In Vitro Secondary Metabolite Production Through Fungal Elicitation: An Approach for Sustainability

  • Shasmita
  • Nihar Ranjan Singh
  • Sakti Kanta Rath
  • Shashikanta Behera
  • Soumendra Kumar Naik


Being sessile, plants produce an array of secondary metabolites in response to different biotic and abiotic stimuli to survive under adverse conditions. Many of these secondary metabolites are valued for their medicinal properties and are known for their usage to cure diseases since ancient time. Even after the discoveries of synthetic drugs, the interest for drugs derived from medicinal plants is gaining importance as they are safe and devoid of any side effects. A number of important medicinal plants are yet to be cultivated for commercial purposes and are collected from wild habitat, posing a threat to their existence. To protect the biodiversity and achieve the sustainability, development of alternative strategies for production of secondary metabolites is necessary. Plant cell, tissue and organ culture including hairy root cultures have shown great potential for production of secondary metabolites. However, sometimes, these cultures fail to synthesise adequate secondary metabolites compared to plants growing under natural condition. The production of secondary metabolites can be enhanced by using different elicitors, either biotic or abiotic, which act as stress agents and enhance the production of secondary metabolites in plant callus/cell suspension culture, root culture, shoot culture and hairy root culture. Fungal elicitor (including yeast extract) is one of the preferred elicitors used for this purpose. In this chapter, attempts have been made to provide a comprehensive account of the strategies used for increasing the production of secondary metabolites in different in vitro culture system using fungal elicitors. A brief account of elicitors, elicitations and general mechanism of elicitations has also been provided.


Cell suspension culture Fungal elicitors Hairy root culture Medicinal plants Plant tissue culture Secondary metabolites 



SKN gratefully acknowledge University Grant Commission (UGC), New Delhi, for UGC Research Award. Shasmita acknowledges the Department of Science and Technology (DST), Govt. of India, for Inspire Fellowship. We thank Sitakanta Pattanaik, University of Kentucky, for critical reading of the manuscript.


  1. Ahlawat S, Saxena P, Alam P, Wajid S, Abdin MZ (2014) Modulation of artemisinin biosynthesis by elicitors, inhibitor, and precursor in hairy root cultures of Artemisia annua L. J Plant Interact 9:811–824CrossRefGoogle Scholar
  2. Ahlawat S, Saxena P, Ali A, Abdin MZ (2016) Piriformospora indica elicitation of withaferin A biosynthesis and biomass accumulation in cell suspension cultures of Withania somnifera. Symbiosis 69:37–46CrossRefGoogle Scholar
  3. Ahmed SA, Baig MMV (2014) Biotic elicitor enhanced production of psoralen in suspension cultures of Psoralea corylifolia L. Saudi J Biol Sci 21:499–504PubMedPubMedCentralCrossRefGoogle Scholar
  4. Ali M, Abbasi BH, Ahmad N, Khan H, Ali GS (2017) Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia- current trends. Crit Rev Biotechnol 3:1–19Google Scholar
  5. Arimura GI, Garms S, Maffei M, Bossi S, Schulze B, Leitner M, Mithöfer A, Boland W (2008) Herbivore- induced terpenoid emission in Medicago trucatula: concerted action of jasmonate, ethylene and calcium signaling. Planta 227(2):453–464PubMedCrossRefGoogle Scholar
  6. Bahabadi SE, Sharifi M, Chashmi NA, Murata J, Satake H (2014) Significant enhancement of lignan accumulation in hairy root cultures of Linum album using biotic elicitors. Acta Physiol Plant 36:3325–3331CrossRefGoogle Scholar
  7. Bais HP, Walker TS, Schweizer HP, Vivanco JM (2002) Root specific elicitation and antimicrobial activity of rosmarinic acid in hairy root cultures of Ocimum basilicum. Plant Physiol Biochem 40:983–995CrossRefGoogle Scholar
  8. Baldi A, Jain A, Gupta N, Srivastava K, Bisaria VS (2008a) Co-culture of arbuscular mycorrhiza-like fungi (Piriformospora indica and Sebacina vermifera) with plant cells of Linum album for enhanced production of podophyllotoxins: a first report. Biotechnol Lett 30:1671–1677PubMedCrossRefGoogle Scholar
  9. Baldi A, Singh D, Dixit VK (2008b) Dual elicitation for improved production of Withaferin A by cell suspension cultures of Withania somnifera. Appl Biochem Biotechnol 151:556–564PubMedCrossRefGoogle Scholar
  10. Baldi A, Srivastava AK, Bisaria VS (2009) Fungal elicitors for enhanced production of secondary metabolites in plant cell suspension cultures. Soil Biol 18:373–380CrossRefGoogle Scholar
