Advertisement

Role of Rhizobacteria in Phytoremediation of Metal-Impacted Sites

  • Reda A. I. Abou-ShanabEmail author
  • Mostafa M. El-Sheekh
  • Michael J. Sadowsky
Chapter

Abstract

Phytoremediation is an emerging and eco-friendly technology that has gained wide acceptance and is currently an area of active research in plant biology. A number of metal-hyperaccumulating plants have already been identified as potential candidates to phytoremediate metal-polluted soil. Various strategies have been successfully applied to generate plants able to grow in adverse environmental conditions and accumulate or transfer a number of metals. Recently, biotechnological approaches have opened up new opportunities concerning the application of beneficial rhizospheric and endophytic bacteria for improving plant growth, biological control, and heavy metal remediation from contaminated sites. Further, molecular approaches have been applied to improve the process of phytoremediation efficiently using a transgenic approach. The overexpression of several genes whose protein products are directly or indirectly involved in plant metal uptake, transport, and sequestration, or act as enzymes involved in the biodegradation of hazardous organic wastes, has opened up new possibilities in phytoremediation. This chapter is mainly focused on plant-microbe interactions to phytoremediate metal-contaminated sites and evaluate the progress made thus far in understanding the role of rhizospheric and endophytic bacteria in the phytoremediation of metal-contaminated sites and different phytoremediation technologies. In addition, we also discuss the use of genetic engineering to modify plants for enhanced efficacy phytoremediation strategies. These approaches will be helpful to develop phytoremediation technologies for large-scale application to remediate vast areas of metal-polluted sites.

Keywords

Organic and inorganic pollutants Phytoremediation Bioremediation Rhizobacteria Endophytic bacteria Rhizosphere Transgenic plants 

References

  1. Abd El-Rahman RA, Abou-Shanab RA, Moawad H (2008) Mercury detoxification using genetic engineered Nicotiana tabacum. Global NEST J 10:432–438Google Scholar
  2. Abou-Shanab RAI (2003) Ecological and molecular studies on the role of rhizosphere microflora on phytoremediation efficiency. Ph.D. thesis, Faculty of Science, Alexandria University, Egypt C/O Maryland University, College Park USAGoogle Scholar
  3. Abou-Shanab RAI (2010) Bioremediation: new approaches and trends. In: Khan MS et al (eds) Biomanagement of metal-contaminated soils, environmental pollution. Springer Publications, New York, pp 65–94Google Scholar
  4. Abou-Shanab RI, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003a) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224CrossRefGoogle Scholar
  5. Abou-Shanab RA, Delorme TA, Angle JS, Chaney RL, Ghanem K, Moawad H (2003b) Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. Int J Phytoremediation 5:367–379CrossRefGoogle Scholar
  6. Abou-Shanab RA, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889CrossRefGoogle Scholar
  7. Abou-Shanab RAI, Angle JS, van Berkum P (2007a) Chromate-tolerant bacteria for enhanced metal uptake by Eichhornia crassipes (Mart.) Int J Phytoremediation 9:91–105CrossRefGoogle Scholar
  8. Abou-Shanab RAI, van Berkum P, Angle JS (2007b) Heavy metal resistant patterns and further genotypic characterization of metal resistant gene (S) in gram positive and gram negative bacteria isolated from Ni-rich serpentine soil and the rhizosphere of Alyssum murale. Chemosphere 68:360–367CrossRefGoogle Scholar
  9. Abou-Shanab RAI, Ghanem KM, Ghanem NB, Al-Kolaibe AM (2008) The role of bacteria on heavy-metals extraction and uptake by plants growing on multi-metal contaminated soils. World J Microbiol Biotechnol 24:253–262CrossRefGoogle Scholar
  10. Abou-Shanab RAI, Angle JS, Delorme TA, Chaney RL, van Berkum P, Ghozlan HA, Ghanem K, Moawad H (2010) Characterization of Ni-resistant bacteria in the rhizosphere of the hyperaccumulator Alyssum murale by 16S rRNA gene sequence analysis. World J Microbiol Biotechnol 26:101–108CrossRefGoogle Scholar
  11. Agarwal S, Shende ST (1987) Tetrazolium reducing microorganisms inside the root of Brassica species. Curr Sci India 56:187–188Google Scholar
  12. Altalhi AD (2009) Plasmids profiles, antibiotic and heavy metal resistance incidence of endophytic bacteria isolated from grapevine (Vitis vinifera L.) Afr J Biotechnol 8:5873–5882CrossRefGoogle Scholar
  13. Arazi T, Sunkar R, Kaplan B, Fromm HA (1999) A tobacco plasma membrane calmodulin binding transporter confers Ni+ tolerance and Pb+ hyper-sensitivity in transgenic plants. Plant J 20:171–182CrossRefGoogle Scholar
  14. Arruti A, Fernandez-Olmo I, Irabien A (2010) Evaluation of the contribution of local sources to trace metals levels in urban PM2.5 and PM10 in the Cantabria region (Northern Spain). J Environ Monit 12:1451–1458CrossRefGoogle Scholar
