Revolution in the Form of Polymeric Adsorbents 2: Fibers, Films, and Particles

Chapter

Abstract

Commercially available adsorbents are in the form of beads, granules, and short-length fibers. A 15-cm-diameter bobbin consisting of a fiber can be modified by radiation-induced graft polymerization. The fiber of the resultant bobbin can be fabricated into a wound filter, a nonwoven fabric, or a braid depending on the conditions of practical separation. In this chapter, examples of the application of functional fibers are the recovery of uranium from seawater using a chelating-group-immobilized fiber and the resolution of neodymium and dysprosium using an extractant-impregnated fiber. In addition, a polyethylene film is modified into ion-exchange membranes installed in an electrodialyzer for the production of edible salt.

Keywords

Wound filter Nonwoven fabrics Recovery of uranium from seawater Resolution of neodymium and dysprosium 

References

  1. 1.
    K. Saito, Preparation of polymeric fibers immobilizing inorganic compounds, enzymes, and extractants designed for radionuclide decontamination, ultrapure water production, and rare-earth metal purification. Kobunshi Ronbunshu 71, 211–222 (2014)CrossRefGoogle Scholar
  2. 2.
    G.B. Barton, J.L. Hepworth, E.D. McClanahan, R.L. Moore, H.H. Van Tuyl, Chemical processing waster; recovering fission products. Ind. Eng. Chem. 50, 212–216 (1958)CrossRefGoogle Scholar
  3. 3.
    J. Letho, R. Harjula, J. Wallace, Adsorption of cesium on potassium cobalt hexacyanoferrate(lll). J. Radioanal. Nucl. Chem. 111, 297–304 (1987)CrossRefGoogle Scholar
  4. 4.
    H. Mimura, J. Lehto, R. Harjula, Chemical and thermal stability of potassium nickel hexacyanoferrate(ll). J. Nucl. Sci. Technol. 34, 582–587 (1997)CrossRefGoogle Scholar
  5. 5.
    I. Izmail, M. El-Sourough, N. Moneim, H. Aly, Equilibrium and kinetics studies of the sorption of cesium by potassium nickel hexacyanoferrate complex. J. Radioanal. Nucl. Chem. 240, 59–67 (1999)CrossRefGoogle Scholar
  6. 6.
    K. Watari, M. Izawa, Separation of radiocesium by copper ferrocyanide-anion exchange resin. J. Nucl. Sci. Technol. 2, 321–322 (1965)CrossRefGoogle Scholar
  7. 7.
    K. Watari, K. Imai, M. Izawa, Radiochemical application of iron ferrocyanide-anion exchange resin. J. Nucl. Sci. Technol. 5, 309–312 (1968)CrossRefGoogle Scholar
  8. 8.
    T.P. Valsala, A. Joseph, J.G. Shah, K. Raj, V. Venugopal, Synthesis and characterization of cobalt ferrocyanides loaded on organic anion exchanger. J. Nucl. Mater. 384, 146–152 (2009)CrossRefGoogle Scholar
  9. 9.
    T.P. Valsala, S.C. Roy, J.G. Shah, J. Gabriel, K. Raj, V. Venugopal, Removal of radioactive caesium from low level radioactive waste (LLW) streams using cobalt ferrocyanide impregnated organic anion exchanger. J. Hazard Mater. 166, 1148–1153 (2009)Google Scholar
  10. 10.
    K. Tanihara, Selective separation of cesium from strongly acidic nitrate media by repeated use of cupric ferrocyanide-silica gel composite ion exchanger of redox type. in Reports of the Kyushu National Industrial Research Institute, No. 61, pp. 23–28 (1998)Google Scholar
  11. 11.
    H. Mimura, M. Kimura, K. Akiba, Y. Onodera, Selective removal of cesium from highly concentrated sodium nitrate neutral solutions by potassium nickel hexacyanoferrate(ll)-loaded silica gels. Solvent Extr. Ion Exch. 17, 403–417 (1999)CrossRefGoogle Scholar
  12. 12.
    H. Mimura, M. Kimura, K. Akiba, Y. Onodera, Separation of cesium and strontium by potassium hexacyanoferrate(ll)-loaded zeolite A. J. Nucl. Sci. Technol. 36, 307–310 (1999)CrossRefGoogle Scholar
  13. 13.
