Advertisement

Nanofabrication of Myconanoparticles: A Future Prospect

  • Rajender Boddula
  • Priyanka Dubey
  • Saurabh Gautam
  • Ramyakrishna Pothu
  • Aditya Saran
Chapter

Abstract

Nanofabrications of nanomaterials are widely used in electronic industries related to integrated circuits and visual display. There in electronics the more popular word is nanolithography. The synthesis methods of myconanoparticles (MNPs) are eco-friendly, easy and less costly than chemically synthesized nanomaterials. Till now a full control over the fungal growth is possible, but the same is not possible for the synthesis of MNPs either through intra- or extracellular environment. Myconanoparticles are generally large in size with high standard deviation and less uniformity. The lack of uniformity and some specific structural requirement for optical properties is a big challenge for the applicability of MNPs. Fabrication is a method which can be applied for reshaping the MNPs. Nanofabrication is the future of MNPs processing for its wide-scale practical and industrial applications.

Keywords

Nanofabrication Myconanoparticles Reshaping of nanoparticles Etching Surface functionalization 

References

  1. Ahmad A, Senapati S, Khan MI, Kumar R, Sastry M (2005) Extra-/intracellular biosynthesis of gold nanoparticles by an alkalotolerant fungus, Trichothecium sp. J Biomed Nanotechnol 1(1):47–53CrossRefGoogle Scholar
  2. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc. 124(41):12108–12109CrossRefPubMedGoogle Scholar
  3. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984.  https://doi.org/10.3389/fmicb.2016.01984CrossRefPubMedPubMedCentralGoogle Scholar
  4. Balaji D, Basavaraja S, Deshpande R, Mahesh DB, Prabhakar B, Venkataraman A (2009) Extracellular biosynthesis of functionalized silver nanoparticles by strains of Cladosporium cladosporioides fungus. Colloids Surf B: Biointerfaces 68(1):88–92CrossRefPubMedGoogle Scholar
  5. Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahmad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15(26):2583–2589CrossRefGoogle Scholar
  6. Baskar G, Chandhuru J, Fahad KS, Praveen A (2013) Mycological synthesis, characterization and antifungal activity of zinc oxide nanoparticles. Asian J Phar Technol 3(4):142–146Google Scholar
  7. Berggren KK, Bard A, Wilbur JL, Gillaspy JD (1995) Microlithography by using neutral metastable atoms and self-assembled monolayers. Science 269(5228):1255CrossRefPubMedGoogle Scholar
  8. Berry V, Gole A, Kundu S, Murphy CJ, Saraf RF (2005) Deposition of CTAB-terminated nanorods on bacteria to form highly conducting hybrid systems. J Am Chem Soc 127(50):17600–17601CrossRefPubMedGoogle Scholar
  9. Binupriya A, Sathishkumar M, Vijayaraghavan K, Yun S-I (2010) Bioreduction of trivalent aurum to nano-crystalline gold particles by active and inactive cells and cell-free extract of Aspergillus oryzae var. viridis. J Hazard Mater 177(1):539–545CrossRefPubMedGoogle Scholar
  10. Cattoni A, Chen J, Decanini D, Shi J, Haghiri-Gosnet A-M (2011) Soft UV nanoimprint lithography: a versatile tool for nanostructuration at the 20nm scale. In: Recent advances in nanofabrication techniques and applications. InTech, RijekaGoogle Scholar
  11. Chen WR, Adams RL, Carubelli R, Nordquist RE (1997) Laser-photosensitizer assisted immunotherapy: a novel modality for cancer treatment. Cancer Lett 115(1):25–30CrossRefPubMedGoogle Scholar
  12. Chen J, Cranton W, Fihn M (2012) Handbook of visual display technology, vol 131. Springer, BerlinCrossRefGoogle Scholar
  13. Chon JW, Bullen C, Zijlstra P, Gu M (2007) Spectral encoding on gold nanorods doped in a silica sol–gel matrix and its application to high-density optical data storage. Adv Funct Mater 17(6):875–880CrossRefGoogle Scholar
  14. Cobley CM, Rycenga M, Zhou F, Li Z-Y, Xia Y (2009) Controlled etching as a route to high quality silver nanospheres for optical studies. J Phys Chem C 113(39):16975–16982CrossRefGoogle Scholar
  15. Cui B (2011a) Recent advances in nanofabrication techniques and applicationsGoogle Scholar
  16. Cui B (2011b) Ultrafast fabrication of metal nanostructures using pulsed laser melting. In: Recent advances in nanofabrication techniques and applications. InTech, RijekaCrossRefGoogle Scholar
  17. Doherty JA (1979) Recent advances in electron-beam systems for mask making. Solid State Technol 22(5):83–88Google Scholar
  18. Fayaz AM, Balaji K, Girilal M, Yadav R, Kalaichelvan PT, Venketesan R (2010) Biogenic synthesis of silver nanoparticles and their synergistic effect with antibiotics: a study against gram-positive and gram-negative bacteria. Nanomed Nanotechnol Biol Med 6(1):103–109CrossRefGoogle Scholar
  19. Foroughi-Abari A, Cadien K (2012) Atomic layer deposition for nanotechnology. In: Nanofabrication. Springer, Berlin, pp 143–161Google Scholar
  20. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83(1):132–140CrossRefGoogle Scholar
  21. Gorelikov I, Field LM, Kumacheva E (2004) Hybrid microgels photoresponsive in the near-infrared spectral range. J Am Chem Soc 126(49):15938–15939CrossRefPubMedGoogle Scholar
  22. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248CrossRefPubMedGoogle Scholar