  11. Baldi A, Farkya S, Jain A, Gupta N, Mehra R, Datta V, Srivastava AK, Bisaria VS (2010) Enhanced production of podophyllotoxins by co-culture of transformed Linum album cells with plant growth-promoting fungi. Pure Appl Chem 82(1):227–241CrossRefGoogle Scholar
  12. Barik DP, Naik SK, Mudgal A, Chand PK (2007) Rapid plant regeneration through in vitro axillary shoot proliferation of Butterfly pea (Clitoria ternatea L.) – a twinning legume. In Vitro Cell Dev Biol-Plants 43:144–148CrossRefGoogle Scholar
  13. Baxter A, Mittler R, Suzuki N (2014) ROS as key players in plant stress signalling. J Exp Bot 65(5):1229–1240PubMedCrossRefGoogle Scholar
  14. Bednarek P, Osbourn A (2009) Plant microbe interactions: chemical diversity of plant defense. Science 324:726CrossRefGoogle Scholar
  15. Berridge MJ (2009) Inositol trisphosphate and calcium signalling mechanisms. Biochim Biophys Acta 1793(6):933–940PubMedCrossRefGoogle Scholar
  16. Bhatia B, Bera T (2015) Classical and non-classical techniques for secondary metabolite production in plant cell culture. In: Bhatia S, Sharma K, Dahiya R, Bera T (eds) Modern applications of plant biotechnology in pharmaceutical sciences. Academic, London, pp 231–291CrossRefGoogle Scholar
  17. Biswas T, Kalra A, Mathur AK, Lal RK, Singh M, Mathur A (2016) Elicitors’ influenced differential ginsenoside production and exudation into medium with concurrent Rg3/Rh2 panaxadiol induction in Panax quinquefolius cell suspensions. Appl Microbiol Biotechnol 100(11):4909–4922PubMedCrossRefGoogle Scholar
  18. Bourgaud F, Gravot A, Milesi S, Gontier E (2001) Production of plant secondary metabolites: a historical perspective. Plant Sci 161:839–851CrossRefGoogle Scholar
  19. Buitelaar RM, Cesário MT, Tramper J (1992) Elicitation of thiophene production by hairy roots of Tagetes patula. Enzym Microb Technol 14:2–7CrossRefGoogle Scholar
  20. Byun SK, Pedersen H (1994) Two-phase air-lift production of benzophenanthridine alkaloids in cell suspensions of Escherichia californica. Biotechnol Bioeng 44:14–20PubMedCrossRefGoogle Scholar
  21. Chandra S, Chandra R (2011) Engineering secondary metabolite production in hairy roots. Phytochem Rev 10:371–395CrossRefGoogle Scholar
  22. Chaturvedi HC, Jain M, Kidwai NR (2007) Cloning of medicinal plants through tissue culture- a review. Indian J Exp Biol 45:937–948PubMedGoogle Scholar
  23. Chen H, Chen F (2000) Effect of yeast elicitor on the secondary metabolism of Ti-transformed Salvia miltiorrhiza cell suspension cultures. Plant Cell Rep 19:710–717CrossRefGoogle Scholar
  24. Chen F, Ren CG, Zhou T, Wei YJ, Dai CC (2016) A novel exopolysaccharide elicitor from endophytic fungus Gilmaniella sp. AL12 on volatile oils accumulation in Atractylodes lancea. Sci Rep 6:34735Google Scholar
  25. Cheng SH, Willmann MR, Chen H, Sheen J (2002) Signaling through protein kinases. The Arabidopsis calcium- dependent protein kinase gene family. Plant Physiol 129(2):469–485PubMedPubMedCentralCrossRefGoogle Scholar
  26. Da Rocha AB, Lopes RM, Schwartsmann G (2001) Natural products in anticancer therapy. Curr Opin Pharmacol 1:364–369PubMedCrossRefGoogle Scholar
  27. Deepthi S, Satheeshkumar K (2016) Enhanced camptothecin production induced by elicitors in the cell suspension cultures of Ophiorrhiza mungos Linn. Plant Cell Tissue Organ Cult 124:483–493CrossRefGoogle Scholar
  28. Devi CS, Srinivasan VM (2011) In vitro studies on stimulation of gymnemic acid production using fungal elicitor in suspension and bioreactor based cell cultures of Gymnema sylvestre R. Br Recent Res Sci Technol 3(4):101–104Google Scholar
  29. Devi K, Mishra SK, Sahu J, Panda D, Modi MK, Sen P (2016) Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus. Sci Rep 6:210–226CrossRefGoogle Scholar
  30. Dixon RA (2001) Natural products and plant disease resistance. Nature 411:843–847PubMedCrossRefGoogle Scholar
  31. Dixon RA, Strack D (2003) Phytochemistry meets genome analysis, and beyond. Phytochemistry 62(6):815–816PubMedCrossRefGoogle Scholar
  32. Ebrahimi MA, Zarinpanjeh N (2015) Bio-elicitation of β-carboline alkaloids in cell suspension culture of Peganum harmala L. J Med Plants 14(55):43–57Google Scholar
  33. El-Sayed M, Verpoorte R (2007) Catharanthus terpenoid indole alkaloids: biosynthesis and regulation. Phytochem Rev 6(2):277–305CrossRefGoogle Scholar
  34. Eom SH, Lee JK, Kim H, Hyun TK (2017) De novo transcriptomic analysis to reveal functional genes involved in triterpenoid saponin biosynthesis in Oplopanax elatus NAKAI. J Appl Bot Food Qual 90:18–24Google Scholar
  35. Facchini PJ, St-Pierre B (2005) Synthesis and trafficking of alkaloid biosynthetic enzymes. Curr Opin Plant Biol 8:657–666PubMedCrossRefGoogle Scholar