    R. Ishihara, K. Fujiwara, T. Harayama, Y. Okamura, S. Uchiyama, M. Sugiyama, T. Someya, W. Amakai, S. Umino, T. Ono, A. Nide, Y. Hirayama, T. Baba, T. Kojima, D. Umeno, K. Saito, S. Asai, T. Sugo, Removal of cesium using cobalt-ferrocyanide-impregnated polymer-chain-grafted fibers. J. Nucl. Sci. Technol. 48, 1281–1284 (2011)CrossRefGoogle Scholar
  14. 14.
    Y. Hirayama, Y. Okamura, K. Fujiwara, T. Sugo, D. Umeno, K. Saito, Effect of salt concentration of cesium solution on cesium-binding capacity of potassium cobalt-hexacyanoferrate-impregnated fiber. J. Chem. Eng. Japan. 39, 28–32 (2013)Google Scholar
  15. 15.
    Y. Okamura, K. Fujiwara, N. Iijima, T. Syoda, K. Suzuki, T. Sugo, T. Shimidu, R. Itagaki, A. Takahashi, T. Ono, T. Kikuchi, T. Someya, R. Ishihara, T. Kojima, D. Umeno, K. Saito, J. Ion Exch. 24, 8–13 (2013)CrossRefGoogle Scholar
  16. 16.
    W. Amakai, M. Sugiyama, K. Fujiwara, T. Sugo, D. Umeno, K. Saito, Adsorption isotherms for cesium ions in seawater of insoluble cobalt and nickel ferrocyanide-impregnated fibers. Bull. Soc. Sea Water Sci. Jpn. 68, 18–24 (2014)Google Scholar
  17. 17.
    W. Amakai, Y. Okamura, K. Fujiwara, T. Sugo, D. Umeno, K. Saito, Impregnation of insoluble cobalt ferrocyanide onto poly-(vinylbenzyl) trimethylammonium-chloride chain grafted onto 6-nylon fiber for the removal of cesium ions from freshwater. J. Soc. Remedi. Radioact. Contami. Environ. 2, 93–99 (2014)Google Scholar
  18. 18.
    S. Goto, W. Amakai, K. Fujiwara, T. Sugo, T. Kojima, S. Kawai-Noma, D. Umeno, K. Saito. A novel preparation scheme for cesium-adsorptive fibers to raise the impregnation percentage of insoluble cobalt ferrocyanide. Bull. Soc. Sea Water Sci. Jpn. 68, 298–304 (2014)Google Scholar
  19. 19.
    T. Someya, S. Asai, K. Fujiwara, T. Sugo, D. Umeno, K. Saito. Removal of cesium ions from contaminated seawater in closed area using adsorptive fiber. Bull. Soc. Sea Water Sci. Jpn. 69, 42–48 (2015)Google Scholar
  20. 20.
    M. Sugiyama, S. Goto, T. Kojima, K. Fujiwara, T. Sugo, D. Umeno, K. Saito, Impregnation process of insoluble cobalt ferrocyanide onto anion-exchange fiber prepared by radiation-induced graft polymerization. Radioisotopes 64, 219–228 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Goto, S. Umino, W. Amakai, K. Fujiwara, T. Sugo, T. Kojima, S. Kawai-Noma, D. Umeno, K. Saito, Impregnation structure of cobalt ferrocyanide microparticles by the polymer chain grafted onto nylon fiber. J. Nucl. Sci. Technol. 53, 1251–1255 (2016)CrossRefGoogle Scholar
  22. 22.
    J. Letho, A. Clearfield, The ion exchange of strontium on titanate Na4Ti9O20∙XH2O. J. Radioanal. Nucl. Chem. 118, 1–13 (1987)CrossRefGoogle Scholar
  23. 23.
    T. Harayama, S. Umino, S. Uchiyama, M. Sugiyama, K. Fujiwara, T. Sugo, S. Asai, T. Kojima, D. Umeno, K. Saito, Preparation of adorptive fibers for removal of strontium from seawater. Bull. Soc. Sea Water Sci. Jpn. 66, 295–300 (2012)Google Scholar
  24. 24.
    S. Umino, M. Kono, K. Fujiwara, T. Sugo, S. Kawai-Noma, D. Umeno, K. Saito, Selection of scheme for impregnation of sodium titanate onto ion-exchange fibers for radioactive strontium removal from seawater. Bull. Soc. Sea Water Sci. Jpn. 68, 89–93 (2014)Google Scholar
  25. 25.
