Mycosynthesized Nanoparticles: Role in Food Processing Industries

  • Lakshmishri Roy
  • Debabrata Bera
  • Sunita Adak


Green synthesis of nanoparticles (NPs) is an evolving branch of nanotechnology. The use of fungi for the synthesis of NPs is referred to as mycosynthesis of metal NPs. Fungal endophytes have been recognized as important sources of a variety of structurally novel active secondary metabolites with anticancer, antimicrobial, and other biological activities. This mode of synthesis of metal nanoparticles is gaining more importance owing to its simplicity, rapid rate of synthesis of NP of attractive and diverse morphologies, and elimination of elaborate maintenance of cell cultures and eco-friendliness. Presently, the researchers are looking into the development of cost-effective procedures for producing reproducible, stable, and biocompatible metal NPs using fungal cultures. The present chapter is an exhaustive overview that assesses the role of fungi in the synthesis of nanoparticles, the mechanism involved in the synthesis, the effect of different factors on the reduction of metal ions in developing low-cost techniques for the synthesis, and recovery of nanoparticles. Finally, the application of nanoparticles in food processing industries, i.e., antimicrobial mechanisms, etc., has also been discussed.


Antimicrobial Food processing Nanoparticles Mycosynthesis Cost-effective 


  1. Ahmad A, Mukherjee P, Mandal D, Senapati S, Khan MI, Kumar R, Sastry M (2002) Enzyme mediated extracellular synthesis of CdS nanoparticles by the fungus, Fusarium oxysporum. J Am Chem Soc 124:12108–12109CrossRefPubMedGoogle Scholar
  2. Ahmad A, Senapati S, Khan MI, Kumar R, Ramani R, Srinivas V, Sastry M (2003a) Intracellular synthesis of gold nanoparticles by a novel alkali tolerant Actinomycete, Rhodococcus species. Nanotechnology 14:824–828CrossRefGoogle Scholar
  3. Ahmad A, Senapati R, Khan MI, Kumar R, Sastry M (2003b) Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic Actinomycete, thermomonospora sp. Langmuir 19(8):3550–3553CrossRefGoogle Scholar
  4. Ali ME, Hashim U, Mustafa S, Che Man YB, Islam KN (2012) Gold nanoparticle sensor for the visual detection of pork adulteration in meatball formulation. J Nanomater 10:36–07Google Scholar
  5. Aziz N, Faraz M, Pandey R, Sakir M, Fatma T, Varma A, Barman I, Prasad R (2015) Facile algae-derived route to biogenic silver nanoparticles: synthesis, antibacterial and photocatalytic properties. Langmuir 31:11605–11612. Scholar
  6. Aziz N, Pandey R, Barman I, Prasad R (2016) Leveraging the attributes of Mucor hiemalis-derived silver nanoparticles for a synergistic broad-spectrum antimicrobial platform. Front Microbiol 7:1984. Scholar
  7. Azizi S, Ahmad MB, Namvar F, Mohamad R (2014) Green biosynthesis and characterization of zinc oxide nanoparticles using brown marine macroalga Sargassum muticum aqueous extract. Mater Lett 116:275–277CrossRefGoogle Scholar
  8. Bai YX, Li YF, Yang Y, Yi LX (2006) Covalent immobilization of triacylglycerol lipase onto functionalized nanoscale SiO2 spheres. Process Biochem 41:770–777CrossRefGoogle Scholar
  9. Bandyopadhyay S, Peralta-Videa JR, Hernandez-Viezcas JA, Montes MO, Keller AA, Gardea-Torresdey L (2012) Microscopic and spectroscopic methods applied to the measurements of nanoparticles in the environment. Appl Spectrosc Rev 47:180–206CrossRefGoogle Scholar
  10. Bansal V, Rautaray D, Ahmad A, Sastry M (2004) Biosynthesis of zirconia nanoparticles using the fungus Fusarium oxysporum. J Mater Chem 14:3303–3305CrossRefGoogle Scholar