  36. Funk C, Gugler K, Brodelius P (1987) Increased secondary product formation in plant cell suspension cultures after treatment with yeast carbohydrate preparation (elicitor). Phytochemistry 26:401–405CrossRefGoogle Scholar
  37. Gadzovska-Simic S, Tusevski O, Antevski S, Atanasova-Pancevska N, Petreska J, Stefova M, Kungulovski D, Spasenoski M (2012) Secondary metabolite production in Hypericum perforatum L. cell suspensions upon elicitation with fungal mycelia from Aspergillus flavus. Arch Biol Sci Belgrade 64(1):113–121CrossRefGoogle Scholar
  38. Gadzovska-Simic S, Tusevski O, Maury S, Hano C, Delaunay A, Chabbert B, Lamblin F, Lainé E, Joseph C, Hagége D (2015) Fungal elicitor-mediated enhancement in phenylpropanoid and naphtodianthrone contents of Hypericum perforatum L. cell cultures. Plant Cell Tissue Organ Cult 122:213–226CrossRefGoogle Scholar
  39. Gao F, Yong Y, Dai C (2011) Effects of endophytic fungal elicitor on two kinds of terpenoids production and physiological indexes in Euphorbia pekinensis suspension cells. J Med Plant Res 5(18):4418–4425Google Scholar
  40. Garcia-Brugger A, Lamotte O, Vandelle E, Borque S, Lecourieux D, Poinssot B, Wendehenne D, Pugin A (2006) Early signalling events induced by elicitors of plant defenses. Mol Plant-Microbe Interact 19(7):711–724PubMedCrossRefGoogle Scholar
  41. Garg A, Agarwal I, Mishra RC, Sharma S, Ghosh S (2015) Andrographis paniculata transcriptome provides molecular insights into tissue specific accumulation of medicinal diterpenes. BMC Genomics 16:659PubMedPubMedCentralCrossRefGoogle Scholar
  42. Giri A, Narasu ML (2000) Transgenic hairy roots: recent trends and applications. Biotechnol Adv 18:1–22PubMedCrossRefPubMedCentralGoogle Scholar
  43. Goossens A, Häkkinen ST, Laakso I, Sepapänen-Laakso T, Bíondi S, De Sutter V, Lammertyn F, Nuutila AM, Söderfund H, Zabeau M, Inzé D, Oksman-Caldentey KM (2003) A functional genomics approach toward the understanding of secondary metabolism in plant cells. Proc Natl Acad Sci U S A 100(14):8595–8600PubMedPubMedCentralCrossRefGoogle Scholar
  44. Guízar-González C, Monforte-González M, Vázquez-Flota F (2016) Yeast extract induction of sanguinarine biosynthesis is partially dependent on the octadecanoic acid pathway in cell cultures of Argemone mexicana L., the Mexican poppy. Biotechnol Lett 38:1237–1242PubMedCrossRefGoogle Scholar
  45. Hannan A, Ikram-Ullah M, Usman M, Hussain S, Absar M, Javed K (2011) Antimycobacterial activity of Garlic (Allium sativum) against multi-drug resistant and non-multi-drug resistant Mycobacterium tuberculosis. Pak J Pharm Sci 24(1):81–85Google Scholar
  46. Hasanloo T, Eskandari S, Kowsari M (2015) Trichoderma strains- Silybum marianum hairy root cultures interactions. Res J Pharmacog 2(2):33–46Google Scholar
  47. Hofer AM, Lefkimmiatis K (2007) Extracellular calcium and cAMP: second messengers as “third messengers”? Physiology 22:320–327PubMedCrossRefGoogle Scholar
  48. Jabs T, Tschope M, Colling C, Hahlbrock K, Scheel D (1997) Elicitor stimulated ion fluxes and O2 from the oxidative burst are essential components in triggering defense gene activation and phytoalexin synthesis in parsley. Proc Natl Acad Sci U S A 94(9):4800–4805PubMedPubMedCentralCrossRefGoogle Scholar
  49. Jadhav A, Acharya R, Harisha CR, Shukla VJ, Chandola H (2016) Pharmacognostical and preliminary physico-chemical profiles of Blepharispermum subsessile DC. root. Pharm Stand 36(1):73–76Google Scholar
  50. Jeong GT, Park DH, Ryu HW, Hwang B, Woo JC, Kim D, Kim SW (2005) Production of antioxidant compounds by culture of Panax ginseng C.A. Meyer hairy roots: enhanced production of secondary metabolite in hairy root cultures by elicitation. Appl Biochem Biotechnol 121–124:1147–1157PubMedCrossRefGoogle Scholar
  51. Jimenez-Garcia SN, Vazquez-Cruz MA, Guevara-Gonzalez RG, Torres-Pacheco I, Cruz-Hernandez A, Feregrino-Perez AA (2013) Current approaches for enhanced expression of secondary metabolites as bioactive compounds in plants for agronomic and human health purposes – a review. Pol J Food Nutr Sci 63(2):67–78Google Scholar
  52. Karrupusamy S (2009) A review on trends in production of secondary metabolites from higher plants by in vitro tissue, organ and cell cultures. J Med Plant Res 3(13):1222–1239Google Scholar
  53. Kliebenstein DJ (2013) Making new molecules- evolution of structure for novel metabolites in plant. Curr Opin Plant Biol 16(1):112–117PubMedCrossRefPubMedCentralGoogle Scholar
  54. Kovačević N, Grubišić D (2005) In vitro cultures of plants from the Rhamnaceae: shoot propagation and anthraquinones production. Pharm Biol 43(5):420–424CrossRefGoogle Scholar