  15. Baba A, Gurdal G, Sengunalp F, Ozay O (2008) Effects of leachant temperature and pH on leachability of metals from fly ash. A case study: can thermal power plant, province of Canakkale, Turkey. Environ Monit Assess 139:287–298CrossRefGoogle Scholar
  16. Babu AG, Kim JD, Oh BT (2013) Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1. J Hazard Mater 250–251:477–483CrossRefGoogle Scholar
  17. Bae W, Mehra RK, Mulchandani A, Chen W (2001) Genetic engineering of Escherichia coli for enhanced uptake and bioaccumulation of mercury. Appl Environ Microbiol 67:5335–5338CrossRefGoogle Scholar
  18. Bae W, Wu CH, Kostal J, Mulchandani A, Chen W (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–3180CrossRefGoogle Scholar
  19. Baker AJM (1987) Metal tolerance. New Phytol 106:93–111CrossRefGoogle Scholar
  20. Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126Google Scholar
  21. Baker AJM, Walker PL (1990) Ecophysiology of metal uptake by tolerant plants. CRC Press, Boca Raton, pp 155–178Google Scholar
  22. Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conserv Recycl 11:41–49CrossRefGoogle Scholar
  23. Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biochemical resource for phytoremediation of metal-polluted soils. In: Terry N, Banuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 85–107Google Scholar
  24. Bañuelos GS, Ajwa HA, Mackey B, Wu LL, Cook C, Akohoue S, Zambrzuski S (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26:639–646CrossRefGoogle Scholar
  25. Barzanti R, Ozino F, Bazzicalupo M, Gabbrielli R, Galardi F, Gonnelli C, Mengoni A (2007) Isolation and characterization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microb Ecol 53:306–316CrossRefGoogle Scholar
  26. Basha NS, Ogbaghebriel A, Yemane K, Zenebe M (2012) Isolation and screening of endophytic fungi from Eritrean traditional medicinal plant Terminalia brownii leaves for antimicrobial activity. Int J Green Pharm 6:40–44CrossRefGoogle Scholar
  27. Becher M, Talke IN, Krall L, Kramer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metal homeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268CrossRefGoogle Scholar
  28. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) Soil Biol Biochem 37:241–250CrossRefGoogle Scholar
  29. Beyersmann D, Hartwig A (2008) Carcinogenic metal compounds: recent insight into molecular and cellular mechanisms. Arch Toxicol 82:493–512CrossRefGoogle Scholar
  30. Bharagava RN, Mishra S (2018) Hexavalent chromium reduction potential of Cellulosimicrobium sp. isolated from common effluent treatment industries. Ecotoxicol Environ Saf 147:102–109CrossRefGoogle Scholar
  31. Bharagava RN, Chandra R, Rai V (2008) Phytoextraction of trace elements and physiological changes in Indian mustard plants (Brassica nigra L.) grow in post methanated distillery effluent (PMDE) irrigated soil. Bioresour Technol 99(17):8316–8324CrossRefGoogle Scholar
  32. Bharagava RN, Chowdhary P, Saxena G (2017) Bioremediation: an eco-sustainable green technology, its applications and limitations. In: Bharagava RN (ed) Environmental pollutants and their bioremediation approaches. CRC Press, Taylor & Francis Group, Boca Raton, pp 1–22CrossRefGoogle Scholar
  33. Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217CrossRefGoogle Scholar
  34. Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol 131:463–471CrossRefGoogle Scholar
  35. Brooks RR, Chambers MF, Nicks LJ, Robinson BH (1998) Phytomining. Trends Plant Sci 1:359–362CrossRefGoogle Scholar
  36. Brown KB, Hyde KD, Guest DI (1999) Preliminary studies on endophytic fungal communities of Musa acuminata species complex in Hong Kong and Australia. Fungal Divers 1:27–51Google Scholar
  37. Bruschi M, Goulhen F (2006) New bioremediation technologies to remove heavy metals and radionuclides using Fe(III)-sulfate- and sulfur reducing bacteria. In: Singh SN, Tripathi RD (eds) Environmental bioremediation technologies. Springer Publication, New York, pp 35–55Google Scholar
  38. Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245CrossRefGoogle Scholar
  39. Cao L, Qui Z, You J, Tan H, Zhou S (2005) Isolation and characterization of endophytic Streptomycete antagonists of Fusarium wilt pathogen from surface-sterilized banana roots. FEMS Microbiol 247:147–152CrossRefGoogle Scholar
  40. Chandra R, Bharagava RN, Kapley A, Purohit JH (2011) Bacterial diversity, organic pollutants and their metabolites in two aeration lagoons of common effluent treatment plant during the degradation and detoxification of tannery wastewater. Bioresour Technol 102:2333–2341CrossRefGoogle Scholar
  41. Chaney R, Malik M, Li YM, Brown SL, Brewer EP, Angle JS, Baker AJM (1997) Phytoremediation of soil metals. Curr Opin Biotechnol 8:279–284CrossRefGoogle Scholar