  11. Bansal V, Rautaray D, Bharde A, Ahire K, Sanyal A, Ahamad A, Sastry M (2005) Fungus-mediated biosynthesis of silica and titania particles. J Mater Chem 15(26):2583–2589CrossRefGoogle Scholar
  12. Berekaa MM (2015) Nanotechnology in food industry; advances in food processing, packaging and food safety. Int J Curr Microbiol App Sci 4(5):345–357Google Scholar
  13. Bharde A, Rautaray D, Bansal V, Ahmad A, Sarkar I, Yusuf SM, Sanyal M, Sastry M (2006) Extracellular biosynthesis of magnetite using fungi. Small 2:135–141CrossRefPubMedGoogle Scholar
  14. Bhattacharya D, Gupta RK (2005) Nanotechnology and potential of microorganisms. Crit Rev Biotechnol 25:199–204CrossRefPubMedGoogle Scholar
  15. Bolea E, Laborda F, Castillo JR (2010) Metal associations to micro particles, nano colloids and macromolecules in compost leachates: size characterization by asymmetrical flow field-flow fractionation coupled to ICP-MS. Anal Chem Acta 661:206–214CrossRefGoogle Scholar
  16. Bouby M, Geckeis H, Manh TN, Yun J-IL, Dardenne K, Schafer T, Walther C, Kim JI (2004) Laser-induced breakdown detection combined with asymmetrical flow field flow fractionation: application to iron oxi/hydroxide colloid characterization. J Chromatogr A 10:40–97Google Scholar
  17. Castro-Longoria E, Vilchis-Nestor AR, Avalos-Borja M (2011) Biosynthesis of silver, gold and metallic nanoparticles using the filamentous fungus Neurospora crassa. Colloids Surf B Bio Interfaces 83:42–48CrossRefGoogle Scholar
  18. Castro-Longoria E, Moreno-Velásquez SD, Vilchis-Nestor AR, Arenas-Berumen E, Avalos-Borja M (2012) Production of platinum nanoparticles and nano aggregates using Neurospora crassa. J Microbiol Biotechnol 22:1000–1004CrossRefPubMedGoogle Scholar
  19. Chen JC, Lin ZH, Ma XX (2003) Evidence of the production of silver nanoparticles via pretreatment of Phoma sp.3.2883 with silver nitrate. Lett Appl Microbiol 37:105–110CrossRefPubMedGoogle Scholar
  20. Chertok B, Moffat BA, David AE, Yu F, Bargemann C, Ross BD, Yang VC (2008) Iron oxide nanoparticles as a drug delivery vehicle for MRI monitored magnetic targeting of brain tumors. Biomaterials 29(4):487–496CrossRefPubMedGoogle Scholar
  21. Da Silva BF, Perez S, Gardinalli P, Singhal RK, Mozeto AA, Barcelo D (2011) Analytical chemistry of metallic nanoparticles in natural environments. Trends Anal Chem 30:528–540CrossRefGoogle Scholar
  22. Das SK, Das AR, Guha AK (2009) Gold nanoparticles: microbial synthesis and application in water hygiene management. Langmuir 25:8192–8199CrossRefPubMedGoogle Scholar
  23. Das SK, Das AR, Guha AK (2010) Microbial synthesis of multi shaped gold nano structures. Small 6:1012–1021CrossRefPubMedGoogle Scholar
  24. Deligiannakis Y, Sotiriou GA, Pratsinis SE (2012) Antioxidant and antiradical SiO2 nanoparticles covalently functionalized with gallic acid. ACS Appl Mater Interfaces 4:6609–6617CrossRefPubMedGoogle Scholar
  25. Dhillon GS, Brar SK, Kaur S, Verma M (2012) Green approach for nanoparticle biosynthesis by fungi. Curr Trends Appl 32:49–73Google Scholar
  26. Durán N, Marcato PD, De S, Gabriel IH, Alves OL, Esposito E (2007) Antibacterial effect of silver nanoparticles produced by fungal process on textile fabrics and their effluent treatment. J Biomed Nano Bechnol 3:203–208CrossRefGoogle Scholar
  27. Durán N, Marcato PD, Alves OL, de Souza GIH, Esposito E (2005) Mechanistic aspects of biosynthesis of silver nanoparticles by several Fusarium oxysporum strains. J Nano Biotechnol 3:1–8. Scholar
  28. Farre M, Sanchıs J, Barcelo D (2011) Analysis and assessment of the occurrence, the fate and the behavior of nanomaterials in the environment. Trends Anal Chem 30:517–527CrossRefGoogle Scholar
