable of the degradation of synthetic and natural melanoidins from distillery wastewater. World J Microbiol Biotechnol 25:737–744CrossRefGoogle Scholar
  12. Bharagava RN, Chowdhary P, Saxena G (2017) Bioremediation: an eco-sustainable green technology, its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–22CrossRefGoogle Scholar
  13. Borde X, Guieysse B, Delgado O et al (2003) Synergistic relationships in algal-bacterial microcosms for the treatment of aromatic pollutants. Bioresour Technol 86(3):293–300CrossRefGoogle Scholar
  14. Boyd DR, Sharma ND, Hempenstall F et al (1999) Bis-cis-Dihydrodiols: a new class of metabolites from biphenyl dioxygenase catalyzed sequential asymmetric cis-dihydroxylation of polycyclic arenas and heteroarenes. J Organomet Chem 64:4005–4011CrossRefGoogle Scholar
  15. Cajthaml T, Moder M, Kacer P et al (2002) Study of fungal degradation products of polycyclic aromatic hydrocarbons using gas chromatography with ion trap mass spectrometry detection. J Chromatogr A 974:213–222CrossRefGoogle Scholar
  16. Caldini G, Cenci G, Manenti R et al (1995) The ability of an environmental isolate of Pseudomonas fluorescens to utilize chrysene and other four-ring polynuclear aromatic hydrocarbons. Appl Microbiol Biotechnol 44(1):225–229CrossRefGoogle Scholar
  17. Cerniglia CE, Gibson DT (1977) Metabolism of naphthalene by Cunninghamella elegans. Appl Environ Microbiol 34:363–370Google Scholar
  18. Cerniglia CE, Sutherland JB (2010) Degradation of polycyclic aromatic hydrocarbons by fungi. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer, Berlin, pp 2079–2110CrossRefGoogle Scholar
  19. Chan SMN, Luan T, Wong MH et al (2006) Removal and biodegradation of polycyclic aromatic hydrocarbons by Selenastrum capricornutum. Environ Toxicol Chem 25:1772–1779CrossRefGoogle Scholar
  20. Chandra R, Chowdhary P (2015) Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts 17:326–342CrossRefGoogle Scholar
  21. Chandra R, Bharagava RN, Kapley A, Purohit JH (2011) Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant during the degradation and detoxification of tannery wastewater. Bioresour Technol 102:2333–2341CrossRefGoogle Scholar
  22. Chandra R, Bharagava RN, Kapley A, Purohit HJ (2012) Characterization of Phragmites communis rhizosphere bacterial communities and metabolic products during the two stage sequential treatment of post methanated distillery effluent by bacteria and wetland plants. Bioresour Technol 103:78–86CrossRefGoogle Scholar
  23. Chang BV, Shiung LC, Yuan SY (2002) Anaerobic biodegradation of polycyclic aromatic hydrocarbons in soil. Chemosphere 48:717–724CrossRefGoogle Scholar
  24. Chen YC, Banks MK, Schwab AP (2003) Pyrene degradation in the rhizosphere of tall fescue (Festuca arundinacea) and switch grass (Panicum virgatum). Environ Sci Technol 37(24):5778–5782CrossRefGoogle Scholar
  25. Chen Y, Xie XG, Ren CG et al (2013) Degradation of N-heterocyclic indole by a novel endophytic fungus Phomopsis liquidambari. Bioresour Technol 129:568–574CrossRefGoogle Scholar
  26. Chowdhary P, Yadav A, Kaithwas G, Bharagava RN (2017a) Distillery wastewater: a major source of environmental pollution and its biological treatment for environmental safety. Green technologies and environmental sustainability. Springer International, Cham, pp 409–435CrossRefGoogle Scholar
  27. Chowdhary P, More N, Raj A, Bharagava RN (2017b) Characterization and identification of bacterial pathogens from treated tannery wastewater. Microbiol Res Int 5:30–36CrossRefGoogle Scholar