  42. Chaney RL, Angle JS, Mcintosh, Reeves RD, Li YM, Brewer EP, Chen KY, Roseberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJM (2005) Using hyperaccumulator plants to phytoextract soil Ni and Co. Z Naturforsch 60C:190–198Google Scholar
  43. Chang LW, Magos L, Suzuki T (1996) Toxicology of metals. CRC Press, Boca RatonGoogle Scholar
  44. Chen WM, Tang YQ, Mori K, Wu XL (2012) Distribution of culturable endophytic bacteria in aquatic plants and their potential for bioremediation in polluted waters. Aquat Biol 15:99–110CrossRefGoogle Scholar
  45. Chen L, Luo SL, Li XJ, Wan Y, Chen JL, Liu CB (2014) Interaction of Cd hyperaccumulator Solanum nigrum L. and functional endophyte Pseudomonas sp. Lk9 on soil heavy metals uptake. Soil Biol Biochem 68:300–308CrossRefGoogle Scholar
  46. Chen L, Luo S, Xiao X, Guo H, Chen J, Wan Y, Li B, Xu T, Xi Q, Rao C, Liu C, Zeng G (2010) Application of plant growth-promoting endophytes (PGPE) isolated from Solanum nigrum L. for phytoextraction of Cd-polluted soils. Appl Soil Ecol 46:383–389CrossRefGoogle Scholar
  47. Cheng S (2003) Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut Res 10:192–198CrossRefGoogle Scholar
  48. Chibuike G, Obiora S (2014) Heavy metal polluted soils: effect on plants and bioremediation methods. Appl Environ Soil Sci 2014:1–12. Article ID 752708, 12 pagesCrossRefGoogle Scholar
  49. Chowdhary P, Yadav A, Kaithwas G, Bharagava RN (2017a) Distillery wastewater: a major source of environmental pollution and its biological treatment for environmental safety. Green technologies and environmental sustainability. Springer International, Cham, pp 409–435CrossRefGoogle Scholar
  50. Chowdhary P, More N, Raj A, Bharagava RN (2017b) Characterization and identification of bacterial pathogens from treated tannery wastewater. Microbiol Res Int 5:30–36CrossRefGoogle Scholar
  51. Chowdhary P, Raj A, Bharagava RN (2018) Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental. Chemosphere 194:229–246CrossRefGoogle Scholar
  52. Chui S, Wong YH, Chio HI, Fong MY, Chiu YM et al (2013) Study of heavy metal poisoning in frequent users of Chinese medicines in Hong Kong and Macau. Phototherapy Res 27:859–863CrossRefGoogle Scholar
  53. Claudia S, Cesar V, Rosanna G (2008) Phytostabilization of copper mine tailings with biosolids: implications for metal uptake and productivity of Lolium perenne. Sci Total Environ 395:1–10CrossRefGoogle Scholar
  54. Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719CrossRefGoogle Scholar
  55. Clemens S, Ma JF (2016) Toxic heavy metal and metalloid accumulation in crop plants foods. Annu Rev Plant Biol 67:489–512CrossRefGoogle Scholar
  56. Conn VM, Franco CMM (2004) Effect of microbial inoculants on the indigenous actinobacterial endophyte population in the roots of wheat as determined by terminal restriction fragment length polymorphism. Appl Environ Microbiol 70:6407–6413CrossRefGoogle Scholar
  57. Cunningham SD, Shann JR, Crowley D, Anderson TA (1997) Phytoremediation of soil and water contaminants. American Chemical Society, Washington, DCGoogle Scholar
  58. Dahl J, Obernberger I, Brummer T, Biedermann F (2002) Results and evaluation of a new heavy metal fractionation technology in grate-fired biomass combustion plants as a basis for an improved ash utilization. In: Proceedings of the 12st European conference on biomass for energy, industry and climate protection, Amsterdam, The Netherlands, pp 690–694Google Scholar
  59. Deak M, Horvath GV, Davletova S, Torok K, Sass L, Vass I, Barna B, Kiraly Z, Dudits D (1999) Plants ectopically expressing the iron-binding protein ferritin, are tolerant to oxidative damages and pathogens. Nat Biotechnol 17:192–196CrossRefGoogle Scholar
  60. De-Souza MP, Huang CPA, Chee N, Terry N (1999) Rhizosphere bacteria enhance that accumulation of selenium and mercury in wetland plants. Planata 209:259–263CrossRefGoogle Scholar
  61. Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and g-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145CrossRefGoogle Scholar
  62. Diels L, van der Lelie N, Bastiaens L (2002) New development in treatment of heavy metal contaminated soils. Rev Environ Sci Biotechnol 1:75–82CrossRefGoogle Scholar
  63. Divya B, Deepak Kumar M (2011) Plant-microbe interaction with enhanced bioremediation. Res J BioTechnol 6:72–79Google Scholar
  64. Doty SL, Oakley B, Xin G, Kang JW, Singleton G, Khan Z, Vajzovic A, Staley JT (2009) Diazotrophic endophytes of native black cottonwood and willow. Symbiosis 47:23–33CrossRefGoogle Scholar
  65. Duffus JH (2002) Heavy metal- a meaningless term? Pure Appl Chem 74:793–807CrossRefGoogle Scholar
  66. Dushenkov S (2003) Trends in phytoremediation of radionuclides. Plant Soil 249:167–175CrossRefGoogle Scholar
  67. Eapen S, Suseelan K, Tivarekar S, Kotwal S, Mitra R (2003) Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ Res 91:127–133CrossRefGoogle Scholar