  29. Gade A, Ingle A, Whiteley C, Rai M (2010) Mycogenic metal nanoparticles: progress and applications. Biotechnol Lett 32:593–600CrossRefPubMedGoogle Scholar
  30. Gaikwad S, Birla SS, Ingle AP, Gade AK, Marcato PD, Rai MK, Duran D (2013) Screening of different Fusarium species to select potential species for the synthesis of silver nanoparticles. J Braz Chem Soc 24:1974–1982Google Scholar
  31. Gajbhiye M, Kesharwani J, Ingle A, Gade A, Rai M (2009) Fungus-mediated synthesis of silver nanoparticles and their activity against pathogenic fungi in combination with fluconazole: nanomedicine. Nano Technol Biol Med 5:382–386CrossRefGoogle Scholar
  32. Gao L, Zhang D, Chen M (2008) Drug nanocrystals for the formulation of poorly soluble drugs and its application as a potential drug delivery system. J Nanopart Res 10:845–862CrossRefGoogle Scholar
  33. Gelperina S, Kisich K, Iseman SD, Heifets L (2005) The potential advantages of nanoparticle drug delivery systems in chemotherapy of tuberculosis. Am J Respir Crit Care Med 172:1487–1490CrossRefPubMedPubMedCentralGoogle Scholar
  34. Gericke M, Pinches A (2006) Biological synthesis of metal nanoparticles. Hydrometallurgy 83:132–140CrossRefGoogle Scholar
  35. Giddings JC (1993) Field-flow fractionation: analysis of macromolecular, colloidal, and particulate materials. Science 260:1456–1465CrossRefPubMedGoogle Scholar
  36. Glomm WR (2005) Functionalized gold nanoparticles for applications in bionanotechnology. J Dispers Sci Technol 26:389–414CrossRefGoogle Scholar
  37. Gopinath PM, Narchonai G, Dhanasekaran D, Ranjani A, Thajuddin N (2015) Mycosynthesis, characterization and antibacterial properties of AgNPs against multidrug resistant (MDR) bacterial pathogens of female infertility cases. Asian J Pharm Sci 10:138–145CrossRefGoogle Scholar
  38. Gurunathan S, Lee K-J, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH (2009) Anti-angiogenic properties of silver nanoparticles. Biomaterials 30:6341–6350CrossRefPubMedGoogle Scholar
  39. Hassellov M, Readman JW, Ranville JF, Tiede K (2008) Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology 17:344CrossRefPubMedGoogle Scholar
  40. He X, Hwang HM (2016) Nanotechnology in food science: functionality, applicability, and safety assessment. J Food Drug Anal 24:671–681CrossRefPubMedGoogle Scholar
  41. Hergt R, Dutz R (2007) Magnetic particle hyperthermia biophysical limitations of a visionary tumour therapy. J Magn Mag Mater 311(1):187–192CrossRefGoogle Scholar
  42. Hergt R, Hiergeist R, Zeisberger M, Schuler D, Heyen U, Hilger I, Kaiser WA (2005) Magnetic properties of bacterial magnetosomes as potential diagnostic and therapeutic tools. J Magn Magn Mater 1:80–86CrossRefGoogle Scholar
  43. Inbaraj BS, Chen BH (2016) Nanomaterial-based sensors for detection of foodborne bacterial pathogens and toxins as well as pork adulteration in meat products. J Food Drug Anal 24:15–28CrossRefGoogle Scholar
  44. Ingale AG, Chaudhari AN (2013) Biogenic synthesis of nanoparticles and potential applications: an eco-friendly approach. J Nanomedicine Nanotechnol 4(2):10–17CrossRefGoogle Scholar
  45. Ingle A, Gade A, Pierrat S, Sönnichsen C, Rai M (2008) Mycosynthesis of silver nanoparticles using the fungus Fusarium acuminatum and its activity against some human pathogenic bacteria. Curr Nanosci 4:141–144CrossRefGoogle Scholar
  46. Jain N, Bhargava A, Majumdar S, Tarafdar JC, Panwar J (2011) Extracellular biosynthesis and characterization of silver nanoparticles using Aspergillus flavus NJP08: a mechanism perspective. Nanoscale 3(2):635–641CrossRefPubMedGoogle Scholar