  23. Karg M, Pastoriza-Santos I, Pérez-Juste J, Hellweg T, Liz-Marzán LM (2007) Nanorod-Coated PNIPAM Microgels: thermoresponsive optical properties. Small (Weinheim an der Bergstrasse, Germany) 3(7):1222–1229CrossRefPubMedGoogle Scholar
  24. Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B: Biointerfaces 71(1):133–137CrossRefPubMedGoogle Scholar
  25. Kim H, McIntyre PC (2006) Atomic layer deposition of ultrathin metal-oxide films for nano-scale device applications. J Korean Phys Soc 48(1):5–17Google Scholar
  26. Kumar SA, Ansary AA, Ahmad A, Khan M (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3(2):190–194CrossRefGoogle Scholar
  27. Lee K-S, El-Sayed MA (2005) Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index. J Phys Chem B 109(43):20331–20338CrossRefPubMedGoogle Scholar
  28. Leskelä M, Ritala M (2002) Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409(1):138–146CrossRefGoogle Scholar
  29. Liu X, Du D, Mourou G (1997) Laser ablation and micromachining with ultrashort laser pulses. IEEE J Quantum Electron 33(10):1706–1716CrossRefGoogle Scholar
  30. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar P, Alam M, Kumar R (2001a) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1(10):515–519CrossRefGoogle Scholar
  31. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar P, Alam M (2001b) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40(19):3585–3588CrossRefGoogle Scholar
  32. Murphy CJ, Orendorff CJ (2005) Alignment of gold nanorods in polymer composites and on polymer surfaces. Adv Mater 17(18):2173–2177CrossRefGoogle Scholar
  33. Ni W, Kou X, Yang Z, Wang J (2008) Tailoring longitudinal surface plasmon wavelengths, scattering and absorption cross sections of gold nanorods. ACS Nano 2(4):677–686.  https://doi.org/10.1021/nn7003603CrossRefPubMedGoogle Scholar
  34. Pérez-Juste J, Rodríguez-González B, Mulvaney P, Liz-Marzán LM (2005) Optical control and patterning of gold-nanorod–poly (vinyl alcohol) nanocomposite films. Adv Funct Mater 15(7):1065–1071CrossRefGoogle Scholar
  35. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing (ISBN: 978-3-319-42989-2)Google Scholar
  36. Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer International Publishing (ISBN 978-3-319-68423-9)Google Scholar
  37. Prasad R, Pandey R and Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomed Nanobiotechnol 8:316–330. doi: https://doi.org/10.1002/wnan.1363CrossRefPubMedGoogle Scholar
  38. Ravindra B, Rajasab A (2014) A comparative study on biosynthesis of silver nanoparticles using four different fungal species. Int J Pharm Sci 6:372–376Google Scholar
  39. Riddin T, Gericke M, Whiteley C (2006) Analysis of the inter-and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17(14):3482CrossRefPubMedGoogle Scholar
  40. Saa L, Coronado-Puchau M, Pavlov V, Liz-Marzan LM (2014) Enzymatic etching of gold nanorods by horseradish peroxidase and application to blood glucose detection. Nanoscale 6(13):7405–7409.  https://doi.org/10.1039/C4nr01323aCrossRefPubMedGoogle Scholar
  41. Saglam N, Yesilada O, Cabuk A, Sam M, Saglam S, Ilk S, Emul E, Celik PA, Gurel E (2016) Innovation of strategies and challenges for fungal nanobiotechnology. In: Prasad R (ed) Advances and applications through fungal nanobiotechnology. Springer, Cham, pp 25–46CrossRefGoogle Scholar
  42. Soppera O, Dirani A, Stehlin F, Ridaoui H, Spangenberg A, Wieder F, Roucoules V (2011) DUV Interferometry for micro and nanopatterned surfaces. In: Recent advances in nanofabrication techniques and applications. InTech, RijekaGoogle Scholar
  43. Stepanova M, Dew S (2011) Nanofabrication: techniques and principles. Springer, ViennaGoogle Scholar
  44. Tsung C-K, Kou X, Shi Q, Zhang J, Yeung MH, Wang J, Stucky GD (2006) Selective shortening of single-crystalline gold nanorods by mild oxidation. J Am Chem Soc 128(16):5352–5353CrossRefPubMedGoogle Scholar
  45. Walker P, Tarn WH (1990) CRC handbook of metal etchants. CRC Press, Boca RatonGoogle Scholar
  46. Wanzenboeck HD, Waid S (2011) Focused ion beam lithography. In: Recent advances in nanofabrication techniques and applications. InTech, RijekaGoogle Scholar
  47. Wen T, Zhang H, Tang X, Chu W, Liu W, Ji Y, Hu Z, Hou S, Hu X, Wu X (2013) Copper ion assisted reshaping and etching of gold nanorods: mechanism studies and applications. J Phys Chem C 117(48):25769–25777CrossRefGoogle Scholar
  48. Zou R, Guo X, Yang J, Li D, Peng F, Zhang L, Wang H, Yu H (2009) Selective etching of gold nanorods by ferric chloride at room temperature. CrystEngComm 11(12):2797.  https://doi.org/10.1039/b911902gCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Rajender Boddula
    • 1
  • Priyanka Dubey
    • 2
  • Saurabh Gautam
    • 3
  • Ramyakrishna Pothu
    • 4
  • Aditya Saran
    • 5
  1. 1.CAS Key Laboratory for Nanosystem and Hierarchical FabricationNational Center for Nanoscience and TechnologyBeijingChina
  2. 2.Department of Textile TechnologyIndian Institute of Technology DelhiNew DelhiIndia
  3. 3.Department of Cellular BiochemistryMax Planck Institute of BiochemistryMartinsriedGermany
  4. 4.College of Chemistry and Chemical EngineeringHunan UniversityChangshaPeople’s Republic of China
  5. 5.Department of MicrobiologyMarwadi UniversityRajkotIndia

Personalised recommendations