  68. Ebbs SD, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 5:1424–1430CrossRefGoogle Scholar
  69. Eckhardt U, Marques AM, Buckhout TJ (2001) Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol Biol 45:437–448CrossRefGoogle Scholar
  70. Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B (2004) Production of S methyl selenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 28:4Google Scholar
  71. Erikson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788CrossRefGoogle Scholar
  72. Evangelou MWH, Papazoglou EG, Robinson BH, Schulin R (2015) Phytomanagement: phytoremediation and the production of biomass for economic revenue on contaminated land. In: Ansari AA et al (eds) Phytoremediation: management of environmental contaminants, vol 1. Springer International Publishing, ChamGoogle Scholar
  73. Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of the pea metallothionein like gene Ps MTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications of Ps MTA function. Plant Mol Biol 20:1019–1028CrossRefGoogle Scholar
  74. Feng Y, Shen D, Song W (2006) Rice endophyte Pantoea agglomerans YS19 promotes host plant growth and affects allocations of host photosynthates. J Appl Microbiol 100:938–945CrossRefGoogle Scholar
  75. Filatov V, Dowdle J, Smirnoff N, Ford-Lloyd B, Newbury HJ, Macnair MM (2006) Comparison of gene expression in segregating families identifies genes and genomic regions involved in a novel adaptation, zinc hyperaccumulation. Mol Ecol 15:3045–3059CrossRefGoogle Scholar
  76. Gangwar M, Kaur G (2009) Isolation and characterization of endophytic bacteria from endorhizosphere of sugarcane and ryegrass. Int J Microbiol 7:139–144Google Scholar
  77. Gao XL, Zhou FX, Chen CTA (2014) Pollution status of the Bohai Sea, China: an overview of the environmental quality assessment related trace metals. Environ Int 62:12–30CrossRefGoogle Scholar
  78. Ghaderian MYS, Anthony JEL, Baker AJM (2000) Seedling mortality of metal hyperaccumulator plants resulting from damping off by Pythium spp. New Phytol 146:219–224CrossRefGoogle Scholar
  79. Ghosh M, Singh SP (2005) A review on phytoremediation of heavy metals and utilization of its byproducts. Appl Ecol Environ Res 3(1):1–18CrossRefGoogle Scholar
  80. Gilis A (1993) Interactie tussen verschillende potentieel toxische metalen (Zn, Cd, Ni en Al) en siderofoor-afhankelijke ijzer-opname in verschillende fluorescerende Pseudomonas stammen. Licentiaatsthesis, Departement Algemene Biologie, BrusselsGoogle Scholar
  81. Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445CrossRefGoogle Scholar
  82. Glick RB (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393CrossRefGoogle Scholar
  83. Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374CrossRefGoogle Scholar
  84. Grandjean P (2007) Methylmercury toxicity and functional programming. Reprod Toxicol 23:414–420CrossRefGoogle Scholar
  85. Gremion F, Chatzinotas A, Kaufmann K, Sigler W, Harms H (2004) Impacts of heavy metal contamination and phytoremediation on a microbial community during a twelve-month microcosm experiment. FEMS Microbiol Ecol 48:273–283CrossRefGoogle Scholar
  86. Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol 81:45–53CrossRefGoogle Scholar
  87. Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608CrossRefGoogle Scholar
  88. Guan LL, Kanoh K, Kamino K (2001) Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron limited conditions. Appl Environ Microbiol 67:1710–1717CrossRefGoogle Scholar
  89. Hall JL (2002) Cellular mechanism of heavy metal detoxification and tolerance. J Exp Bot 53:1–11CrossRefGoogle Scholar
  90. Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops. Can J Microbiol 43:895–914CrossRefGoogle Scholar
  91. Hamayun M, Sumera AK, Iqbal I, Ahmad B, Lee I (2010) Isolation of a gibberellin-producing fungus (Penicillium sp. MH7) and growth promotion of crown daisy (Chrysanthemum coronarium). J Microbiol Biotechnol 20:202–207Google Scholar
  92. Hamelink JL, Landrum PF, Harold BL, William BH (1994) Bioavailability: physical, chemical, and biological interactions. CRC Press, Boca RatonGoogle Scholar
  93. Hamilton CE, Bauerle TL (2012) A new currency for mutualism? Fungal endophytes alter antioxidant activity in hosts responding to drought. Fungal Divers 54:39–49CrossRefGoogle Scholar
  94. Hamilton CE, Gundel PE, Helander M, Saikkonen K (2012) Endophytic mediation of reactive oxygen species and antioxidant activity in plants: a review. Fungal Divers 54:1–10CrossRefGoogle Scholar
  95. Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJ, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239–260CrossRefGoogle Scholar
  96. Harada E, Choi YE, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. Plant Physiol 158:655–661CrossRefGoogle Scholar
  97. Hare V, Chowdhary P, Baghel VS (2017) Influence of bacterial strains on Oryza sativa grown under arsenic tainted soil: accumulation and detoxification response. Plant Physiol Biochem 119:93–102CrossRefGoogle Scholar