  47. Jeevan P, Ramya K, Edith R (2012) Extracellular biosynthesis of silver nanoparticles by culture supernatant of Pseudomonas aeruginosa. Indian J Biotechnol 11:72–76Google Scholar
  48. Jha AK, Prasad K (2010) Ferroelectric BaTiO3 nanoparticles: biosynthesis and characterization. Colloids Surf B 75(1):330–334CrossRefGoogle Scholar
  49. Joerger R, Klaus T, Olsson E, Granqvist CG (1999) Spectrally selective solar absorber coatings prepared by a biomimetic technique. Proc Soc Photo-Opt Instrum Eng 3789:2–7Google Scholar
  50. Joshi M, Bhatacharyya A, Ali SW (2008) Characterization techniques for nanotechnology applications in textiles. Indian J Fibre Text Res 33:304–317Google Scholar
  51. Juibari MM, Abbasalizadeh S, Jouzani GS, Noruzi M (2011) Intensified biosynthesis of silver nanoparticles using a native extremophilic Ureibacillus thermosphaericus strain. Mater Lett 65(6):1014–1017CrossRefGoogle Scholar
  52. Kathiresan K, Manivannan S, Nabeel M, Dhivya B (2009) Studies on silver nanoparticles synthesized by a marine fungus, Penicillium fellutanum isolated from coastal mangrove sediment. Colloids Surf B Biointerfaces 71:133–137CrossRefPubMedGoogle Scholar
  53. Kumar SA, Ansary AA, Ahmad A, Khan MI (2007) Extracellular biosynthesis of CdSe quantum dots by the fungus, Fusarium oxysporum. J Biomed Nanotechnol 3:190–194CrossRefGoogle Scholar
  54. Lead JR, Wilkinson KJ (2006) Aquatic colloids and nanoparticles: current knowledge and future trends. Environ Chem 3:159–171CrossRefGoogle Scholar
  55. Li X, Li W, Jiang Y, Ding Y, Yun J, Tang Y, Zhang P (2011) Effect of nano-ZnO-coated active packaging on quality of fresh-cut ‘Fuji’ apple. Int J Food Sci Technol 46:1947–1955CrossRefGoogle Scholar
  56. Lin YH, Chen SH, Chuang YC, Lu YC, Shen TY, Chang CA, Lin CS (2008) Disposable amperometric immunosensing strips fabricated by Au nanoparticles-modified screen-printed carbon electrodes for the detection of food borne pathogen Escherichia coli O157:H7. Biosens Bioelectron 23:1832–1837CrossRefPubMedGoogle Scholar
  57. Luykx DM, Peters RJ, Van Ruth SM, Bousmeester H (2008) A review of analytical methods for the identification and characterization of nano delivery systems in food. J Agric Food Chem 56(18):8231–8247CrossRefPubMedGoogle Scholar
  58. Magnuson BA, Jonaitis TS, Card JW (2011) A brief review of the occurrence, use, and safety of food-related nanomaterials. J Food Sci 76:126–133CrossRefGoogle Scholar
  59. Mahdavi M, Namvar F, Ahmad MB, Mohammad R (2013) Green biosynthesis and characterization of magnetic iron oxide (Fe3O4) nanoparticles using seaweed (Sargassum muticum) aqueous extract. Molecules 18:954–5964Google Scholar
  60. Mandal D, Bolander ME, Mukhopadhyay D, Sarkar G, Mukherjee P (2006) The use of microorganisms for the formation of metal nanoparticles and their application. Appl Microbiol Biotechnol 69:485–492CrossRefPubMedGoogle Scholar
  61. Mao X, Yang L, Su XL, Li Y (2006) A nanoparticle amplification based quartz crystal microbalance DNA sensor for detection of Escherichia coli O157:H7. Biosens Bioelectron 21:1178–1185CrossRefPubMedGoogle Scholar
  62. Meyer V (2008) Genetic engineering of filamentous fungi progress, obstacles and future trends. Biotechnol Adv 26:177–185CrossRefPubMedGoogle Scholar
  63. Mohanpuria P, Rana NK, Yadav SK (2007) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10:507–517CrossRefGoogle Scholar
  64. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Parishcha R, Ajaykumar PV, Alam M, Kumar R et al (2001a) Fungus-mediated synthesis of silver nanoparticles and their immobilization in the mycelial matrix: a novel biological approach to nanoparticle synthesis. Nano Lett 1:515–519CrossRefGoogle Scholar