  55. Krikorian AD, Steward FC (1969) Biochemical differentiation: the biosynthetic potentialities of growing and quiescent tissue. In: Steward FC (ed) Plant physiology, a treatise. Academic, New York, pp 227–326Google Scholar
  56. Kumar V, Sahai V, Bisaria VS (2013) Effect of Piriformospora indica on enhanced biosynthesis of anticancer drug, podophyllotoxin, in plant cell cultures of Linum album. In: Varma A, Kost G, Oelmuller R (eds) Piriformospora indica, Sebacinales and their biotechnological applications. Springer-Verlag, Berlin, pp 119–136Google Scholar
  57. Kumar P, Chaturvedi R, Sundar D, Bisaria VS (2016) Piriformospora indica enhances the production of pentacyclic triterpenoids in Lantana camara L. suspension cultures. Plant Cell Tissue Organ Cult 125:23–29CrossRefGoogle Scholar
  58. Lecourieux D, Ranjeva R, Pugin A (2006) Calcium in plant defence-signalling pathways. New Phytol 171(2):249–269PubMedCrossRefGoogle Scholar
  59. Li B, Wang B, Li H, Peng L, Ru M, Liang Z, Yan X, Zhu Y (2016a) Establishment of Salvia castanea Diels f. tomentosa Stib. hairy root cultures and the promotion of tanshinone accumulation and gene expression with Ag+, methyl jasmonate, and yeast extract elicitation. Protoplasma 253:87–100PubMedCrossRefGoogle Scholar
  60. Li J, Wang J, Li J, Liu D, Li H, Gao W, Li J, Liu S (2016b) Aspergillus niger enhance bioactive compounds biosynthesis as well as expression of functional genes in adventitious roots of Glycyrrhiza uralensis Fisch. Appl Biochem Biotechnol 178:576–593PubMedCrossRefGoogle Scholar
  61. Liu NK, Kooy FV, Verpoorte R (2009) Artemisia afra: a potential flagship for African medicinal plants? South Afr J Bot 75:185–195CrossRefGoogle Scholar
  62. Manzoor H, Chiltz A, Madani H, Vatsa P, Schoefs B, Pugin A, Garcia-Brugger A (2012) Calcium signatures and signalling in cytosol and organalles of tobacco cells induced by plant defense elicitors. Cell Calcium 51(6):434–444PubMedCrossRefGoogle Scholar
  63. Mazars C, Thuleau P, Lamotte O, Bourque S (2017) Cross-talk between ROS and calcium in regulation of nuclear activities. Mol Plant 3(4):706–718CrossRefGoogle Scholar
  64. Mehrotra S, Goel MK, Srivastava V, Rahman U (2015) Hairy root biotechnology of Rauwolfia serpentina: a potent approach for the production of pharmaceutically important terpenoid indole alkaloids. Biotechnol Lett 37(2):253–263PubMedCrossRefGoogle Scholar
  65. Meng X, Zhang S (2013) MAPK cascades in plant disease resistance signaling. Annu Rev Phytopathol 51:245–266PubMedCrossRefGoogle Scholar
  66. Mercy S, Sangeetha N, Ganesh D (2012) In vitro production of adventitious roots containing asiaticoside from leaf tissues of Centella asiatica L. In Vitro Cell Dev Biol-Plant 48:200–207CrossRefGoogle Scholar
  67. Ming Q, Su C, Zheng C, Jia M, Zhang Q, Zhang H, Rahman K, Han T, Qin L (2013) Elicitors from the endophytic fungus Trichoderma atroviride promote Salvia miltiorrhiza hairy root growth and tanshinone biosynthesis. J Exp Bot 64(18):5687–5694PubMedCrossRefGoogle Scholar
  68. Mithöfer A, Ebel J, Felle HH (2005) Cation fluxes cause plasma membrane depolarization involved in beta-glucan elicitor-signaling in soybean roots. Mol Plant-Microbe Interact 18(9):983–990PubMedCrossRefGoogle Scholar
  69. Mohanty P, Behera S, Swain SS, Barik DP, Naik SK (2013) Micropropagation of Hedychium coronarium J. Koenig through rhizome bud. Physiol Mol Biol Plants 19(4):605–610PubMedPubMedCentralCrossRefGoogle Scholar
  70. Moharana A, Das A, Subudhi E, Naik SK, Barik DP (2018) Assessment of genetic fidelity using random amplified polymorphic DNA and inter simple sequence repeats markers of Lawsonia inermis L. plants regenerated by axillary shoot proliferation. Proc Natl Acad Sci India Sect B Biol Sci 88:133–141. CrossRefGoogle Scholar
  71. Mountford PG (2010) The taxolR story- development of a green synthesis via plant cell fermentation. In: Dunn PJ, Wells AS, Williams AT (eds) Green chemistry in the pharmaceutical industry. Wiley, Weinhelm, pp 145–160CrossRefGoogle Scholar
  72. Muchiri R, Walker KD (2012) Taxol biosynthesis: tyrocidine synthatase A catalyzes the production of phenylisoserinyl CoA and other amino phenylpropanoyl thioesters. Chem Biol 19(6):679–685PubMedCrossRefGoogle Scholar
  73. Mukundan U, Hjortso M (1990) Thiophene accumulation in hairy roots of Tagetes patula in response to fungal elicitors. Biotechnol Lett 12(8):609–614CrossRefGoogle Scholar
  74. Murillo I, Jaeck E, Cordero MJ, Segundo BS (2001) Transcriptional activation of a maize calcium-dependent protein kinase gene in response to fungal elicitors and infection. Plant Mol Biol 45(2):145–158PubMedCrossRefGoogle Scholar