  28. Chowdhary P, Raj A, Bharagava RN (2018) Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: a review. Chemosphere 194:229–246CrossRefGoogle Scholar
  29. Chulalaksananukul S, Gadd GM, Sangvanich P et al (2006) Biodegradation of benzo(a) pyrene by a newly isolated Fusarium sp. FEMS Microbiol Lett 262(1):99–106CrossRefGoogle Scholar
  30. Clemente AR, Anazawa TA, Durrant LR (2001) Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Braz J Microbiol 32(4):255–261CrossRefGoogle Scholar
  31. Covino S, Svobodova K, Kresinova Z et al (2010) In vivo and in vitro polycyclic aromatic hydrocarbons degradation by Lentinus (Panus) tigrinus CBS 577.79. Bioresour Technol 101(9):3004–3012CrossRefGoogle Scholar
  32. Das N, Chandran P (2011) Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int 2011 Article ID 941810, pp 13Google Scholar
  33. Dean-Ross D, Moody J, Cerniglia CE (2002) Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol Ecol 41:1–7CrossRefGoogle Scholar
  34. Desai SS, Nityanand C (2011) Microbial laccases and their applications: a review. Asian J Biotechnol 3(2):98–124CrossRefGoogle Scholar
  35. Dua M, Singh A, Sethunathan N et al (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59(2–3):143–152Google Scholar
  36. Dzantor EK, Chekol T, Vough L (2000) Feasibility of using forage grasses and legumes for phytoremediation of organic pollutants. J Environ Sci Health A 35(9):1645–1661CrossRefGoogle Scholar
  37. Eggert C, Temp U, Eriksson KE (1996) The ligninolytic system of the white rot fungus Pycnoporus cinnabarinus: purification and characterization of the laccase. Appl Environ Microbiol 62(4):1151–1158Google Scholar
  38. Eisenman HC, Mues M, Weber SE et al (2007) Cryptococcus neoformans laccase catalyses melanin synthesis from both D-and L-DOPA. Microbiology 153(12):3954–3962CrossRefGoogle Scholar
  39. El A, Haleem D, Al-Thani RF et al (2009) Isolation and characterization of polyaromatic hydrocarbons-degrading bacteria from different Qatari soils. Afr J Microbiol Res 3:761–766Google Scholar
  40. Epelde L, Mijangos I, Becenil J et al (2009) Soil microbial community as bio-indicator of the recovery of soil functioning derived from metal phytoextraction with sorghum. Soil Biol Biochem 41:1788–1794CrossRefGoogle Scholar
  41. Erden E, Ucar CM, Gezer T et al (2009) Screening for ligninolytic enzymes from autochthonous fungi and applications for decolorization of remazole marine blue. Braz J Microbiol 40(2):346–353CrossRefGoogle Scholar
  42. Fernando Bautista L, Sanz R, Carmen Molina M et al (2009) Effect of different non-ionic surfactants on the biodegradation of PAHs by diverse aerobic bacteria. Int Biodeterior Biodegrad 63(7):913–922CrossRefGoogle Scholar
  43. Francesc X, Boldu P, Kuhn A et al (2001) Isolation and characterization of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res 105(4):477–484CrossRefGoogle Scholar
  44. Gratia E, Weekers F, Margesin R et al (2006) Selection of a cold-adopted bacterium for bioremediation of wastewater at low temperature. Extremophiles 13:763–768CrossRefGoogle Scholar
  45. Grishchenkov VG, Townsend RT, McDonald TJ et al (2000) Degradation of petroleum hydrocarbons by facultative anaerobic bacteria under aerobic and anaerobic conditions. Process Biochem 35(9):889–896CrossRefGoogle Scholar
  46. Hadibarata T, Tachibana S, Itoh K (2009) Biodegradation of chrysene, an aromatic hydrocarbon by Polyporus sp. S133 in liquid medium. J Hazard Mater 164(2–3):911–917CrossRefGoogle Scholar