  65. Mukherjee P, Ahmad A, Mandal D, Senapati S, Sainkar SR, Khan MI, Ramani R, Parischa R, Ajayakumar PV, Alam M (2001b) Bioreduction of AuCl4− ions by the fungus, Verticillium sp. and surface trapping of the gold nanoparticles formed. Angew Chem Int Ed 40:3585–3588CrossRefGoogle Scholar
  66. Mukherjee P, Senapati S, Mandal D, Ahmad A, Khan MI, Kumar R, Sastry M (2002) Extracellular synthesis of gold nanoparticles by the fungus Fusarium oxysporum. Chem Bio Chem 3:461–463CrossRefPubMedGoogle Scholar
  67. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi AK, Kale SP (2008a) Green synthesis of highly stabilized nanocrystalline silver particles by a nonpathogenic and agriculturally important fungus Trichoderma asperellum. Nanotechnology 19:75–103Google Scholar
  68. Mukherjee P, Roy M, Mandal BP, Dey GK, Mukherjee PK, Ghatak J, Tyagi A, Kale SP (2008b) Green synthesis of highly stabilized nanocrystalline silver particles by a non-pathogenic and agriculturally important fungus T. asperellum. Nanotechnology 19:1–7Google Scholar
  69. Narayanan KB, Sakthivel N (2010) Biological synthesis of metal nanoparticles by microbes. Adv Colloid Interface Sci 156(1–2):1–13CrossRefPubMedGoogle Scholar
  70. Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochim Acta A Mol Biomol Spectrosc 73:374–381CrossRefPubMedGoogle Scholar
  71. Prasad R (2014) Synthesis of silver nanoparticles in photosynthetic plants. J Nanoparticles 2014(2014):963961. Scholar
  72. Prasad R (2016) Advances and applications through fungal nanobiotechnology. Springer International Publishing (ISBN: 978-3-319-42989-2)Google Scholar
  73. Prasad R (2017) Fungal nanotechnology: applications in agriculture, industry, and medicine. Springer International Publishing (ISBN 978-3-319-68423-9)Google Scholar
  74. Prasad R, Kumar V, Prasad KS (2014) Nanotechnology in sustainable agriculture: present concerns and future aspects. Afr J Biotechnol 13(6):705–713CrossRefGoogle Scholar
  75. Prasad R, Pandey R, Barman I (2016) Engineering tailored nanoparticles with microbes: quo vadis. WIREs Nanomedicine Nanobiotechnol 8:316–330. Scholar
  76. Prasad R, Bhattacharyya A, Nguyen QD (2017) Nanotechnology in sustainable agriculture: recent developments, challenges and perspectives. Front Microbiol 8:1014. Scholar
  77. Punjabi K, Choudhary P, Samanta L, Mukherjee S, Vaidyal S, Chowdhary A (2015) Biosynthesis of nanoparticles: a review. Int J Pharm Sci Rev Res 30(1):219–226Google Scholar
  78. Pycke BFG, Benn TM, Herckes P, Westerhoff P, Halden RU (2011) Strategies for quantifying C60 fullerenes in environmental and biological samples and implications for studies in environmental health and ecotoxicology. Trends Anal Chem 30:44–57CrossRefGoogle Scholar
  79. Rai M, Yadav P, Bridge P, Gade A (2009a) Myco nanotechnology (NT), a new and emerging science. In: Bridge R (ed) Applied mycology. CAB International, London, pp 258–267CrossRefGoogle Scholar
  80. Rai M, Yadav A, Gade A (2009b) Silver nanoparticles as a new generation of antimicrobials. Biotech Adv 27:76–83CrossRefGoogle Scholar
  81. Ramaratnam K, Iyer SK, Kinnan MK, Chumanov G, Brown PJ, Luzinov I (2008) Ultrahydrophobic textiles using nanoparticles: lotus approach. J Eng Fiber Fabr 3:1–14Google Scholar
  82. Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822CrossRefPubMedGoogle Scholar
  83. Riddin TL, Gericke M, Whiteley CG (2006) Analysis of the inter- and extracellular formation of platinum nanoparticles by Fusarium oxysporum f. sp. lycopersici using response surface methodology. Nanotechnology 17:3482–3489CrossRefPubMedGoogle Scholar