  98. Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUPI). Plant Soil 196:277–281CrossRefGoogle Scholar
  99. Hawkes SJ (1997) What is a heavy metal? J Chem Educ 74:1374CrossRefGoogle Scholar
  100. He H, Ye Z, Yang D, Yan J, Xiao L, Zhong T, Yuan M, Cai X, Fang Z, Jing Y (2013) Characterization of endophytic Rahnella sp. JN6 from Polygonum pubescens and its potential in promoting growth and Cd, Pb, Zn uptake by Brassica napus. Chemosphere 90:1960–1965CrossRefGoogle Scholar
  101. Hill MS (1997) Understanding environmental pollution. Cambridge University Press, Cambridge, 316 ppGoogle Scholar
  102. Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133CrossRefGoogle Scholar
  103. Huyer M, Page W (1988) Zn2+ increases siderophore production in Azotobacter vinelandii. Appl Environ Microbiol 54:2625–2631Google Scholar
  104. Idris R, Trifonova R, Puschenreiter M, Wenzel WW, Sessitsch A (2004) Bacterial communities associated with flowering plants of the Ni hyperaccumulator Thlaspi goesingense. Appl Environ Microbiol 70:2667–2677CrossRefGoogle Scholar
  105. Ivano B, Jorg L, Madeleine S, Gunthardt G, Beat F (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152:559–568CrossRefGoogle Scholar
  106. Kabata-Pendias A (2011) Trace elements in soil and plants.4th edn. Taylor & Francis: CRC Press, Boca RatonGoogle Scholar
  107. Kamunda C, Mathuthu M, Madhuku M (2016) Health risk assessment of heavy metals in soils from Witwatersrand gold mining basin, South Africa. Int J Environ Res Public Health 13:663CrossRefGoogle Scholar
  108. Kelemu S, Fory P, Zuleta C, Ricaurte J, Rao I, Lascano C (2011) Detecting bacterial endophytes in tropical grasses of the Brachiaria genus and determining their role in improving plant growth. Afr J Biotechnol 10:965–976Google Scholar
  109. Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on trace metal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364CrossRefGoogle Scholar
  110. Khan K, Lu Y, Khan H (2013) Heavy metals in agricultural soils and crops and their health risks in Swat District, northern Pakistan. Food Chem Toxicol 58:449–458CrossRefGoogle Scholar
  111. Kobayashi DY, Palumbo JD (2000) Bacterial endophytes and their effects on plants and uses in agriculture. In: Bacon CW, White JF (eds) Microbial endophytes. Marcel Dekker, New York, pp 199–236Google Scholar
  112. Kramer U, Clemens S (2005) Molecular biology of metal homeostasis and detoxification. In: Tamás MJ, Martinoia E (eds) Topics in current genetics. Springer, Berlin, pp 216–271Google Scholar
  113. Krid S, Rhouma A, Mogou I, Quesada JM, Nesme X, Gargouri A (2010) Pseudomonas savastanoi endophytic bacteria in olive tree knots and antagonistic potential of strains of Pseudomonas fluorescens and Bacillus subtilis. J Plant Pathol 92:335–341Google Scholar
  114. Kuffner M, De Maria S, Puschenreiter M, Fallmann K, Wieshammer G, Gorfer M, Strauss J, Rivelli AR, Sessitsch A (2010) Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. J Appl Microbiol 108:1471–1484CrossRefGoogle Scholar
  115. Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 32:2090–2102CrossRefGoogle Scholar
  116. Kumari V, Yadav A, Haq I, Kumar S, Bharagava RN, Singh SK, Raj A (2016) Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus cereus. J Environ Manag 183:204–211CrossRefGoogle Scholar
  117. Lee J, Bae H, Jeong J, Lee JY, Yang YY, Hwang I (2003) Functional expression of heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol 133:589–596CrossRefGoogle Scholar
  118. Li H-Y, Wei D-Q, Shen M, Zhou Z-P (2012) Endophytes and their role in phytoremediation. Fungal Divers 54:11–18CrossRefGoogle Scholar
  119. Liesegang H, Lemke K, Siddiqui RA, Schlegel HG (1993) Characterization of the inducible nickel and cobalt resistance determinant cnr from pMOL28 of Alcaligenes eutrophus CH34. J Bacteriol 175:767–778CrossRefGoogle Scholar
  120. Lin L, Ge HM, Yan T, Qin YH, Tan RX (2012) Thaxtomin A-deficient endophytic Streptomyces sp. enhances plant disease resistance to pathogenic Streptomyces scabies. Planta 236:1849–1861CrossRefGoogle Scholar
  121. Lodewyckx C, Taghavi S, Mergeay M, Vangronsveld J, Clijsters H, van der Lelie D (2001) The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. Int J Phytoremediation 3:173–187CrossRefGoogle Scholar
  122. Lodewyckx C, Vangronsveld J, Porteous F, Moore ERB, Taghavi S, van der Lelie D (2002) Endophytic bacteria and their potential applications. Crit Rev Plant Sci 21:583–606CrossRefGoogle Scholar
  123. Luo S, Xu T, Chen L, Chen J, Rao C, Xiao X, Wan Y, Zeng G, Long F, Liu C, Liu Y (2012) Endophyte-assisted promotion of biomass production and metal uptake of energy crop sweet sorghum by plant-growth-promoting endophyte Bacillus sp. SLS18. Appl Microbiol Biotechnol 93:1745–1753CrossRefGoogle Scholar
