Nanoparticles: An Emerging Weapon for Mitigation/Removal of Various Environmental Pollutants for Environmental Safety

  • Gaurav Hitkari
  • Sandhya Singh
  • Gajanan Pandey


Nanotechnology is a recent field of technology and nanoparticle materials are fundamental units that measure within the range 1–100 nm with several types of morphologies. They have exceptional and unique catalytic properties, which are associated with their size and are changed from their bulk materials. These nanoparticle materials are prepared by the various methods such as chemical, physical and biological methods. The prepared nanoparticles are investigated by numerous characterisation techniques such as X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett–Teller (BET) surface area analysis, absorbance spectroscopy, photoluminescence spectroscopy. XRD revealed the crystalline nature of the nanoparticles. SEM and TEM images provides information on the morphology and particle size distribution, and BET revealed the surface properties of the nanoparticles. Optical properties are investigated by absorbance and photoluminescence spectroscopic techniques. The effective photo-catalysis of organic toxic pollutants and heavy metals from the environment have been a challenging subject for human health. Much research has explored the environmental behaviour of nanostructured materials for the effective removal of hazardous organic pollutants and heavy metals, existing both in the surface and underground wastewater. The goal of this chapter is to indicate the outstanding removal capability and environmental remediation of nanostructured materials for various toxic organic pollutants and heavy metal ions.


Nanoparticles Environmental contaminants Nanoparticles synthesis Waste management Nanoremediation 



The authors wish to thank the Babasaheb Bhimrao Ambedkar University (a central University) of U.P India for providing the opportunity to carry out this work.


  1. Alvarez-Ayuso E, Garcıa-Sánchez A, Querol X (2003) Purification of metal electroplating waste waters using zeolites. Water Res 37:4855–4862CrossRefGoogle Scholar
  2. Amin MT, Alazba AA, Manzoor U (2014) A review of removal of pollutants from water/wastewater using different types of nanomaterials. Adv Mater Sci Eng 190:208–222Google Scholar
  3. Ansari SA, Husain Q (2012) Potential applications of enzymes immobilized on/in nano materials: a review. Biotechnol Adv 30:512–523CrossRefGoogle Scholar
  4. Baladi A, Mamoory RS (2010) Investigation of different liquid media and ablation times on pulsed laser ablation synthesis of aluminum nanoparticles. Appl Surf Sci 256:7559–7564CrossRefGoogle Scholar
  5. Banfield JF, Welch SA, Zhang H, Ebert TT, Penn RL (2000) Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products. Science 289:751–754CrossRefGoogle Scholar
  6. Bhattacharya S, Saha I, Mukhopadhyay A, Chattopadhyay D, Chand U, Chatterjee D (2013) Role of nanotechnology in water treatment and purification: potential applications and implications. Int J Chem Sci Technol 3:59–64Google Scholar
  7. Boldyrev VV, Tkáčová K (2000) Mechanochemistry of solids: past, present, and prospects. J Mater Synth Process 8:121–132CrossRefGoogle Scholar
  8. Cameotra SS, Makkar RS (2010) Biosurfactant-enhanced bioremediation of hydrophobic pollutants. Pure Appl Chem 82:97–116CrossRefGoogle Scholar
  9. Campos AFC, Aquino R, Cotta T, Tourinho FA, Depeyrot J (2011) Using speciation diagrams to improve synthesis of magnetic nanosorbents for environmental applications. Bull Mater Sci 34:1357–1361CrossRefGoogle Scholar