  47. Haeseler F, Blanchet D, Werner P et al (2001) Ecotoxicological characterization of metabolites produced during PAH biodegradation in contaminated soils. In: Magar VS, Johnson G, Ong SK, Leeson A (eds) Bioremediation of energetics phenolics and polycyclic aromatic hydrocarbons, vol 6(3). Batelle Press, San Diego, pp 227–234, 313 ppGoogle Scholar
  48. Hamamura N, Ward DM, Inskeep WP (2013) Effects of petroleum mixture types on soil bacterial population dynamics associated with the biodegradation of hydrocarbons in soil environments. FEMS Microbiol Ecol 85:168–178CrossRefGoogle Scholar
  49. Hammel KE (1995) Mechanisms for polycyclic aromatic hydrocarbon degradation by lignolytic fungi. Environ Health Perspect 103:41–43CrossRefGoogle Scholar
  50. Hammel KE, Cullen D (2008) Role of fungal peroxidases in biological ligninolysis. Curr Opin Plant Biol 11(3):349–355CrossRefGoogle Scholar
  51. Haritash AK, Kaushik CP (2009) Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater 169(1–3):1–15CrossRefGoogle Scholar
  52. Harms H, Schlosser D, Wick LY (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9(3):177–192CrossRefGoogle Scholar
  53. Hernández RL, González-Franco AC, Crawford DL et al (2008) Review of environmental organopollutants degradation by white-rot basidiomycete mushrooms. Tecnociencia Chihuahua 2(1):32–39Google Scholar
  54. Higuchi T (2004) Microbial degradation of lignin: role of lignin peroxidase, manganese peroxidase, and laccase. Proc Jpn Acad, Ser B 80(5):204–214CrossRefGoogle Scholar
  55. Hofrichhter M, Vares T, Kalsi M et al (1999) Production of manganese peroxidase and organic acids and mineralization of 14C-labelled lignin (14C-DHP) during solid state fermentation of wheat straw with the white rot fungus Nematoloma forwardii. Appl Environ Microbiol 65(5):1864–1870Google Scholar
  56. Hofrichter M (2002) Review: lignin conversion by manganese peroxidase (MnP). Enzym Microb Technol 30:454–466CrossRefGoogle Scholar
  57. Hong YW, Yuan DX, Lin QM et al (2008) Accumulation and biodegradation of phenanthrene and fluoranthene by the algae enriched from a mangrove aquatic ecosystem. Mar Pollut Bull 56(8):1400–1405CrossRefGoogle Scholar
  58. Husain Q (2006) Potential applications of the oxidoreductive enzymes in the decolorization and detoxification of textile and other synthetic dyes from polluted water: a review. Crit Rev Biotechnol 26:201–221CrossRefGoogle Scholar
  59. Juhasz AL, Naidu R (2000) Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. Int Biodeterior Biodegrad 45:57–88CrossRefGoogle Scholar
  60. Kafilzadeh F, Sahragard P, Jamali H et al (2011) Isolation and identification of hydrocarbons degrading bacteria in soil around Shiraz Refinery. Afr J Microbiol Res 4(19):3084–3089Google Scholar
  61. Kalmis E, Yasa I, Kalyoncu F et al (2008) Ligninolytic enzyme activities in mycelium of some wild and commercial mushrooms. Afr J Biotechnol 7(23):4314–4320Google Scholar
  62. Kalyani DC, Patil PS, Jadhav JP et al (2008) Biodegradation of reactive textile dye red BLI by an isolated bacterium Pseudomonas sp.SUK1. Bioresour Technol 99(11):4635–4641CrossRefGoogle Scholar
  63. Kang Z, Buchenauer H (2000) Ultra structural and cytochemical studies on cellulose, xylan and pectin degradation in wheat spikes infected by Fusarium culmorum. J Phytopathol 148(5):263–275CrossRefGoogle Scholar
  64. Ke L, Luo LJ, Wang P, Luan TG, Tam NFY (2010) Effects of metals on biosorption and biodegradation of mixed polycyclic aromatic hydrocarbons by a freshwater green alga Selenastrum capricornutum. Bioresour Technol 101:6950–6961CrossRefGoogle Scholar