    Y. Nakatani, S. Umino, M. Sugiyama, K. Fujiwara, T. Sugo, T. Kojima, D. Umeno, K. Saito, Impregnation of hydrous titanium oxide onto cation-exchange polymer chain grafted onto nylon fiber. Bull. Soc. Sea Water Sci. Jpn. 68, 196–201 (2014)Google Scholar
  26. 26.
    M. Kono, S. Umino, K. Fujiwara, T. Sugo, T. Kojima, D. Umeno, K. Saito, Repeated deposition of titanium compounds onto 6-nylon fiber for removal of strontium from seawater. Bull. Soc. Sea Water Sci. Jpn. 68, 258–263 (2014)Google Scholar
  27. 27.
    M. Kono, S. Umino, S.I. Goto, K. Fujiwara, T. Sugo, T. Kojima, S. Kawai-Noma, D. Umeno, K. Saito, Preparation of adsorptive fiber by a combination of peroxo complex of titanium anion and DMAPAA-grafted fiber for the removal of strontium from seawater. Bull. Soc. Sea Water Sci. Jpn. 69, 90–97 (2015)Google Scholar
  28. 28.
    M. Katagiri, M. Kono, S.I. Goto, K. Fujiwara, T. Sugo, S. Kawai-Noma, D. Umeno, K. Saito, Impregnation of sodium titanate onto DMAPAA-grafted fiber under mild reaction conditions and its strontium removal performance from seawater. Bull. Soc. Sea Water Sci. Jpn. 69, 270–276 (2015)Google Scholar
  29. 29.
    S. Naruke, S.I. Goto, M. Katagiri, K. Fujiwara, T. Suto, S. Kawai-Noma, D. Umeno, K. Saito, Determination of composition and strontium-binding ratio of sodium titanate impregnated onto DMAPAA-grafted fiber. Bull. Soc. Sea Water Sci. Jpn. 70, 364–368 (2016)Google Scholar
  30. 30.
    T. Yoshikawa, D. Umeno, K. Saito, T. Sugo, High-performance collection of palladium ions in acidic media using nucleic-acid-base-immobilized porous hollow-fiber membranes. J. Membr. Sci. 307, 82–87 (2008)CrossRefGoogle Scholar
  31. 31.
    T. Sasaki, K. Fujiwara, T. Sugo, S. Kawai-Noma, D. Umeno, K. Saito, Ruthenium removal from water using nucleic-acid base-immobilized fibers. Bull. Soc. Sea Water Sci. Jpn. 69, 98–104 (2015)Google Scholar
  32. 32.
    M. Sugiyama, K. Ikeda, D. Umeno, K. Saito, T. Kikuchi, K. Ando, Removal of urea from water using urease-immobilized fibers. J. Chem. Eng. Jpn. 46, 509–513 (2013)CrossRefGoogle Scholar
  33. 33.
    S. Kawashima, M. Sugiyama, K. Fujiwara, T. Sugo, T. Kikuchi, F. Koide, H. Kanoh, S. Kawai-Noma, D. Umeno, K. Saito, Preparation of catalase-immobilized and palladium-impregnated fibers for rapid decomposition of hydroperoxide in water. Radioisotopes 64, 501–507 (2015)CrossRefGoogle Scholar
  34. 34.
    K. Saito, T. Miyauchi, Chemical forms of uranium in artificial seawater. J. Nucl. Sci. Technol. 19, 145–150 (1982)CrossRefGoogle Scholar
  35. 35.
    K. Saito, T. Miyauchi, Diffusivity of uranium in artificial seawater. Kagaku Kogaku Ronbunsyu 7, 545–548 (1981)CrossRefGoogle Scholar
  36. 36.
    R.V. Davies, J. Kennedy, T.W. Mciloy, R. Spence, K.M. Hill, Extraction of uranium from seawater. Nature 203, 1110–1115 (1964)CrossRefGoogle Scholar
  37. 37.
    N. Ogata, Review on recovery of uranium from seawater. Bull. Soc. Sea Water Sci. Jpn. 34, 3–12 (1980)Google Scholar
  38. 38.