  10. Chen D, Jiao X, Cheng G (1999) Hydrothermal synthesis of zinc oxide powders with different morphologies. Solid State Commun 113:363–366CrossRefGoogle Scholar
  11. Cheng R, Wang J, Zhang W (2007) Comparison of reductive dechlorination of p-chlorophenol using Fe0 and nanosized Fe0. J Hazard Mater 144:334–339CrossRefGoogle Scholar
  12. Choe S, Chang YY, Hwang KY, Khim J (2000) Kinetics of reductive denitrification by nanoscale zero-valent iron. Chemosphere 41:1307–1311CrossRefGoogle Scholar
  13. Daou TJ, Pourroy G, Colin SB et al (2006) Hydrothermal synthesis of monodisperse magnetite nanoparticles. Chem Mater 18:4399–4404CrossRefGoogle Scholar
  14. Deliyanni EA, Bakoyannakis DN, Zouboulis AI, Matis KA (2003) Sorption of As (V) ions by akaganéite-type nanocrystals. Chemosphere 50:155–163CrossRefGoogle Scholar
  15. Di ZC, Ding J, Peng XJ, Li YH, Luan ZK, Liang J (2006) Chromium adsorption by aligned carbon nanotubes supported ceria nanoparticles. Chemosphere 62:861–865CrossRefGoogle Scholar
  16. Diallo MS, Christie S, Swaminathan P et al (2004) Dendritic chelating agents. 1. Cu (II) binding to ethylene diamine core poly (amidoamine) dendrimers in aqueous solutions. Langmuir 20:2640–2651CrossRefGoogle Scholar
  17. Djurisic AB, Chen XY, Leung YH (2012) Recent progress in hydrothermal synthesis of zinc oxide nanomaterials. Recent Patents Nanotech 6:124–134CrossRefGoogle Scholar
  18. Egerton RF (2005) Physical principles of electron microscopy. Springer, New YorkCrossRefGoogle Scholar
  19. Fard MA, Aminzadeh B, Vahidi H (2013) Degradation of petroleum aromatic hydrocarbons using TiO2 nanopowder film. Environ Technol 34:1183–1190Google Scholar
  20. Fujishima A, Zhang X, Tryk DA (2008) TiO2 photocatalysis and related surface phenomena. Surf Sci Rep 63:515–582CrossRefGoogle Scholar
  21. Ghorbani HR (2014) A review of methods for synthesis of al nanoparticles. Orient J Chem 30:1941–1949CrossRefGoogle Scholar
  22. Gupta K, Bhattacharya S, Chattopadhyay D et al (2011) Ceria associated manganese oxide nanoparticles: synthesis, characterization and arsenic (V) sorption behavior. Chem Eng J 172:219–229CrossRefGoogle Scholar
  23. Han X, Kuang Q, Jin M, Xie Z, Zheng L (2009) Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J Am Chem Soc 131:3152–3153CrossRefGoogle Scholar
  24. Hur TB, Phuoc TX, Chyu MK (2009) Synthesis of Mg-Al and Zn-Al-layered double hydroxide nanocrystals using laser ablation in water. Opt Lasers Eng 47:695–700CrossRefGoogle Scholar
  25. Inbaraj BS, Chen BH (2012) In vitro removal of toxic heavy metals by poly (γ-glutamic acid)-coated superparamagnetic nanoparticles. Int J Nanomedicine 7:4419–4432Google Scholar
  26. Innes B, Tsuzuki T, Dawkins H et al (2002) Nanotechnology and the cosmetic chemist. Cosmetics Aerosols Toiletries Australia 15:10–24Google Scholar
  27. Jameia MR et al (2013) Degradation of oil from soilusing nano zero valent iron. Sci Int 25:863–867Google Scholar
  28. Jolivet JP, Chanéac C, Tronc E (2004) Iron oxide chemistry. From molecular clusters to extended solid networks. Chem Commun 5:481–483Google Scholar
  29. Josephine A, Nithya K, Amudha G, Veena CK, Preetha SP, Varalakshmi P (2008) Role of sulphated polysaccharides from Sargassum Wightii in cyclosporine A-induced oxidative liver injury in rats. BMC Pharmacol 8:4CrossRefGoogle Scholar
  30. Kabra K, Chaudhary R, Sawhney RL (2004) Treatment of hazardous organic and inorganic compounds through aqueous-phase photocatalysis: a review. Ind Eng Chem Res 43:7683–7696CrossRefGoogle Scholar
  31. Kermanpur A, Dadfar MR, Rizi BN, Eshraghi M (2010) Synthesis of aluminum nanoparticles by electromagnetic levitational gas condensation method. J Nanosci Nanotechnol 10:6251–6255CrossRefGoogle Scholar