  75. Murthy HN, Hahn EJ, Paek KY (2008) Adventitious roots and secondary metabolism. Chin J Biotechnol 24(5):711–716CrossRefGoogle Scholar
  76. Murthy HN, Lee EJ, Paek KY (2014) Production of secondary metabolites from cell and organ cultures: strategies and approaches for biomass improvement and metabolite accumulation. Plant Cell Tissue Organ Cult 118:1–16CrossRefGoogle Scholar
  77. Naidu VL, Bahadur AN, Kanungo VK (2014) Medicinal plants in Bhupdeopur forest, Raigarh Chattisgarh in Central India. Int J Med Arom Plants 4(1):6–15Google Scholar
  78. Namdeo AG (2007) Plant cell elicitation for production of secondary metabolites: a review. Pharm Rev 1(1):69–79Google Scholar
  79. Namdeo AG, Patil S, Fulzele DP (2002) Influence of fungal elicitors on production of ajmalicine by cell cultures of Catharanthus roseus. Biotechnol Prog 18:159–162PubMedCrossRefGoogle Scholar
  80. Nayak SA, Kumar S, Satapathy K, Moharana A, Behera B, Barik DP, Acharya L, Mohapatra PK, Jena PK, Naik SK (2013) In vitro plant regeneration from cotyledonary nodes of Withania somnifera (L.) Dunal and assessment of clonal fidelity using RAPD and ISSR markers. Acta Physiol Plant 35:195–203CrossRefGoogle Scholar
  81. Netala VR, Kotakadi VS, Gaddam SA, Ghosh SB, Tartte V (2016) Elicitation of gymnemic acid production in cell suspension culture of Gymnema sylvestre R. Br through endophytic fungi. 3 Biotech 6:232PubMedPubMedCentralCrossRefGoogle Scholar
  82. Owis A, Abdelwahab NS, Abul-Soad AA (2016) Elicitation of phenolics from the micropropagated endangered medicinal plant Calligonum polygonoides L. (Polygonoaceae). Pharmacogn Mag 12(47):465–470CrossRefGoogle Scholar
  83. Palavan-Unsal N, Arisan D (2009) Nitric oxide signalling in plants. Bot Rev 75(2):203–229CrossRefGoogle Scholar
  84. Park WT, Arasu MV, Al-Dhabi NA, Yeo SK, Jeon J, Park JS, Lee SY, Park SU (2016) Yeast extract and silver nitrate induce the expression of phenylpropanoid biosynthetic genes and induce the accumulation of rosmarinic acid in Agastache rugosa cell culture. Molecules 21:426PubMedCrossRefGoogle Scholar
  85. Pattnaik S, Pradhan C, Naik SK, Chand PK (2000) Shoot organogenesis and plantlet regeneration from hypocotyl- derived cell suspensions of a tree legume, Dalbergia sissoo Roxb. In Vitro Cell Dev Biol- Plants 36:407–411CrossRefGoogle Scholar
  86. Paul P, Singh SK, Patra B, Sui X, Pattanaik S (2017) A differentially regulated AP2/ERF transcription factor gene cluster acts downstream of a MAP kinase cascade to modulate terpenoid indole alkaloid biosynthesis in Catharanthus roseus. New Phytol 213(3):1107–1123PubMedCrossRefGoogle Scholar
  87. Pawar KD, Yadav AV, Shouche YS, Thengane SR (2011) Influence of endophytic fungal elicitation on production of inophyllum in suspension cultures of Calophyllum inophyllum L. Plant Cell Tissue Organ Cult 106:345–352CrossRefGoogle Scholar
  88. Pichersky E, Gang DR (2000) Genetics and biochemistry of secondary metabolites in plants: an evolutionary perspective. Perspectives 5(10):439–445Google Scholar
  89. Pichersky E, Lewinsohn E (2011) Convergent evolution in plant specialized metabolism. Annu Rev Plant Biol 62:549–566PubMedCrossRefGoogle Scholar
  90. Pistelli L, Giovannini A, Ruffoni B, Bertoli A, Pistelli L (2010) Hairy root cultures for secondary metabolites production. Adv Exp Med Biol. 2010 698:167–184PubMedCrossRefGoogle Scholar
  91. Pitzschke A, Schikora A, Hirt H (2009) MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol 12(4):421–426PubMedCrossRefGoogle Scholar
  92. Poulev A, ÓNeal JM, Logendra S, Pouleva RB, Timeva V, Garvey AS, Gleba D, Jenkins IS, Halpern BT, Kneer R, Cragg GM, Raskin I (2003) Elicitation, a new window into plant chemodiversity and phytochemical drug discovery. J Med Chem 46(12):2542–2547PubMedCrossRefGoogle Scholar
  93. Prasad A, Mathur A, Kalra A, Gupta MM, Lal RK, Mathur AK (2013) Fungal elicitor-mediated enhancement in growth and asiaticoside content of Centella asiatica L. shoot cultures. Plant Growth Regul 69:265–273CrossRefGoogle Scholar
  94. Radman R, Saez T, Bucke C, Keshavarz T (2003) Elicitation of plants and microbial cell systems. Biotechnol Appl Biochem 37:91–102PubMedCrossRefGoogle Scholar
  95. Rao SR, Ravishankar GA (2002) Plant cell cultures: chemical factories of secondary metabolites. Biotechnol Adv 20:101–153PubMedCrossRefGoogle Scholar
  96. Rawat JM, Rawat B, Mishra S (2014) Effect of elicitation on picrotin and picrotoxinin production from in vitro products of Picrorhiza kurrooa. Afr J Biotechnol 13(51):4612–4619CrossRefGoogle Scholar
  97. Rejeb I, Pastor V, Mauch-Mani B (2014) Plant responses to simultaneous biotic and abiotic stress: molecular mechanisms. Plants 3(4):458–475PubMedPubMedCentralCrossRefGoogle Scholar