    M. Kanno. MMAJ project for the extraction of uranium from seawater. in Proceedings of and International Meeting Recovery Uranium from Seawater, vol. 12 (1983)Google Scholar
  39. 39.
    H.J. Schenk, L. Astheimer, E.G. Witte, K. Schwochau, Development of sorbers for the recovery of uranium from seawater. Part 1. Assessment of key parameters and screening studies of sorber materials. Sep. Sci. Technol. 17, 1293–1308 (1982)CrossRefGoogle Scholar
  40. 40.
    L. Astheimer, H.J. Schenk, E.G. Witte, K. Schwochau, Development of sorbers for the recovery of uranium from seawater. Part 2. The accumulation of uranium from seawater by resins containing amidoxime and imidoxime functional groups. Sep. Sci. Technol. 18, 307–339 (1983)CrossRefGoogle Scholar
  41. 41.
    H. Nobukawa, M. Tamehiro, M. Kobayashi, H. Nakagawa, J. Sakakibara, N. Takagi, Development of floating type-extraction system of uranium from sea water using sea water current and wave power. 1. J. Shipbuild. Soc. Jpn. 165, 281–292 (1989)Google Scholar
  42. 42.
    H. Nobukawa, J. Michimoto, M. Kobayashi, H. Nakagawa, J. Sakakibara, N. Takagi, M. Tamehiro, Development of floating type-extraction system of uranium from sea water using sea water current and wave power. 2. J. Shipbuild. Soc. Jpn., 168, 319–328 (1990)Google Scholar
  43. 43.
    H. Nobukawa, M. Kitamura, M. Kobayashi, H. Nakagawa, N. Takagi, M. Tamehiro. Development of floating type-extraction system of uranium from sea water using sea current and wave power. 3. J. Shipbuild. Soc. Jpn. 172, 519–528 (1992)Google Scholar
  44. 44.
    H. Egawa, H. Harada. Recovery of uranium from sea water by using chelating resins containing amidoxime groups. Nippon Kagaku Kaishi. 958–959 (1979)Google Scholar
  45. 45.
    H. Egawa, H. Harada, T. Nonaka. Preparation of adsorption resins for uranium in seawater. Nippon Kagaku Kaishi, 11 1767–1772 (1980)Google Scholar
  46. 46.
    H. Egawa, H. Harada, T. Shuto. Recovery of uranium from sea water by the use of chelating resins containing amidoxime groups. Nippon Kagaku Kaishi. 1773–1776 (1980)Google Scholar
  47. 47.
    H. Egawa, N. Kabay, S. Saigo, T. Nonaka, T. Shuto, Low-cross-linked porous chelating resins containing amidoxime groups. Bull. Soc. Sea Water Sci. Jpn. 45, 324–332 (1991)Google Scholar
  48. 48.
    T. Hirotsu, S. Katoh, K. Sugasaka, M. Seno, T. Itagaki, Adsorption equilibrium of uranium from aqueous [UO2(CO3)3]4− solutions on a polymer bearing amidoxime groups. J. Chem. Soc. Dalton Trans. 9, 1983–1986 (1986)Google Scholar
  49. 49.
    S. Katoh, K. Sugasaka, K. Sakane, N. Takai, H. Takahashi, Y. Umezawa, K. Itagaki, Preparation of fibrous adsorbent containing amidoxime group and adsorption property for uranium. Nippon Kagaku Kaishi. 1449–1454 (1982)Google Scholar
  50. 50.
    S. Katoh, K. Sugawaka, K. Sakane, N. Takai, H. Takahashi, Y. Umezawa, K. Itagaki, Enhancement of the adsorptive property of amidoxime-group-containing fiber by alkaline treatment. Nippon Kagaku Kaishi. 1455–1459 (1982)Google Scholar
  51. 51.
    Y. Kobuke, I. Tabushi, T. Aoki, T. Kamaishi, I. Hagiwara, Composite fiber adsorbent for rapid uptake of uranyl from seawater. Ind. Eng. Chem. Res. 27, 1461–1466 (1988)CrossRefGoogle Scholar
  52. 52.
    Y. Kobuke, H. Tanaka, H. Ogoshi, Imidedioxime as a significant component in so-called amidoxime resin for uranyl adsorption from seawater. Polym. J. 22, 179–182 (1990)CrossRefGoogle Scholar
  53. 53.