  32. Khoshnevisan K, Bordbar AK, Zare D et al (2011) Immobilization of cellulase enzyme on superparamagnetic nanoparticles and determination of its activity and stability. Chem Eng J 171:669–673CrossRefGoogle Scholar
  33. Kołodziejczak-Radzimska A, Jesionowski T, Krysztafkiewicz A (2010) Obtaining zinc oxide from aqueous solutions of KOH and Zn (CH3COO)2. Physicochem Probl Mineral 44:93–102Google Scholar
  34. Kołodziejczak-Radzimska A, Markiewicz AE, Jesionowski T (2012) Structural characterisation of ZnO particles obtained by the emulsion precipitation method. J Nanomater 2012:15CrossRefGoogle Scholar
  35. Kostal J, Mulchandani A, Chen W (2001) Tunable biopolymers for heavy metal removal. Macromolecules 34:2257–2261CrossRefGoogle Scholar
  36. Kratochvil D, Volesky B (1998) Advances in the biosorption of heavy metals. Trends Biotechnol 16:291–300CrossRefGoogle Scholar
  37. Kumari B, Singh DP (2016) A review on multifaceted application of nanoparticles in the field of bioremediation of petroleum hydrocarbons. Ecol Eng 97:98–105CrossRefGoogle Scholar
  38. Kumari V, Yadav A, Haq I, Kumar S, Bharagava RN, Singh SK, Raj A (2016) Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus Cereus. J Environ Manag 183:204–211CrossRefGoogle Scholar
  39. Lai CH, Chen CY (2001) Removal of metal ions and humic acid from water by iron-coated filter media. Chemosphere 44:1177–1184CrossRefGoogle Scholar
  40. LaMer VK (1952) Nucleation in phase transitions. Ind Eng Chem Res 44:1270–1277CrossRefGoogle Scholar
  41. LaMer VK, Dinegar RH (1950) Theory, production and mechanism of formation of monodispersed hydrosols. J Am Chem Soc 72:4847–4854CrossRefGoogle Scholar
  42. Laurent S, Forge D, Port M et al (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108:2064–2110CrossRefGoogle Scholar
  43. Lee W, Kim MG, Choi J et al (2005) Redox-transmetalation process as a generalized synthetic strategy for core-shell magnetic nanoparticles. J Am Chem Soc 127:16090–16097CrossRefGoogle Scholar
  44. Li P, Miser DE, Rabiei S, Yadav RT, Hajaligol MR (2003a) The removal of carbon monoxide by iron oxide nanoparticles. Appl Catal B 43:151–162CrossRefGoogle Scholar
  45. Li YH, Ding J, Luan Z et al (2003b) Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon 41:2787–2792CrossRefGoogle Scholar
  46. Li X, He G, Xiao G, Liu H, Wang M (2009) Synthesis and morphology control of ZnO nanostructures in microemulsions. J Colloid Interface Sci 333:465–473CrossRefGoogle Scholar
  47. Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19:35–50CrossRefGoogle Scholar
  48. Lim TT, Feng J, Zhu BW (2007) Kinetic and mechanistic examinations of reductive transformation pathways of brominated methanes with nano-scale Fe and Ni/Fe particles. Water Res 41:875–883CrossRefGoogle Scholar
  49. Liu S, Yu J, Jaroniec M (2011) Anatase TiO2 with dominant high-energy {001} facets: synthesis, properties, and applications. Chem Mater 23:4085–4093CrossRefGoogle Scholar
  50. Liu M, Wang Z, Zong S et al (2014) SERS detection and removal of mercury (II)/silver (I) using oligonucleotide-functionalized core/shell magnetic silica sphere@ Au nanoparticles. ACS Appl Mater Interfaces 6:7371–7379CrossRefGoogle Scholar
  51. Lowell S, Shields JE, Thomas MA, Thommes M (2004) Surface area analysis from the Langmuir and BET theories. Characterization of porous solids and powders: surface area, pore size and density. Particle Technology Series, vol 16. Springer, DordrechtCrossRefGoogle Scholar
  52. Lu C, Chiu H, Liu C (2006) Removal of zinc (II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res 45:2850–2855CrossRefGoogle Scholar
