Butler Matrix Fed Exponentially Tapered H-Plane Horn Antenna Array System Using Substrate Integrated Folded Waveguide Technology

  • Wriddhi Bhowmik
  • Vibha Rani Gupta
  • Shweta Srivastava
  • Laxman Prasad
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 470)

Abstract

This paper introduces the implementation of 4 × 4 Butler matrix fed antenna array system using substrate integrated folded waveguide (SIFW) technology. The antenna array system generates four directive beams in different angular directions with gain and half power beam width (HPBW) of 6.43, 6.43, 6.33, and 6.43 dB and 12o, 9o, 10o, and 10o. These directive beams will help to suppress the interfering signals from unwanted users, and hence, the quality of high-speed wireless communication will be improved.

Keywords

Butler matrix array Substrate integrated waveguide Substrate integrated folded waveguide (SIFW) and horn antenna 

References

  1. 1.
    W. White, Pattern limitations in multiple-beam antennas. IRE Trans. Antennas Propag. 10, 430–436 (1962)CrossRefGoogle Scholar
  2. 2.
    J.-S. Neron, G.-Y. Delisle, Microstrip EHF Butler matrix design and realization. ETRI J. 27, 788–797 (2005)Google Scholar
  3. 3.
    O.U. Khan, Design of X-band 4 × 4 Butler matrix for microstrip patch antenna array. TENCON 2006, Hong Kong (2006), pp. 1–4Google Scholar
  4. 4.
    S.Z. Ibrahim, M.K.A. Rahim, Switched beam antenna using omnidirectional antenna array, in Asia Pacific Conference on Applied Electromagnetics, Malaysia (2007), pp. 1–4Google Scholar
  5. 5.
    A.M. El-Tager, M.A. Eleiwa, Design and implementation of smart antenna using Butler matrix for ISM-band, in Progress in Electromagnetic Research Symposium, China (2009), pp. 571–575Google Scholar
  6. 6.
    C.-H. Tseng, C.-J. Chen, T.-H. Chu, A low-cost 60-GHz switched-beam patch antenna array with Butler matrix network. IEEE Antennas Wirel. Propag. Lett. 07, 432–435 (2008)CrossRefGoogle Scholar
  7. 7.
    J. Remez, R. Carmon, Compact designs of waveguide Butler matrices. IEEE Antennas Wirel. Propagat. Lett. 05, 27–31 (2006)CrossRefGoogle Scholar
  8. 8.
    T. Djerafi, N.J.G. Fonseca, K. Wu, Design and implementation of a planar 4 × 4 Butler matrix in SIW technology for wide band high power applications. Prog. Electromagn. Res. B. 35, 29–51 (2011)CrossRefGoogle Scholar
  9. 9.
    C.-J. Chen, T.-H. Chu, Design of a 60-GHz substrate integrated waveguide Butler matrix-a systematic approach. IEEE Trans. Microw. Theory Tech. 58, 1724–1733 (2010)CrossRefGoogle Scholar
  10. 10.
    A.A.M. Ali, N.J.G. Fonseca, F. Coccetti, H. Aubert, Design and implementation of two-layer compact wideband Butler matrices in SIW technology for Ku-band applications. IEEE Trans. Antennas Propag. 59, 503–512 (2011)CrossRefGoogle Scholar
  11. 11.
    Y.J. Cheng, C.A. Zhang, Y. Fan, Miniaturized multilayer folded substrate integrated waveguide Butler matrix. Prog. Electromagn. Res. C. 21, 45–58 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Butler, R. Lowe, Beam-forming matrix simplifies design of electrically scanned antennas. Electron. Design. 9, 170–173 (1961)Google Scholar
  13. 13.
    S.R. Ahmad, F.C. Seman, 4-port Butler matrix for switched multibeam antenna array, in Asia Pacific Conference on Applied Electromagnetics, Malaysia (2005)Google Scholar
  14. 14.
    G.E. Dominguez, J.-M. Fernandez-Gonzalez, P. Padilla, M. Sierra-Castafier, Mutual coupling reduction using EBG in steering antennas. IEEE Antennas Wirel. Propag. Lett. 11, 1265–1268 (2006)CrossRefGoogle Scholar
  15. 15.
    Y. Cassivi, L. Perregrini, P. Arcioni, M. Bressan, K. Wu, G. Conciauro, Dispersion characteristics of substrate integrated rectangular waveguide. IEEE Microw. Wirel. Compon. Lett. 12, 333–335 (2001)CrossRefGoogle Scholar
  16. 16.
    F. Xu, K. Wu, Guided-wave and leakage characteristics of substrate integrated waveguide. IEEE Trans. Microw. Theory Tech. 53, 66–73 (2005)CrossRefGoogle Scholar
  17. 17.
    H. Nam, T.-S. Yun, K.-B. Kim, K.-C. Yoon, J.-C. Lee, Ku—band transition between microstrip and substrate integrated waveguide (SIW), in Asia-Pacific Microwave Conference, China (2005)Google Scholar
  18. 18.
    N. Grigoropoulos, B. Sanz-Izquierdo, P.R. Young, Substarte integrated folded waveguides (SIFW) and filters. IEEE Microw. Wirel. Compon. Lett. 15, 829–831 (2005)CrossRefGoogle Scholar
  19. 19.
    N. Grigoropoulos, P.R. Young, Compact folded waveguides, in 34th European Microwave Conference, Amsterdam (2004), pp. 973–976Google Scholar
  20. 20.
    H. Wang, D.G. Fang, B. Zhang, W.Q. Che, Dielectric loaded substrate integrated waveguide H-plane horn antennas. IEEE Trans. Antennas Propag. 58, 640–647 (2010)CrossRefGoogle Scholar
  21. 21.
    W. Che, B. Fu, P. Yao, Y.L. Chow, E.K.N. Yung, A compact substrate integrated waveguide H-plane horn antenna with dielectric arc lens. Int. J. RF Microw. Comput.-Aided Eng. 473–479 (2007)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2017

Authors and Affiliations

  • Wriddhi Bhowmik
    • 1
  • Vibha Rani Gupta
    • 2
  • Shweta Srivastava
    • 3
  • Laxman Prasad
    • 4
  1. 1.Haldia Institute of TechnologyHaldiaIndia
  2. 2.Birla Institute of TechnologyMesa, RanchiIndia
  3. 3.Jaypee Institute of Information TechnologyNoidaIndia
  4. 4.Raj Kumar Goel Institute of TechnologyGhaziabadIndia

Personalised recommendations