  98. Rhee HS, Cho HY, Son SY, Yoon SYH, Park JM (2010) Enhanced accumulation of decursin and decursinol angelate in root cultures and intact roots of Angelica gigas Nakai following elicitation. Plant Cell Tissue Organ Cult 101:295–302CrossRefGoogle Scholar
  99. Rokem JS, Schwarzberg J, Goldberg I (1984) Autoclaved fungal mycelia increase production in cell suspension cultures of Dioscorea deltoida. Plant Cell Rep 3:159–160PubMedCrossRefGoogle Scholar
  100. Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141(2):336–340PubMedPubMedCentralCrossRefGoogle Scholar
  101. Sangwan RS, Tripathi S, Singh J, Narnoliya LK, Sangwan NS (2013) De novo sequencing and assembly of Centella asiatica leaf transcriptome for mapping of structural, functional and regulatory genes with special reference to secondary metabolism. Gene 525(1):58–76PubMedCrossRefGoogle Scholar
  102. Saxena HO, Brahman M (1995) The Flora of Orissa. Vol.-II (Rosaceae to Martyniaceae). Regional Research Laboratory & Odisha Forest Development Corporation Ltd., BhubaneswarGoogle Scholar
  103. Sevon N, Oksman-Caldentey KM (2002) Agrobacterium rhizogenes-mediated transformation: root cultures as a source of alkaloids. Planta Med 68:859–868PubMedCrossRefGoogle Scholar
  104. Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross- road. Front Plant Sci 7:187PubMedPubMedCentralCrossRefGoogle Scholar
  105. Sharma G, Agrawal V (2013) Marked enhancement in the artemisinin content and biomass productivity in Artemisia annua L. shoots co-cultivated with Piriformospora indica. World J Microbiol Biotechnol 29:1133–1138PubMedCrossRefGoogle Scholar
  106. Sharma P, Padh H, Shrivastava N (2013) Hairy root cultures: a suitable biological system for studying secondary metabolic pathways in plants. Eng Life Sci 13(1):62–75CrossRefGoogle Scholar
  107. Shi M, Kwok KW, Wu JY (2007) Enhancement of tanshinone production in Salvia miltiorrhiza Bunge (red or Chinese sage) hairy-root culture by hyperosmotic stress and yeast elicitor. Biotechnol Appl Biochem 46:191–196PubMedCrossRefGoogle Scholar
  108. Siddiqui ZH, Mujib A, Mahmooduzzafar, Aslam J, Hakeem KR, Parween T (2013) In vitro production of secondary metabolites using elicitor in Catharanthus roseus: a case study. In: Hakeem KR, Ahmad P, Ozturk M (eds) Crop Improvement. Springer, New York, pp 401–419CrossRefGoogle Scholar
  109. Srivastava S, Srivastava AK (2007) Hairy root culture for mass- production of high-value secondary metabolites. Crit Rev Biotechnol 27(1):29–43PubMedCrossRefGoogle Scholar
  110. Srivastava M, Sharma S, Misra P (2016) Elicitation based enhancement of secondary metabolites in Rauwolfia serpentine and Solanum khasianum hairy root cultures. Pharmacogn Mag 12(3):315–320Google Scholar
  111. Su X, Mei X, Gong W (2002) Study of paclitaxel production from an antifungal variant of Taxus callus. Plant Cell Tissue Organ Cult 68:215–223CrossRefGoogle Scholar
  112. Tahsili J, Sharifi M, Safaie N, Esmaeilzadeh-Bahabadi S, Behmanesh M (2014) Induction of lignans and phenolic compounds in cell culture of Linum album by culture filtrate of Fusarium graminearum. J Plant Interact 9(1):412–417CrossRefGoogle Scholar
  113. Taj G, Agarwal P, Grant M, Kumar A (2010) MAPK machinery in plants: recognition and response to different stresses through multiple signal transduction pathways. Plant Signal Behav 5(11):1370–1378PubMedPubMedCentralCrossRefGoogle Scholar
  114. Tang Z, Rao L, Peng G, Zhou M, Shi G, Liang Y (2011) Effects of endophytic fungus and its elicitors on cell status and alkaloid synthesis in cell suspension cultures of Catharanthus roseus. J Med Plant Res 5(11):2192–2200Google Scholar
  115. Tashackori H, Sharifi M, Chashmi NA, Safaie N, Behmanesh M (2016) Induced-differential changes on lignan and phenolic acid compounds in Linum album hairy roots by fungal extract of Piriformospora indica. Plant Cell Tissue Organ Cult 127:187–194CrossRefGoogle Scholar
  116. Taticek RA, Moo-Young M, Legge RL (1991) The scale up of plant cell culture: engineering considerations. Plant Cell Tissue Organ Cult 24:139–158CrossRefGoogle Scholar
  117. Thaweesak J, Seiichi S, Hiroyuki H, Waraporn P (2011) Elicitation effect on production of plumbagin in in vitro culture of Drosera indica L. J Med Plant Res 5(19):4949–4953Google Scholar
  118. Tonk D, Mujib A, Maqsood M, Ali M, Zafar N (2016) Aspergillus flavus fungus elicitation improves vincristine and vinblastine yield by augmenting callus biomass growth in Catharanthus roseus. Plant Cell Tissue Organ Cult 126:291–303CrossRefGoogle Scholar