  124. Ma Y, Prasad MNV, Rajkumar M, Freitas H (2011) Plant growth promoting rhizobacteria and endophytes accelerate phytoremediation of metalliferous soils. Biotechnol Adv 29:248–258CrossRefGoogle Scholar
  125. Ma L, Cao YH, Cheng MH, Huang Y, Mo MH, Wang Y, Yang JZ, Yang FX (2013) Phylogenetic diversity of bacterial endophytes of Panax notoginseng with antagonistic characteristics towards pathogens of root-rot disease complex. Antonie van Leeuwen hoek 103:299–312CrossRefGoogle Scholar
  126. Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Bauelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 201–221Google Scholar
  127. Mergeay M, Nies D, Schlegel HG, Gerits J, Charles P, van Gijsegem F (1985) Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J Bacteriol 3:691–698Google Scholar
  128. Mishra S, Bharagava RN (2016) Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health Part C 34(1):1–34CrossRefGoogle Scholar
  129. Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L and Nicotiana tabacum L plants. Theor Appl Genet 78:16–18CrossRefGoogle Scholar
  130. Miyamoto T, Kawahara M, Minamisawa K (2004) Novel endophytic nitrogen-fixing clostridia from the grass Miscanthus sinensis as revealed by terminal restriction fragment length polymorphism analysis. Appl Environ Microbiol 70:6580–6586CrossRefGoogle Scholar
  131. Nasim SA, Dhir B (2010) Heavy metals alter the potency of medicinal plants. Rev Environ Contam Toxicol 203:139–149Google Scholar
  132. National Research Council (NRC) (1999) Arsenic in drinking water. National Research Council, Washington, DC, pp 251–257Google Scholar
  133. Newman L, Reynolds C (2005) Bacteria and phytoremediation: new uses for endophytic bacteria in plants. Trends Biotechnol 23:6–8CrossRefGoogle Scholar
  134. Nies DH (2003) Efflux-mediated heavy metal resistance in prokaryotes. FEMES Microbiol Rev 27:313–339CrossRefGoogle Scholar
  135. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49CrossRefGoogle Scholar
  136. Oelmüller R, Sherameti I, Tripathi S, Varma A (2009) Piriformospora indica, a cultivable root endophyte with multiple biotechnological applications. Symbiosis 49:1–17CrossRefGoogle Scholar
  137. Ogwuegbu MOC, Muhanga W (2005) Investigation of lead concentration in the blood of people in the copper belt province of Zambia. J Environ 1:66–75Google Scholar
  138. Pan A, Yang M, Tie F, Li L, Chen Z, Ru B (1994) Expression of mouse metallothionein-1-gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351CrossRefGoogle Scholar
  139. Pandey VC (2012) Phytoremediation of heavy metals from fly ash pond by Azolla caroliniana. Ecotoxicol Environ Saf 82:8–12CrossRefGoogle Scholar
  140. Park JD (2010) Heavy metal poisoning. Hanyang Med Rev 30:319–325CrossRefGoogle Scholar
  141. Pedas P, Schjoerring JK, Husted S (2009) Identification and characterization of zinc-starvation induced ZIP transporters from barley roots. Plant Physiol Biochem 47:377–383CrossRefGoogle Scholar
  142. Peng G, Wang H, Zhang G, Hou W, Liu Y, Wang ET, Tan Z (2006) Azospirillum melinis sp. nov., a group of diazotrophs isolated from tropical molasses grass. Int J Syst Microbiol 56:1263–1271CrossRefGoogle Scholar
  143. Pereira JO, Carneiro-Vieira ML, Azevedo JL (1999) Endophytic fungi from Musa acuminata and their reintroduction into axenic plants. World J Microbiol Biotechnol 15:37–40CrossRefGoogle Scholar
  144. Perfus-Barbeoch L, Leonhardt N, Vavasseur A, Forestier C (2002) Heavy metal toxicity: Cd permeates through calcium channels and disturbs the plant water status. Plant J 32:539–548CrossRefGoogle Scholar
  145. Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257CrossRefGoogle Scholar
  146. Pulford ID, Watson C (2003) Phytoremediation of heavy metal contaminated land by trees–a review. Environ Int 29:529–540CrossRefGoogle Scholar
  147. Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181CrossRefGoogle Scholar
  148. Reeves RD, Baker AJH (2000) Metal accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229Google Scholar
  149. Reinhold-Hurek B, Hurek R (1998) Life in grasses: diazotrophic endophytes. Trends Microbiol 6:39–144Google Scholar
  150. Rogers A, McDonald K, Muehlbauer MF, Hoffman A, Koenig K, Newman L, Taghavi S, van der Lelie D (2012) Inoculation of hybrid poplar with the endophytic bacterium Enterobacter sp. increases biomass but does not impact leaf level physiology. GCB Bioenergy 4:364–370CrossRefGoogle Scholar
  151. Rugh CL, Wilde D, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187CrossRefGoogle Scholar
  152. Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928CrossRefGoogle Scholar
  153. Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Biotechnol 20:213–219CrossRefGoogle Scholar
  154. Ryan PB, Huet N, Macintoshl DL (2000) Longitudinal investigation of exposure to arsenic, cadmium, and lead in drinking water. Environ Health Perspect 108:731–735CrossRefGoogle Scholar