    T. Saito, S. Brown, S. Chatterjee, J. Kim, C. Tsouris, R.T. Mayes, L.-J. Kuo, G. Gill, Y. Oyola, C.J. Janke, S. Dai, Uranium recovery from seawater: development of fiber adsorbents prepared via atom-transfer radical polymerization. J. Mater. Chem. A 2, 14674–14681 (2014)CrossRefGoogle Scholar
  54. 54.
    S. Brown, Y. Yue, L.-J. Kuo, N. Mehio, M. Li, G. Gill, C. Tsouris, R.T. Mayes, T. Saito, S. Dai, Uranium adsorbent fibers prepared by atom-transfer radical polymerization (ATRP) from poly(vinyl chloride)-co-chlorinated poly(vinyl chloride) (PVC-co-CPVC) fiber. Ind. Eng. Chem. Res. 55, 4139–4148 (2016)CrossRefGoogle Scholar
  55. 55.
    T. Hori, K. Saito, S. Furusaki, T. Sugo, J. Okamoto, Synthesis of a hollow fiber type porous chelating resin containing the amidoxime group by radiation-induced graft polymerization for the uranium recovery. Nippon Kagaku Kaishi. 1792–1798 (1986)Google Scholar
  56. 56.
    K. Saito, S. Yamada, S. Furusaki, T. Sugo, J. Okamoto, Characteristics of uranium adsorption by amidoxime membrane synthesized by radiation-induced graft polymerization. J. Membr. Sci. 34, 307–315 (1987)Google Scholar
  57. 57.
    T. Hori, K. Saito, S. Furusaki, T. Sugo, J. Okamoto, Adsorption equilibrium of uranium from seawater on chelating resin containing amidoxime group. Kagaku Kogaku Ronbunsyu 13, 795–800 (1987)CrossRefGoogle Scholar
  58. 58.
    K. Saito, T. Hori, S. Furusaki, T. Sugo, J. Okamoto, Porous amidoxime-group-containing membrane for the recovery of uranium from seawater. Ind. Eng. Chem. Res. 26, 1977–1981 (1987)CrossRefGoogle Scholar
  59. 59.
    T. Hori, K. Saito, S. Furusaki, T. Sugo, J. Okamoto. The effect of alkaline and acidic treatment of the properties of amidoxime resin synthesized by radiation-induced graft polymerization. Nippon Kagaku Kaishi. 1607–1611 (1988)Google Scholar
  60. 60.
    K. Uezu, K. Saito, T. Hori, S. Furusaki, T. Sugo, J. Okamoto, Performance of fixed-bed charged with chelating resin of capillary fiber form for recovery of uranium from seawater. Nihon Genshiryoku Gakkaishi 30, 359–364 (1988)Google Scholar
  61. 61.
    K. Saito, K. Uezu, T. Hori, S. Furusaki, T. Sugo, J. Okamoto, Recovery of uranium from seawater using amidoxime hollow fibers. AIChE J. 34, 411–416 (1988)CrossRefGoogle Scholar
  62. 62.
    K. Uezu, K. Saito, S. Furusaki, T. Sugo, J. Okamoto, Application of adsorption unit charged with amidoxime capillary fibers to recovery of uranium from seawater utilizing flow of ocean current. Nihon Genshiryoku Gakkaishi 32, 919–924 (1990)Google Scholar
  63. 63.
    K. Saito, T. Yamaguchi, K. Uezu, S. Furusaki, T. Sugo, J. Okamoto, Optimum preparation conditions of amidoxime hollow fiber synthesized by radiation-induced grafting. J. Appl. Polym. Sci. 39, 2153–2163 (1990)CrossRefGoogle Scholar
  64. 64.
    T. Takeda, K. Saito, K. Uezu, S. Furusaki, T. Sugo, J. Okamoto, Adsorption and elution in hollow-fiber-packed bed for recovery of uranium from seawater. Ind. Eng. Chem. Res. 30, 185–190 (1991)CrossRefGoogle Scholar
  65. 65.
    K. Sekiguchi, K. Saito, S. Konishi, S. Furusaki, T. Sugo, H. Nobukawa, Effect of seawater temperature on uranium recovery from seawater using amidoxime adsorbents. Ind. Eng. Chem. Res. 33, 662–666 (1994)CrossRefGoogle Scholar
  66. 66.