  119. Ulhemann AC, Wittlin S, Matile H, Bustamante LY, Krishna S (2007) Mechanism of antimalarial action of synthetic trioxolane RBX11160 (OZ277). Antimicrob Agents Chemother 51(2):667–672CrossRefGoogle Scholar
  120. Urdová J, Rexová M, Mučaji P, Balažová A (2015) Elicitation- a tool to improve secondary metabolites production in Melissa officinalis L. suspension cultures. Acta Fac Pharm Univ Comen LXII(Suppl IX):46–50Google Scholar
  121. Vakil MMA, Mendhulkar VD (2013) Enhanced synthesis of andrographolide by Aspergillus niger and Penicillium expansum elicitors in cell suspension culture of Andrographis paniculata (Burm. f.) Nees. Bot Stud 54:49PubMedPubMedCentralCrossRefGoogle Scholar
  122. Van der Kooy F, Verpoorte R, Marion MJJ (2008) Metabolomic quality control of claimed antimalarial Artemisia afra herbal remedy and A. afra and A. annua plant extracts. South Afr J Bot 74:186–189CrossRefGoogle Scholar
  123. Van Moerkercke A, Fabris M, Pollier J, Baart GJE, Rombauts S, Hasnain G, Rischer H, Memelink J, Oksman-Caldentey KM, Goossens A (2013) CathaCyc, a metabolic pathway database built from Catharanthus roseus RNA-Seq data. Plant Cell Physiol 54(5):673–685PubMedCrossRefGoogle Scholar
  124. Vasconsuelo A, Boland R (2007) Molecular aspects of the early stages of elicitation of secondary metabolites in plants. Plant Sci 172:861–875CrossRefGoogle Scholar
  125. Ved DK, Kinhal GA, Ravikumar K, Sankar RV, Sumathi R, Mahapatra AK, Panda PC (eds) (2008) Conservation assessment and management prioritisation for medicinal plants of Orissa. Regional Plant Resource Centre, Bhubaneswar and Foundation for Revitalisation of Local Health Traditions, BangaloreGoogle Scholar
  126. Verma P, Khan SA, Mathur AK, Ghosh S, Shanker K, Kalra A (2014a) Improved sanguinarine production via biotic and abiotic elicitations and precursor feeding in cell suspensions of latex-less variety of Papaver somniferum with their gene expression studies and upscaling in bioreactor. Protoplasma 251:1359–1371PubMedCrossRefGoogle Scholar
  127. Verma M, Ghangal R, Sharma R, Sinha AK, Jain M (2014b) Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling. PLoS One 9(7):e103583PubMedPubMedCentralCrossRefGoogle Scholar
  128. Verpoorte R, van der Heijden R, ten Hoopen HJG, Memelink J (1999) Metabolic engineering of plant secondary metabolite pathways for the production of fine chemicals. Biotechnol Lett 21:467–479CrossRefGoogle Scholar
  129. Verpoorte R, Contin A, Memelink J (2002) Biotechnology for the production of plant secondary metabolites. Phytochem Rev 1:13–25CrossRefGoogle Scholar
  130. Vinterhalter B, Janković T, Šavikin K, Nikolić R, Vinterhalter D (2008) Propagation and xanthone content of Gentianella austriaca shoot cultures. Plant Cell Tissue Organ Cult 94:329–335CrossRefGoogle Scholar
  131. Wang JW, Wu J (2013) Effective elicitors and process strategies for enhancement of secondary metabolites in hairy root cultures. Adv Biochem Eng Biotechnol 134:55–89PubMedGoogle Scholar
  132. Wang H, Ye HC, Li GF, Liu BY, Chong K (2000) Effects of fungal elicitors on cell growth and artemisinin accumulation in hairy root cultures of Artemisia annua. Acta Bot Sin 42(9):905–909Google Scholar
  133. Wang JW, Zhang Z, Tan RX (2001) Stimulation of artemisinin production in Artemisia annua hairy roots by the elicitor from the endophytic Colletotrichum sp. Biotechnol Lett 23:857–860CrossRefGoogle Scholar
  134. Wang JW, Zheng LP, Tan RX (2006) The preparation of an elicitor from a fungal endophyte to enhance artemisinin production in hairy root cultures of Artemisia annua L. Sheng Wu Gong Cheng Xue Bao 22:829–834PubMedGoogle Scholar
  135. Wang Y, Dai CC, Cao JL, Xu DS (2012) Comparison of the effects of fungal endophyte Gilmaniella sp. and its elicitor on Atractylodes lancea plantlets. World J Microbiol Biotechnol 28:575–584PubMedCrossRefGoogle Scholar
  136. Wang R, Xu S, Wang N, Xia B, Jiang Y, Wang R (2017) Transcriptome analysis of secondary metabolism pathway, transcription factors, and transporters in response to methyl jasmonate in Lycoris aurea. Front Plant Sci 7:19–71Google Scholar
  137. Weathers PJ, Towler MJ, Xu J (2010) Bench to batch: advances in plant cell culture for producing useful products. Appl Microbiol Biotechnol 85:1339–1351PubMedCrossRefGoogle Scholar
  138. Weathers PJ, Arsenault PR, Covello PS, McMickle A, Teoh KT, Reed DW (2011) Artemisinin production in Artemisia annua: studies in planta and results of a novel delivery method for treating malaria and other neglected diseases. Phytochem Rev 10(2):173–183PubMedPubMedCentralCrossRefGoogle Scholar
  139. White PJ (2000) Calcium channels in higher plants. Biochim Biophys Acta 1465(1–2):171–189PubMedCrossRefGoogle Scholar