  65. Kumar G, Singla R, Kumar R (2010) Plasmid associated anthracene degradation by pseudomonas sp. isolated from filling station site. Nat Sci 8(4):89–94Google Scholar
  66. Langfelder K, Streibel M, Jahn B et al (2003) Biosynthesis of fungal melanins and their importance for human pathogenic fungi. Fungal Genet Biol 38(2):143–158CrossRefGoogle Scholar
  67. Lau KL, Tsang YY, Chiu SW (2003) Use of spent mushroom compost to bioremediate PAH-contaminated samples. Chemosphere 52(9):1539–1546CrossRefGoogle Scholar
  68. Lei AP, Hu ZL, Wong YS et al (2007) Removal of fluoranthene and pyrene by different microalgal species. Bioresour Technol 98(2):273–280CrossRefGoogle Scholar
  69. Levinson W, Stormo K, Tao H et al (1994) Hazardous waste clean-up and treatment with encapsulated or entrapped microorganisms. In: Chaudry GR (ed) Biological degradation and bioremediation of toxic chemicals. Chapman and Hall, London, pp 455–469Google Scholar
  70. Li JL, Chen BH (2009) Effects of non-ionic surfactants on biodegradation of phenanthrene by marine bacteria of Neptunomnas naphthovorans. J Hazard Mater 162(1):66–73CrossRefGoogle Scholar
  71. Lu L, Zhao M, Wang T (2012) Characterization and dye decolorization ability of an alkaline resistant and organic solvents tolerant laccase from Bacillus licheniformis LS04. Bioresour Technol 115:35–40CrossRefGoogle Scholar
  72. Lundstedt S, Persson Y, Oberg LG (2006) Transformation of PAHs during ethanol- Fenton treatment of an aged gasworks soil. Chemosphere 65:1288–1294CrossRefGoogle Scholar
  73. Makela M, Galkin S, Hatakka A et al (2002) Production of organic acids and oxalate decarboxylase in lignin-degrading white rot fungi. Enzym Microb Technol 30(4):542–549CrossRefGoogle Scholar
  74. Marco-Urrea E, Pérez-Trujillo M, Vicent T et al (2009) Ability of white-rot fungi to remove selected pharmaceuticals and identification of degradation products of ibuprofen by Trametes versicolor. Chemosphere 74(6):765–772CrossRefGoogle Scholar
  75. Martínez AT (2002) Molecular biology and structure-function of lignin degrading heme peroxidases. Enzym Microb Technol 30(4):425–444CrossRefGoogle Scholar
  76. Martínez AT, Speranza M, Ruiz-Dueñas FJ et al (2005) Biodegradation of lignocellulosics: microbial chemical and enzymatic aspects of the fungal attack of lignin. Int Microbiol 8(3):195–204Google Scholar
  77. Martínez AT, Ruiz-dueñas FJ, Martínez MJ et al (2009) Enzymatic delignification of plant cell wall: from nature to mill. Curr Opin Biotechnol 20(3):348–357CrossRefGoogle Scholar
  78. McCutcheon SC, Schnoor JL (2003) Phytoremediation: transformation and control of contaminants. Wiley-Inter Science, Hoboken, p 987CrossRefGoogle Scholar
  79. Mohamed I, Ali A, Khalil NM et al (2012) Biodegradation of some polycyclic aromatic hydrocarbons by Aspergillus terreus. Afr J Microbiol Res 6(16):3783–3790Google Scholar
  80. Morehead NR, Eadie BJ, Lake B et al (1986) The sorption of PAH onto dissolved organic matter in Lake Michigan waters. Chemosphere 15:403–412. CrossRefGoogle Scholar
  81. Mostafa MES, Ghareib MM, Abou-EL-Souod GW (2012) Biodegradation of phenolic and polycyclic aromatic compounds by some algae and cyanobacteria. J Bioremed Biodegr 3(1):1–9Google Scholar
  82. Mrozik A, Piotrowska-Seget Z, Labuzek S (2003) Bacterial degradation and bioremediation of polycyclic aromatic hydrocarbons. Pol J Environ Stud 12(1):15–25Google Scholar
  83. Mtui G, Nakamura Y (2004) Lignin-degrading enzymes from mycelial cultures of basidiomycete fungi isolated in Tanzania. J Chem Eng Jpn 37(1):113–118CrossRefGoogle Scholar
