Commercial Products by Radiation-Induced Graft Polymerization

  • Kyoichi Saito
  • Kunio Fujiwara
  • Takanobu Sugo
Chapter

Abstract

Radiation-induced graft polymerization is a powerful tool for the following reasons: (1) From the macroscopic standpoint, the form of the adsorbent can be selected. For example, nonwoven fabrics and porous sheets may be adopted as trunk polymers instead of beads or granules. (2) From the microscopic standpoint, graft chains are relatively flexible, providing a novel space for ions and molecules. For example, proteins can be multilayered via multipoint binding, and inorganic precipitates can be immobilized through entanglement and penetration. (3) From an industrial standpoint, the pre-irradiation method is advantageous in that the processes, i.e., irradiation and grafting, are separable. An electron-beam-irradiated wound film and bobbins of gamma-ray-irradiated fibers can be used as trunk polymers in continuous and batch modes, respectively. Many polymeric adsorbents of various forms and components can be produced by radiation-induced graft polymerization.

Keywords

Pre-irradiation grafting Electron-beam-irradiated wound film Bobbin of gamma-ray-irradiated fiber 

References

  1. 1.
    T. Hori, M. Hashino, A. Omori, T. Matsuda, K. Takasa, K. Watanabe, Synthesis of novel microfilters with ion-exchange capacity and its application to ultrapure water production systems. J. Membr. Sci. 132, 203–211 (1997)CrossRefGoogle Scholar
  2. 2.
    H. Shirataki, C. Sudoh, T. Eshima, U. Yokoyama, K. Okuyama, Evaluation of anion-exchange hollow-fiber membrane adsorber containing γ-ray grafted glycidyl methacrylate chains. J. Chromatogr. A 1218, 2381–2388 (2011)CrossRefGoogle Scholar
  3. 3.
    N. Kubota, Y. Konno, K. Saito, K. Sugita, K. Watanabe, T. Sugo, Module performance of anion-exchange porous hollow-fiber membranes for high-speed protein recovery. J. Chromatogr. A 782, 159–165 (1997)CrossRefGoogle Scholar
  4. 4.
    S. Tsuneda, K. Saito, S. Furusaki, T. Sugo, High-throughput processing of proteins using a porous and tentacle anion-exchange membrane. J. Chromatogr. A 689, 211–218 (1995)CrossRefGoogle Scholar
  5. 5.
    K. Fujiwara, Ebara Engineering Review, vol. 146 (1990), pp. 1–7Google Scholar
  6. 6.
    Y. Okamura, K. Fujiwara, N. Iijima, T. Syoda, K. Suzuki, T. Sugo, T. Shimidu, R. Itagaki, A. Takahashi, T. Ono, T. Kikuchi, T. Someya, R. Ishihara, T. Kojima, D. Umeno, K. Saito, Preparation of adsorptive fibers for removal of cesium from seawater. J. Ion Exchange 24, 8–13 (2013)CrossRefGoogle Scholar
  7. 7.
    E. Tusa, in Efficiency of Fortum’s CsTreatTM and SrTreatTM in cesium and strontium removal in Fukushima Daiichi NPP, Homepage of Fortum CoGoogle Scholar
  8. 8.
    M. Kono, S. Umino, S. Goto, K. Fujiwara, T. Sugo, T. Kojima, S. Kawai-Noma, D. Umeno, K. Saito, Preparation of adsorptive fiber by a combination of peroxo complex of titanium anion and DMAPAA-grafted fiber for the removal of strontium from seawater. Bull. Soc. Sea Water Sci. Jpn. 69, 90–97 (2015)Google Scholar
  9. 9.
    S. Goto, M.J. Katagiri, S. Naruke, K. Fujiwara, T. Sugo, T. Kojima, S. Kawai-Noma, D. Umeno, K. Saito, in Linear relationship between impregnation percentage of sodium titanate of adsorptive fiber and adsorption capacity for strontium in artificial seawater. Submitted to Bunseki KagakuGoogle Scholar
  10. 10.
    S. Goto, M. Katagiri, S. Naruke, K. Fujiwara, T. Sugo, S. Kawai-Noma, D. Umeno, K. Saito, in Improvement in impregnation percentage of sodium titanate of adsorptive fiber through repetitive immobilization of peroxotitanium complex anions to anion-exchange fiber. Submitted to Bunseki KagakuGoogle Scholar
  11. 11.
    R. Ishihara, K. Fujiwara, T. Harayama, Y. Okamura, S. Uchiyama, M. Sugiyama, T. Someya, W. Amakai, S. Umino, T. Ono, A. Nide, Y. Hirayama, T. Baba, T. Kojima, D. Umeno, K. Saito, S. Asai, T. Sugo, Removal of cesium using cobalt-ferrocyanide-impregnated polymer-chain-grafted fibers. J. Nucl. Sci. Technol. 48, 1281–1284 (2011)CrossRefGoogle Scholar
  12. 12.
    S. Goto, S. Umino, W. Amakai, K. Fujiwara, T. Sugo, T. Kojima, S. Kawai-Noma, D. Umeno, K. Saito, Impregnation structure of cobalt ferrocyanide microparticles by the polymer chain grafted onto nylon fiber. J. Nucl. Sci. Technol. 53, 1251–1255 (2016)CrossRefGoogle Scholar
  13. 13.
    TEPCO, in Evaluation of performance of Cs and Sr adsorptive fibers installed in the harbor of TEPCO Fukushima Daiichi NPP (2016, 22 Dec)Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Kyoichi Saito
    • 1
  • Kunio Fujiwara
    • 2
  • Takanobu Sugo
    • 3
  1. 1.Chiba UniversityChibaJapan
  2. 2.KJK Co., Ltd.TakasakiJapan
  3. 3.KJK Co., Ltd.TakasakiJapan

Personalised recommendations