  53. Macak JM, Stein FS, Schmuki P (2007) Efficient oxygen reduction on layers of ordered TiO2 nanotubes loaded with Au nanoparticles. Electrochem Commun 9:1783–1787CrossRefGoogle Scholar
  54. Mahato TH, Prasad GK, Singh B, Acharya J, Srivastava AR, Vijayaraghavan R (2009) Nanocrystalline zinc oxide for the decontamination of sarin. J Hazard Mater 165:928–932CrossRefGoogle Scholar
  55. Mansoori GA (2002) Advances in atomic & molecular nanotechnology. United Nations Tech Monitor; UN-APCTT Tech Monitor, 2002; Special Issue: 53 59Google Scholar
  56. Masciangioli T, Zhang WX (2003) Peer reviewed: environmental technologies at the nanoscale. Environ Sci Technol 37:102A–108ACrossRefGoogle Scholar
  57. Mattigod SV, Feng X, Fryxell GE, Liu J, Gong M (1999) Separation of complexed mercury from aqueous wastes using self-assembled mercaptan on mesoporous silica. Sep Sci Technol 34:2329–2345CrossRefGoogle Scholar
  58. Mayo JT, Yavuz C, Yean S et al (2007) The effect of nanocrystalline magnetite size on arsenic removal. Sci Technol Adv Mater 8:71–75CrossRefGoogle Scholar
  59. Mehndiratta P, Jain A, Srivastava S, Gupta N (2013) Environmental pollution and nanotechnology. Environ Pollut 2:49CrossRefGoogle Scholar
  60. Mizutani N, Iwasaki T, Watano S, Yanagida T, Tanaka H, Kawai T (2008) Effect of ferrous/ferric ions molar ratio on reaction mechanism for hydrothermal synthesis of magnetite nanoparticles. Bull Mater Sci 31:713–717CrossRefGoogle Scholar
  61. Moreno N, Querol X, Ayora C, Pereira CF, Janssen-Jurkovicová M (2001) Utilization of zeolites synthesized from coal fly ash for the purification of acid mine waters. Environ Sci Technol 35:3526–3534CrossRefGoogle Scholar
  62. Murakami N, Kurihara Y, Tsubota T, Ohno T (2009) Shape-controlled anatase titanium (IV) oxide particles prepared by hydrothermal treatment of peroxo titanic acid in the presence of polyvinyl alcohol. J Phys Chem C 113:3062–3069CrossRefGoogle Scholar
  63. Nador F, Moglie Y, Vitale C, Yus M, Alonso F, Radivoy G (2010) Reduction of polycyclic aromatic hydrocarbons promoted by cobalt or manganese nanoparticles. Tetrahedron 66:4318–4325CrossRefGoogle Scholar
  64. Nirmala MJ, Shiny PJ, Ernest V et al (2013) A review on safer means of nanoparticle synthesis by exploring the prolific marine ecosystem as a new thrust area in nanopharmaceutics. Int J Pharm Sci 5:23–29Google Scholar
  65. Northup A, Cassidy D (2008) Calcium peroxide (CaO2) for use in modified Fenton chemistry. J Hazard Mater 152:1164–1170CrossRefGoogle Scholar
  66. Oliveira LCA, Petkowicz DI, Smaniotto A, Pergher SBC (2004) Magnetic zeolites: a new adsorbent for removal of metallic contaminants from water. Water Res 38:3699–3704CrossRefGoogle Scholar
  67. Onyango MS, Kojima Y, Matsuda H, Ochieng A (2003) Adsorption kinetics of arsenic removal from groundwater by iron-modified zeolite. J Chem Eng Jpn 36:1516–1522CrossRefGoogle Scholar
  68. Ostwald W (1900) Über die vermeintliche Isomerie des roten und gelben Quecksilberoxyds und die Oberflächenspannung fester Körper. Z Phys Chem 34:495–503Google Scholar
  69. Pan B, Xing B (2008) Adsorption mechanisms of organic chemicals on carbon nanotubes. Environ Sci Technol 42:9005–9013CrossRefGoogle Scholar
  70. Parra S, Stanca SE, Guasaquillo I, Thampi KR (2004) Photocatalytic degradation of atrazine using suspended and supported TiO2. Appl Catal B 51:107–116CrossRefGoogle Scholar
  71. Pena ME, Korfiatis GP, Patel M, Lippincott L, Meng X (2005) Adsorption of As (V) and As (III) by nanocrystalline titanium dioxide. Water Res 39:2327–2337CrossRefGoogle Scholar