  155. Ryan RP, Germaine K, Franks A, Ryan DJ, Dowling DN (2008) Bacterial endophytes: recent developments and applications. FEMS Microbiol Lett 278:1–9CrossRefGoogle Scholar
  156. Rylo Sona Janarthine S, Eganathan P, Balasubramanian T, Vijayalakshmi S (2011) Endophytic bacteria isolated from the pneumatophores of Avicennia marina. Afr J Microbiol Res 5:4455–4466CrossRefGoogle Scholar
  157. Sadowsky MJ (1999) In phytoremediation: past promises and future practices. Proceedings of the 8th international symposium on microbial ecology. Halifax, Canada, pp 1–7Google Scholar
  158. Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–668CrossRefGoogle Scholar
  159. Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation process. Curr Opin Biotechnol 11:286–289CrossRefGoogle Scholar
  160. Schmidt T, Schlegel HG (1994) Combined nickel-cobalt-cadmium resistance encoded by the ncc locus of Alcaligenes xylosoxidans 31A. J Bacteriol 176:7045–7054CrossRefGoogle Scholar
  161. Schulz B, Boyle C (2006) What are endophytes? In: BJE S, CJC B, Sieber TN (eds) Microbial root endophytes. Springer, Berlin, pp 1–13CrossRefGoogle Scholar
  162. Schützendübel A, Polle A (2002) Plant responses to abiotic stresses: heavy metal-induced oxidative stress and protection by mycorrhization. J Exp Bot 53:1351–1365Google Scholar
  163. Scortichini M, Loreti S (2007) Occurrence of an endophytic, potentially pathogenic strain of Pseudomonas syringae in symptomless wild trees of Corylus avellana l. J Plant Pathol 89:431–434Google Scholar
  164. Seghers D, Wittebolle L, Top EM, Verstraete W, Siciliano SD (2004) Impact of agricultural practices on the Zea mays L. endophytic community. Appl Environ Microbiol 70:1475–1482CrossRefGoogle Scholar
  165. Shaul O, Hilgemann DW, de Almedia-Engler J, Van Montagu M, Inze D, Galili G (1999) Cloning and characterization of a novel Mg2+/H+ exchanger. EMBO J 18:3973–3980CrossRefGoogle Scholar
  166. Sheng XF, Xia JJ, Jiang CY, He LY, Qian M (2008) Characterization of heavy metal resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting the growth and lead accumulation of rape. Environ Pollut 156:1164–1170CrossRefGoogle Scholar
  167. Shin M, Shim J, You Y, Myung H, Bang KS, Cho M, Kamala-Kannan S, Oh BT (2012) Characterization of lead resistant endophytic Bacillus sp. MN3-4 and its potential for promoting lead accumulation in metal hyperaccumulator Alnus firma. J Hazard Mater 199–200:314–320CrossRefGoogle Scholar
  168. Siddiqui RA, Benthin K, Schlegel HG (1989) Cloning of pMOL28- encoded nickel resistance genes and expression of the genes in Alcaligenes eutrophus and Pseudomonas spp. J Bacteriol 171:5071–5078CrossRefGoogle Scholar
  169. Singh A, Prasad SM (2011) Reduction of heavy metal load in food chain: technology assessment. Rev Environ Sci Biotechnol 10:199–214CrossRefGoogle Scholar
  170. Sriprang R, Hayashi M, Ono H, Takagi M, Hirata K, Murooka Y (2003) Enhanced accumulation of Cd2+ by a Mesorhizobium sp. transformed with a gene from Arabidopsis thaliana coding for phytochelatin synthase. Appl Environ Microbiol 69:1791–1796CrossRefGoogle Scholar
  171. Taghavi S, Mergeay M, van der Lelie D (1997) Genetics and physical map of the Alcaligenes eutrophus CH34 mega plasmid pMOL28 and it derivative pMOL50 obtained after temperature induced mutagenesis and mortality. Plasmid 37:22–34CrossRefGoogle Scholar
  172. Talk I, Hanikenne M, Kramer U (2006) Zinc dependent global transcriptional control, transcriptional de-regulation and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167CrossRefGoogle Scholar
  173. Tangahu BV, Abdullah SRS, Basri H, Idris M, Anuar N, Mukhlisin M (2011) A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. Int J Chem Eng. Article ID 939161Google Scholar
  174. Thomas JC, Davies EC, Malick FK, Endreszi C, Williams CR, Abbas M (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol Prog 19:273–280CrossRefGoogle Scholar
  175. Todeschini V, Lingua G, D’Agostino G, Carniato F, Roc-cotiello E, Berta G (2011) Effects of high zinc concentration on poplar leaves: a morphological and biochemical study. Environ Exp Bot 71:50–56CrossRefGoogle Scholar
  176. Turgut C (2003) The contamination with organochlorine pesticides and heavy metals in surface water in Kucuk Menderes River in Turkey, 2000–2002. Environ Int 29:29–32CrossRefGoogle Scholar
  177. United Nations Environmental Programme (UNEP) (2002) Global mercury assessment. United Nations, GenevaGoogle Scholar
  178. Van de Mortel JE, Villanueva LA, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Ver Loren van Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147CrossRefGoogle Scholar
  179. Van de Mortel JE, Schat H, Moerland PD, Ver Loren van Themaa E, van der Ent S, Blankestijn H, Ghandilyan A, Tsiatsiani S, Aarts MG (2008) Expression differences for genes involved in lignin, glutathione and sulphate metabolism in response to cadmium in Arabidopsis thaliana and the related Zn/Cd-hyperaccumulator Thlaspi caerulescens. Plant Cell Environ 31:301–324CrossRefGoogle Scholar