  84. Mulla SI, Ameen F, Tallur PN, Bharagava RN, Bangeppagari M, Eqani SAMAS, Bagewadi ZK, Mahadevan GD, Yu CP, Ninnekar HZ (2017) Aerobic degradation of fenvalerate by a Gram-positive bacterium Bacillus flexus strain XJU-4. 3 Biotech 7:320–328CrossRefGoogle Scholar
  85. Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P (2008) Biosurfactants: properties, commercial production and application. Current Science 94:736–747Google Scholar
  86. Nagai M, Kawata M, Watanabe H et al (2003) Important role of fungal intracellular laccase for melanin synthesis: purification and characterization of an intracellular laccase from Lentinula edodes fruit bodies. Microbiology 149(9):2455–2462CrossRefGoogle Scholar
  87. Ndimele PE, Oni AJ, Jibuike CC (2010) Comparative toxicity of crude oil-plus dispersant to Tilapia guineensis. Res J Environ Toxicol 4(1):13–22CrossRefGoogle Scholar
  88. Neelofur M, Shyam PV, Mahesh M (2014) Enhance the biodegradation of anthracene by mutation from bacillus species. BioMed Res 1(1)Google Scholar
  89. Nesterenko MA, Kirzhner F, Zimmels Y et al (2012) Eichhornia crassipes capability to remove naphthalene from waste water in the absence of bacteria. Chemosphere 87(10):1186–1191CrossRefGoogle Scholar
  90. Newman L, Reynolds C (2004) Phytodegradation of organic compounds. Curr Opin Biotechnol 15:225–230CrossRefGoogle Scholar
  91. Okai M, Kihara I, Yokoyama Y et al (2015) Isolation and characterization of benzo[a]pyrene degrading bacteria from the Tokyo bay area and Tama river in Japan. FEMS Microbiol Lett 362 fnv143 362(18):1–7CrossRefGoogle Scholar
  92. Osono T, Hirose D (2011) Colonization and lignin decomposition of pine needle litter by Lophodermium pinastri. Forest Pathol 41:156–162CrossRefGoogle Scholar
  93. Oyadomari M, Shinohara H, Johjima T et al (2003) Electrochemical characterization of lignin peroxidase from the white-rot basidiomycete Phanerochaete chrysosporium. J Mol Catal B Enzym 21(4–6):291–297CrossRefGoogle Scholar
  94. Parrish ZD, Banks MK, Schwab AP (2004) Effectiveness of phytoremediation as a secondary treatment for polycyclic aromatic hydrocarbons (PAHs) in composted soil. Int J Phytomediation 6:119–137CrossRefGoogle Scholar
  95. Piontek K, Smith AT, Blodig W (2001) Lignin peroxidase structure and function. Biochem Soc Trans 29(2):111–116CrossRefGoogle Scholar
  96. Quan X, Tang Q, He M et al (2009) Biodegradation of polycyclic aromatic hydrocarbons in sediments from the Dalian River watershed, China. J Environ Sci 21:865–871CrossRefGoogle Scholar
  97. Ranocha P, Chabannes M, Chamayou S et al (2002) Laccase down-regulation causes alterations in phenolic metabolism and cell wall structure in poplar. Plant Physiol 129(1):145–155CrossRefGoogle Scholar
  98. Reisen F, Arey J (2002) Reactions of hydroxyl radicals and ozone with acenaphthene and acenaphthylene. Environ Sci Technol 36:4302–4311CrossRefGoogle Scholar
  99. Ross DD, Moody J, Cerniglia CE (2002) Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol Eco 41(1):1–7CrossRefGoogle Scholar
  100. Russell JR, Huang J, Anand P et al (2011) Biodegradation of polyester polyurethane by endophytic fungi. Appl Environ Microbiol 77:6076–6084CrossRefGoogle Scholar
  101. Saxena G, Bharagava RN (2017). Organic and inorganic pollutants in industrial wastes, their ecotoxicological effects, health hazards and bioremediation approaches, Bharagava RN Environmental pollutants and their bioremediation approaches. CRC Press, Taylor & Francis Group, Boca Raton (9781138628892)Google Scholar
  102. Singh A, Ward OP (2004) Biodegradation and bioremediation. Series: Soil Biology, vol 2. Springer-Verlag, New York, p 310Google Scholar