  72. Pereira KRO et al (2005) Brazilian organoclays as nanostructured sorbents of petroleum-derived hydrocarbons. Mat Res 8:77–80CrossRefGoogle Scholar
  73. Qi L, Xu Z (2004) Lead sorption from aqueous solutions on chitosan nanoparticles. Colloids Surf A Physicochem Eng Asp 251:183–190CrossRefGoogle Scholar
  74. Qiao S, Sun DD, Tay JH, Easton C (2003) Photocatalytic oxidation technology for humic acid removal using a nano-structured TiO2/Fe2O3 catalyst. Water Sci Tech 47:211–217CrossRefGoogle Scholar
  75. Qu X, Alvarez PJJ, Li Q (2013) Applications of nanotechnology in water and wastewater treatment. Water Res 47:3931–3946CrossRefGoogle Scholar
  76. Reiss H (1951) The growth of uniform colloidal dispersions. J Chem Phys 19:482–487CrossRefGoogle Scholar
  77. Ristić M, Musić S, Ivanda M, Popović S (2005) Sol-gel synthesis and characterization of nanocrystalline ZnO powders. J Alloys Compd 397:L1–L4CrossRefGoogle Scholar
  78. Rizwan M, Singh M, Mitra CK, Morve RK (2014) Ecofriendly application of nanomaterials: Nanobioremediation. J Nanopart Res 2014Google Scholar
  79. Saien J, Shahrezaei F (2012) Organic pollutants removal from petroleum refinery wastewater with nanotitania photocatalyst and UV light emission. Int J Photoenergy 2012:1CrossRefGoogle Scholar
  80. Salipira KL, Mamba BB, Krause RW, Malefetse TJ, Durbach SH (2007) Carbon nanotubes and cyclodextrin polymers for removing organic pollutants from water. Environ Chem Lett 5:13–17CrossRefGoogle Scholar
  81. Schrick B, Blough JL, Jones AD, Mallouk TE (2002) Hydrodechlorination of trichloroethylene to hydrocarbons using bimetallic nickel-iron nanoparticles. Chem Mater 14:5140–5147CrossRefGoogle Scholar
  82. Schrick B, Hydutsky BW, Blough JL, Mallouk TE (2004) Delivery vehicles for zerovalent metal nanoparticles in soil and groundwater. Chem Mater 16:2187–2193CrossRefGoogle Scholar
  83. Schwarzer HC, Peukert W (2004) Tailoring particle size through nanoparticle precipitation. Chem Eng Commun 191:580–606CrossRefGoogle Scholar
  84. Shao D, Sheng G, Chen C, Wang X, Nagatsu M (2010) Removal of polychlorinated biphenyls from aqueous solutions using β-cyclodextrin grafted multiwalled carbon nanotubes. Chemosphere 79:679–685CrossRefGoogle Scholar
  85. Sugimoto T (2007) Underlying mechanisms in size control of uniform nanoparticles. J Colloid Interface Sci 309:106–118CrossRefGoogle Scholar
  86. Takafuji M, Ide S, Ihara H, Xu Z (2004) Preparation of poly (1-vinylimidazole)-grafted magnetic nanoparticles and their application for removal of metal ions. Chem Mater 16:1977–1983CrossRefGoogle Scholar
  87. Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630CrossRefGoogle Scholar
  88. Van Dillewijn P, Caballero A, Paz JA, González-Pérez MM, Oliva JM, Ramos JL (2007) Bioremediation of 2, 4, 6-trinitrotoluene under field conditions. Environ Sci Technol 41:1378–1383CrossRefGoogle Scholar
  89. Vorobyova SA, Lesnikovich AI, Mushinskii VV (2004) Interphase synthesis and characterization of zinc oxide. Mater Lett 58:863–866CrossRefGoogle Scholar
  90. Wagner C (1961) Theorie der alterung von niederschlägen durch umlösen (Ostwald-reifung). Zeitschrift für Elektrochemie, Berichte der Bunsengesellschaft für physikalische Chemie 65:581–591Google Scholar
  91. Wang CB, Zhang WX (1997) Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ Sci Technol 31:2154–2156CrossRefGoogle Scholar
  92. Wang J, Peng Z, Huang Y, Chen Q (2004) Growth of magnetite nanorods along its easy-magnetization axis of [110]. J Cryst Growth 263:616–619CrossRefGoogle Scholar
  93. Wang Y, Zhang C, Bi S, Luo G (2010) Preparation of ZnO nanoparticles using the direct precipitation method in a membrane dispersion micro-structured reactor. Powder Technol 202:130–136CrossRefGoogle Scholar