  84. Sanghi R, Verma P (2009) Biomimetic synthesis and characterisation of protein capped silver nanoparticles. Bioresour Technol 100:501–504CrossRefPubMedGoogle Scholar
  85. Sarkar R, Kumbhakar P, Mitra AK (2010) Green synthesis of silver nanoparticles and its optical properties. Dig J Nanomater Biostruct 5:491–496Google Scholar
  86. Sastry M, Ahmad A, Islam Khan M, Kumar (2003) Biosynthesis of metal nanoparticles using fungi and actinomycete. Curr Sci 85:162–170Google Scholar
  87. Schimpf ME, Caldwell K, Giddings JC (eds) (2000) Field-flow fractionation handbook. Wiley-Interscience, New YorkGoogle Scholar
  88. Sekhon BS (2010) Food nanotechnology- an overview. Nanotechnol Sci Appl 3:1–15PubMedPubMedCentralGoogle Scholar
  89. Shakibaie M, Khorramizadeh MR, Faramarzi MA, Sabzevari O, Shahverdi AR (2010) Biosynthesis and recovery of selenium nanoparticles and the effects on matrix metalloproteinase-2 expression. Biotechnol Appl Biochem 56:7–15CrossRefPubMedGoogle Scholar
  90. Sinha N, Ma J, Yeow JTW (2006) Carbon nanotube-based sensors. Nanosci Nanotechnol l(6):573–590CrossRefGoogle Scholar
  91. Sonawane SK, Arya SS, LeBlanc JG, Jha N (2014) Use of nanomaterials in the detection of food contaminants. Eur J Nutr Food Saf 4(4):301–317CrossRefGoogle Scholar
  92. Tang D, Tang J, Su B, Chen G (2011) Gold nanoparticles-decorated amine-terminated poly(amidoamine) dendrimer for sensitive electrochemical immunoassay of brevetoxins in food samples. Biosens Bioelectron 26:2090–2006CrossRefPubMedGoogle Scholar
  93. Tiede K, Boxall AB, Tear SP, Lewis J, David H, Hassellov M (2008) Detection and characterization of engineered nanoparticles in food and the environment- a review. Food Addit Contam A Chem Anal Control Expo Risk Assess 25(7):795–821CrossRefGoogle Scholar
  94. Volesky B, Holan ZR (1995) Biosorption of heavy metals. Biotechnol Prog 11:235–250CrossRefPubMedGoogle Scholar
  95. Waghmare SS, Deshmukh AM, Kulkarni SW, Oswaldo LA (2011) Biosynthesis and characterization of manganese and zinc nanoparticles. Univ J Environ Res Technol 1:64–69Google Scholar
  96. Wesley SJ, Raja P, Sundar Raj AA, Tiroutchelvamae D (2014) Review on- nanotechnology applications in food packaging and safety. Int J Eng Res 3(11):645–651CrossRefGoogle Scholar
  97. Williams A, Varela E, Meehan E, Tribe K (2002) Characterisation of nanoparticulate systems by hydrodynamic chromatography. Int J Pharm 242:295–299CrossRefPubMedGoogle Scholar
  98. Xiang L, Bin W, Huali J et al (2007) Bacterial magnetic particles (BMPs)-PEI as a novel and efficient non-viral gene delivery system. J Gene Med 9(8):679–690CrossRefPubMedGoogle Scholar
  99. Xie J, Lee JY, Wang DIC, Ting YP (2007) High-yield synthesis of complex gold nanostructures in a fungal system. J Phys Chem C111:16858–16865Google Scholar
  100. Yadav L, Tripathi RM, Prasad R, Pudake RN, Mittal J (2017) Antibacterial activity of Cu nanoparticles against E. coli, Staphylococcus aureus and Pseudomonas aeruginosa. Nano Biomed Eng 9(1):9–14. Scholar
  101. Zhang X, Yan S, Tyagi RD, Surampalli RY (2011) Synthesis of nanoparticles by microorganisms and their application in enhancing microbiological reaction rates. Chemosphere 82:489–494CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Lakshmishri Roy
    • 1
  • Debabrata Bera
    • 2
  • Sunita Adak
    • 3
  1. 1.Department of Food TechnologyTechno IndiaKolkataIndia
  2. 2.Department of Food and Biochemical EngineeringJadavpur UniversityKolkataIndia
  3. 3.Biotecnika Info Labs Pvt. Ltd.BangaloreIndia

Personalised recommendations