  140. Wilson SA, Roberts SC (2012) Recent advances towards development and commercialization of plant cell culture processes for synthesis of biomolecules. Plant Biotechnol J 10(3):249–268PubMedCrossRefGoogle Scholar
  141. Wink M (1987) Why do lupin cell cultures fail to produce alkaloids in large quantities? Plant Cell Tissue Organ Cult 8:103–111CrossRefGoogle Scholar
  142. Wink M (1988) Plant breeding: importance of plant secondary metabolites for protection against pathogens and herbivores. Theor Appl Genet 75:225–233CrossRefGoogle Scholar
  143. Wink M (2015) Modes of action of herbal medicines and plant secondary metabolites. Medicines 2:251–286PubMedPubMedCentralCrossRefGoogle Scholar
  144. Wink M, Alfermann AW, Franke R, Wetterauer B, Distl M, Windhövel J, Krohn O, Fuss E, Garden H, Mohagheghzadeh A, Wildi E, Ripplinger P (2005) Sustainable bio production of phytochemicals by plant in vitro cultures: anticancer agents. Plant Genet Resour 3(2):90–100CrossRefGoogle Scholar
  145. Woodraw CJ, Haynes RK, Krishna S (2005) Artemisinins. Postgrad Med J 81:71–78CrossRefGoogle Scholar
  146. Xiao M, Zhang Y, Chen X, Lee EJ, Barber CJS, Chakrabarty R, Desgagné-Penix I, Haslam TM, KimYB LE, MacNevin G, Masada-Atsumi S, Reed DW, Stout JM, Zerbe P, Zhang Y, Bohlmann J, Covello PS, De Luca V, Page JE, Ro DK, Martin VJJ, Facchini PJ, Sensena CW (2013) Transcriptome analysis based on next-generation sequencing of non-model plants producing specialized metabolites of biotechnological interest. J Biotechnol 166:122–134PubMedCrossRefGoogle Scholar
  147. Yadav NP, Dixit VK (2008) Recent approaches in herbal drug standardization. Int J Intgr Biol 2(3):195–203Google Scholar
  148. Yonekura-Sakakibara K, Saito K (2009) Functional genomics for plant natural product biosynthesis. Nat Prod Rep 26:1466–1487PubMedCrossRefGoogle Scholar
  149. Yu LZ, Lan WZ, Qin WM, Xu HB (2001) Effects of salicylic acid on fungal elicitor-induced membrane-lipid peroxidation and taxol production in cell suspension cultures of Taxus chinensis. Process Biochem 37:477–482CrossRefGoogle Scholar
  150. Yu Y, Zhang WB, Li XY, Piao XC, Jiang J, Lian ML (2016) Pathogenic fungal elicitors enhance ginsenoside biosynthesis of adventitious roots in Panax quinquefolius during bioreactor culture. Ind Crop Prod 94:729–735CrossRefGoogle Scholar
  151. Yuan YJ, Li C, Hua ZD, Wua JC, Zeng AP (2002) Fungal elicitor-induced cell apoptosis in suspension cultures of Taxus chinensis var. mairei for taxol production. Process Biochem 38:193–198CrossRefGoogle Scholar
  152. Yue W, Ming QL, Lin B, Rahman K, Zheng CJ, Han T, Qin LP (2016) Medicinal plant cell suspension cultures: pharmaceutical applications and high yielding strategies for the desired secondary metabolites. Crit Rev Biotechnol 36(2):215–232PubMedCrossRefPubMedCentralGoogle Scholar
  153. Zenk MH (1991) Chasing the enzymes of secondary metabolism: plant cell cultures as a pot of gold. Phytochemistry 30(12):3861–3863CrossRefGoogle Scholar
  154. Zhai X, Jia M, Chen L, Zheng C, Rahman K, Han T, Qin L (2017) The regulatory mechanism of fungal elicitor-induced secondary metabolite biosynthesis in medical plants. Crit Rev Microbiol 43(2):238–261PubMedCrossRefGoogle Scholar
  155. Zhao J, Fujita K, Yamada J, Sakai K (2001a) Improved beta-thujaplicin production in Cupressus lusitanica suspension cultures by fungal elicitor and methyl jasmonate. Appl Microbiol Biotechnol 55:301–305PubMedCrossRefPubMedCentralGoogle Scholar
  156. Zhao J, Zhu WH, Hu Q (2001b) Enhanced catharanthine production in Catharanthus roseus cell cultures by combined elicitor treatment in shake flasks and bioreactors. Enzym Microb Technol 28:673–681CrossRefGoogle Scholar
  157. Zhao J, Zheng SH, Fujita K, Sakai K (2004) Jasmonate and ethylene signalling and their interaction are integral parts of elicitor signaling pathway leading to β-Thujaplicin biosynthesis in Cupressus lusitanica cell cultures. J Exp Bot 55(399):1003–1012PubMedCrossRefGoogle Scholar
  158. Zhao J, Davis LC, Verpoorte R (2005) Elicitor signal transduction leading to production of plant secondary metabolites. Biotechnol Adv 23:283–333PubMedCrossRefPubMedCentralGoogle Scholar
  159. Zhao J, Fujita K, Sakai K (2007) Reactive oxygen species, nitric oxide, and their interactions play different roles in Cupressus lusitanica cell death and phytoalexin biosynthesis. New Phytol 175(2):215–229PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Shasmita
    • 1
  • Nihar Ranjan Singh
    • 1
  • Sakti Kanta Rath
    • 1
  • Shashikanta Behera
    • 1
  • Soumendra Kumar Naik
    • 1
  1. 1.Department of Botany, School of Life SciencesRavenshaw UniversityCuttackIndia

Personalised recommendations