  103. Stolz A (2001) Basic and applied aspects in the microbial degradation of azo dyes. Appl Microbiol Biotechnol 56(1–2):69–80CrossRefGoogle Scholar
  104. Thomson ISI, Ndimele PE (2010) A review on phytoremediation of petroleum hydrocarbon. Pak J Biol Sci 13(15):715–722CrossRefGoogle Scholar
  105. Ukiwe LN, Egereonu UU, Njoku PC et al (2013) Polycyclic aromatic hydrocarbons degradation techniques: a review. Int J Chem 5(4):43–45CrossRefGoogle Scholar
  106. Uzoamaka GO, Floretta T, Florence MO (2009) Hydrocarbon degradation potentials of indigenous fungal isolates from petroleum contaminated soils. J Phy Nat Sci 3:1–6Google Scholar
  107. Venkatesagowda B, Ponugupaty E, Barbosa AM (2012) Diversity of plant oil seed-associated fungi isolated from seven oil – bearing seeds and their potential for the production of lipolytic enzymes. World J Microbiol Biotechnol 28:71–80CrossRefGoogle Scholar
  108. Walker JD, Colwell RR, Vaituzis Z et al (1975) Petroleum-degrading a chlorophyllous algae Prototheca zopfi. Nature 254:423–424CrossRefGoogle Scholar
  109. Walter U, Beyer M, Klein J et al (1991) Degradation of pyrene by Rhodococcus sp. UW1. Appl Microbiol Biotechnol 34:671–676CrossRefGoogle Scholar
  110. Wang XC, Zhao HM (2007) Uptake and biodegradation of polycyclic aromatic hydrocarbons by marine seaweed. J Coast Res 50:1056–1061Google Scholar
  111. Ward OP, Singh A, Van Hamme J (2003) Accelerated biodegradation of petroleum hydrocarbon waste. J Ind Microbiol Biotechnol 30(5):260–270CrossRefGoogle Scholar
  112. Warshawsky D, Radike M, Jayasimhulu K et al (1988) Metabolism of benzo[a]pyrene by a dioxygenase system of freshwater green alga Selenastrum capricornutum. Biochem Biophys Res Commun 152:540–544CrossRefGoogle Scholar
  113. Warshawsky D, La Dow K, Schneider J (2007) Enhanced degradation of benzo[a]pyrene by Mycobacterium sp. in conjunction with green algae. Chemosphere 69(3):500–506CrossRefGoogle Scholar
  114. Wesenberg D, Kyriakides I, Aghatos SN (2003) White-rot fungi and their enzymes for the treatment of industrial dye effluents. Biotechnol Adv 22:151–187CrossRefGoogle Scholar
  115. Wu YR, He TT, Lun JS et al (2009) Removal of benzo[a]pyrene by a fungus Aspergillus sp. BAP14. World J Microbiol Biotechnol 25(8):1395–1401CrossRefGoogle Scholar
  116. Xue W, Warshawsky D (2005) Metabolic activation of polycyclic and heterocyclic aromatic hydrocarbons and DNA damage: a review. Toxicol Appl Pharmacol 206:73–93. CrossRefGoogle Scholar
  117. Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in environment, threats on ecosystem and bioremediation approaches in: handbook of metal-microbe interactions and bioremediation. In: Das S, Dash HR (eds). CRC Press, Taylor & Francis Group, Boca Raton, pp 813–841Google Scholar
  118. Yakimov MM, Timmis KN, Golyshin PN (2007) Obligate oil-degrading marine bacteria. Curr Opin Biotechnol 18(3):257–266CrossRefGoogle Scholar
  119. Yuan SY, Chang JS, Yen JH et al (2001) Biodegradation of phenanthrene in river sediment. Chemosphere 43(3):273–278CrossRefGoogle Scholar
  120. Zeyaullah MD, Atif M, Islam B et al (2009) Bioremediation: a tool for environmental cleaning. Afr J Microbiol Res 36:310–314Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Pavan Kumar Agrawal
    • 1
  • Rahul Shrivastava
    • 2
  • Jyoti Verma
    • 1
  1. 1.Department of BiotechnologyG.B. Pant Engineering CollegeGhurdauri, Pauri, GarhwalIndia
  2. 2.Department of Biotechnology & BioinformaticsJaypee University of Information TechnologyWaknaghat, SolanIndia

Personalised recommendations