  94. Watzky MA, Finke RG (1997) Transition metal nanocluster formation kinetic and mechanistic studies. A new mechanism when hydrogen is the reductant: slow, continuous nucleation and fast autocatalytic surface growth. J Am Chem Soc 119:10382–10400CrossRefGoogle Scholar
  95. Wei J, Xu X, Liu Y, Wang D (2006) Catalytic hydrodechlorination of 2, 4-dichlorophenol over nanoscale Pd/Fe: reaction pathway and some experimental parameters. Water Res 40:348–354CrossRefGoogle Scholar
  96. Wu R, Qu J, Chen Y (2005) Magnetic powder MnO-Fe2O3 composite-a novel material for the removal of azo-dye from water. Water Res 39:630–638CrossRefGoogle Scholar
  97. Yadav TP, Yadav RM, Singh DP (2012) Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites. J Nanosci Nanotechnol 2:22–48CrossRefGoogle Scholar
  98. Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in environment, threats on ecosystem and bioremediation approaches. In: Das S, Dash HR (eds) Handbook of metal-microbe interactions and bioremediation. CRC Press, Taylor & Francis Group, Boca Raton, p 813Google Scholar
  99. Yang K, Xing B (2010) Adsorption of organic compounds by carbon nanomaterials in aqueous phase: polanyi theory and its application. Chem Rev 110:5989–6008CrossRefGoogle Scholar
  100. Yantasee W, Lin Y, Fryxell GE, Busche BJ, Birnbaum JC (2003) Removal of heavy metals from aqueous solution using novel nanoengineered sorbents: self-assembled carbamoylphosphonic acids on mesoporous silica. Sep Sci Technol 38:3809–3825CrossRefGoogle Scholar
  101. Yavuz CT, Mayo JT, William WY et al (2006) Low-field magnetic separation of monodisperse Fe3O4 nanocrystals. Science 314:964–967CrossRefGoogle Scholar
  102. Zhang W, Wang CB, Lien HL (1998) Treatment of chlorinated organic contaminants with nanoscale bimetallic particles. Catal Today 40:387–395CrossRefGoogle Scholar
  103. Zhang Q, Gao L, Guo J (2000) Effects of calcination on the photocatalytic properties of nanosized TiO2 powders prepared by TiCl4 hydrolysis. Appl Catal B 26:207–215CrossRefGoogle Scholar
  104. Zhang WX (2003) Nanoscale iron particles for environmental remediation: an overview. J Nanopart Res 5:323–332CrossRefGoogle Scholar
  105. Zhang J, Wang J, Zhou S et al (2010) Ionic liquid-controlled synthesis of ZnO microspheres. J Mater Chem 20:9798–9804CrossRefGoogle Scholar
  106. Zhao X, Lv L, Pan B, Zhang W, Zhang S, Zhang Q (2011) Polymer-supported nanocomposites for environmental application: a review. Chem Eng J 170:381–394CrossRefGoogle Scholar
  107. Ziolli RL, Jardim WF (2001) Photocatalytic decomposition of seawater-soluble crude oil fractions using high surface area colloid nanoparticles of TiO2. J Photochem Photobiol 5887:1–8Google Scholar
  108. Zhong LS, Hu JS, Liang HP, Cao AM, Song WG, Wan LJ (2006) Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv Mater 18:2426–2431CrossRefGoogle Scholar
  109. Zhong LS, Hu JS, Cao AM, Liu Q, Song WG, Wan LJ (2007) 3D flowerlike ceria micro/nanocomposite structure and its application for water treatment and CO removal. Chem Mater 19:1648–1655CrossRefGoogle Scholar
  110. Zou Y, Wang X, Khan A et al (2016) Environmental remediation and application of nanoscale zero-valent iron and its composites for the removal of heavy metal ions: a review. Environ Sci Technol 50:7290–7304CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Gaurav Hitkari
    • 1
  • Sandhya Singh
    • 1
  • Gajanan Pandey
    • 1
  1. 1.Department of Applied ChemistryBabasaheb Bhimrao Ambedkar University (A Central University)LucknowIndia

Personalised recommendations