  180. Van der Lelie D, Corbisier P, Diels L, Gilis A, Lodewyckx C, Mergeay M, Taghavi S, Spelmans N, Vangronsveld J (1999) The role of bacteria in the phytoremediation of heavy metals. In: Terry N, Bañuelos G (eds) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 265–281Google Scholar
  181. Van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnen AN, Schat H, Verkleij JAC (1999) Overexpression of a novel Arabidopsis gene related to putative zinc transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055CrossRefGoogle Scholar
  182. Van Huysen T, Terry N, Pilon-Smits EA (2004) Exploring the selenium phytoremediation potential of transgenic Indian mustard over expressing ATP sulfurylase or cystathionine gamma synthase. Int J Phytoremediation 6:111–118CrossRefGoogle Scholar
  183. Vera Tomé F, Blanco Rodrguezb P, Lozano JC (2008) Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Sci Total Environ 393:51–357CrossRefGoogle Scholar
  184. Verkleji JAS (1993) The effects of heavy metals stress on higher plants and their use as biomonitors. In: Markert B (ed) Plant as bioindicators: indicators of heavy metals in the terrestrial environment. VCH, New York, pp 415–424Google Scholar
  185. Verma N, Singh M (2005) Biosensors for heavy metals. Biometals 18:121–129CrossRefGoogle Scholar
  186. Wang S, Shi X (2001) Molecular mechanisms of metal toxicity and carcinogenesis. Mol Cell Biochem 222:3–9CrossRefGoogle Scholar
  187. Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281CrossRefGoogle Scholar
  188. Welch RM, Norvell WA (1999) Mechanisms of Cd uptake, translocation and deposition in plants. In: McLaughlin MJ, Singh BR (eds) Cd in soils and plants. Kluwer Academic Publisher’s, Dordretch, pp 125–150CrossRefGoogle Scholar
  189. Whiting SN, De Souza M, Terry N (2001) Rhizosphere bacteria mobilize Zn for hyperaccumulator by Thlaspi caerulescens. Environ Sci Technol 35:3144–3150CrossRefGoogle Scholar
  190. Wu SC, Cheung KC, Luo YM, Wong MH (2006) Effects of inoculation of plant growth-promoting rhizobacteria on metal uptake by Brassica juncea. Environ Pollut 140:124–135CrossRefGoogle Scholar
  191. Wuana A, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol. Article ID: 402647CrossRefGoogle Scholar
  192. Wuertz S, Mergeay M (1997) The impact of heavy metals on soil microbial communities and their activities. In: van Elsas JD, Wellington EMH, Trevors JT (eds) Modern soil microbiology. Marcel Decker, New York, pp 1–20Google Scholar
  193. Yadav A, Chowdhary P, Kaithwas G, Bharagava RN (2017) Toxic metals in the environment, their threats on ecosystem and bioremediation approaches. In: Das S, Singh HR (eds) Handbook of metal-microbe interaction and bioremediation. CRC Press, Taylor & Francis Group, Boca Raton, pp 128–141CrossRefGoogle Scholar
  194. Yuan M, He H, Xiao L, Zhong T, Liu H, Li S, Deng P, Ye Z, Jing Y (2014) Enhancement of Cd phytoextraction by two Amaranthus species with endophytic Rahnella sp. JN27. Chemosphere 103:99–104CrossRefGoogle Scholar
  195. Zaidi S, Usmani S, Singh BR, Musarrat J (2006) Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere 64:991–997CrossRefGoogle Scholar
  196. Zhang YF, He L, Chen Z, Zhang W, Wang Q, Qian M, Sheng X (2011a) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186:1720–1725CrossRefGoogle Scholar
  197. Zhang YF, He LY, Chen ZJ, Wang QY, Qian M, Sheng XF (2011b) Characterization of ACC deaminase-producing endophytic bacteria isolated from copper tolerant plants and their potential in promoting the growth and copper accumulation of Brassica napus. Chemosphere 83:57–62CrossRefGoogle Scholar
  198. Zhang XY, Chen DM, Zhong TY, Zhang XM, Cheng M, Li XH (2015) Assessment of cadmium (Cd) concentration in arable soil in China. Environ Sci Pollut Res 22:4932–4941CrossRefGoogle Scholar
  199. Zhu Y, Rosen BP (2009) Perspectives for genetic engineering for the phytoremediation of arsenic contaminated environments: from imagination to reality? Curr Opin Biotechnol 20:220–224CrossRefGoogle Scholar
  200. Zhu Y, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiol 119:73–79CrossRefGoogle Scholar
  201. Zhu Y, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing g-glutamylcysteine synthetase. Plant Physiol 121:1169–1177CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Reda A. I. Abou-Shanab
    • 2
    • 1
    Email author
  • Mostafa M. El-Sheekh
    • 3
  • Michael J. Sadowsky
    • 2
  1. 1.Department of Environmental Biotechnology, Genetic Engineering and Biotechnology Research InstituteCity of Scientific Research and Technological ApplicationsNew Borg El Arab CityEgypt
  2. 2.Department of Soil, Water and Climate, Biotechnology InstituteUniversity of MinnesotaSt. PaulUSA
  3. 3.Botany Department, Faculty of ScienceTanta UniversityTantaEgypt

Personalised recommendations