    A. Katakai, N. Seko, T. Kawakami, K. Saito, T. Sugo, Adsorption of uranium in sea water using amidoxime adsorbents prepared by radiation-induced cografting. Nihon Genshiryoku Gakkaishi 40, 878–880 (1998)Google Scholar
  67. 67.
    A. Katakai, N. Seko, T. Kawakami, K. Saito, T. Sugo, Adsorption performance in sea water of amidoxime nonwoven fabrics prepared by radiation-induced cografting of acrylonitrile and methacrylic acid. Bull. Soc. Sea Water Sci. Jpn. 53, 180–184 (1999)Google Scholar
  68. 68.
    T. Kawai, K. Saito, K. Sugita, T. Kawakami, J. Kanno, A. Katakai, N. Seko, T. Sugo, Preparation of hydrophilic amidoxime fibers by cografting acrylonitrile and methacrylic acid from an optimized monomer composition. Radiat. Phys. Chem. 59, 405–411 (2000)CrossRefGoogle Scholar
  69. 69.
    T. Kawai, K. Saito, K. Sugita, A. Katakai, N. Seko, T. Sugo, J. Kanno, T. Kawakami, Comparison of amidoxime adsorbents prepared by cografting of methacrylic acid and 2-hydroxyethyl methacrylate with acrylonitrile onto polyethylene. Ind. Eng. Chem. Res. 39, 2910–2915 (2000)CrossRefGoogle Scholar
  70. 70.
    N. Seko, A. Katakai, S. Hasegawa, M. Tamada, N. Kasai, H. Takeda, T. Sugo, K. Saito, Aquaculture of uranium in seawater by a fabric-adsorbent submerged system. Nucl. Technol. 144, 274–278 (2003)CrossRefGoogle Scholar
  71. 71.
    D. Kudo, Y. Matuzaki, S. Kawai-Noma, D. Umeno, K. Saito, Preparation of anion-exchange fiber with radiation-induced emulsion graft polymerization for rapid protein purification. Radioisotopes 66, 1–7 (2017)CrossRefGoogle Scholar
  72. 72.
    N. Seko, L.T. Bang, M. Tamada, Syntheses of amine-type adsorbents with emulsion graft polymerization of glycidyl methacrylate. Nucl. Instrum. Methods Phys. Res. B 265, 146–149 (2007)CrossRefGoogle Scholar
  73. 73.
    N. Seko, N.T.Y. Ninh, M. Tamada, Emulsion grafting of glycidyl methacrylate onto polyethylene fiber. Radiat. Phys. Chem. 79, 22–26 (2010)CrossRefGoogle Scholar
  74. 74.
    S. Sugiyama, S. Tsuneda, K. Saito, S. Furusaki, T. Sugo, K. Makuuchi, Attachment of sulfonic acid groups to various shapes of polyethylene, polypropylene and polytetrafluoroethylene by radiation-induced graft polymerization. React. Polym. 21, 187–191 (1993)CrossRefGoogle Scholar
  75. 75.
    S. Tsuneda, K. Saito, S. Furusaki, T. Sugo, K. Makuuchi, Simple introduction of sulfonic acid group onto polyethylene by radiation-induced cografting of sodium styrenesulfonate with hydrophilic monomers. Ind. Eng. Chem. Res. 32, 1464–1470 (1993)CrossRefGoogle Scholar
  76. 76.
    S. Tsuneda, K. Saito, H. Mitsuhara, T. Sugo, Novel ion-exchange membranes for electrodialysis prepared by radiation-induced graft polymerization. J. Electrochem. Soc. 142, 3659–3663 (1995)CrossRefGoogle Scholar
  77. 77.
    K. Miyoshi, T. Miyazawa, N. Sato, D. Umeno, K. Saito, T. Nagatani, N. Yoshikawa, Development of novel ion-exchange membranes for electrodialysis of seawater by electron-beam-induced graft polymerization (I) Selection of trunk polymeric films. Bull. Sea Water Sci. Jpn. 63, 167–174 (2009)Google Scholar
  78. 78.
    T. Miyazawa, Y. Asari, K. Miyoshi, D. Umeno, K. Saito, T. Nagatani, N. Yoshikawa, Development of novel ion-exchange membranes for electrodialysis of seawater by electron-beam-induced graft polymerization (II) Graft polymerization of vinyl benzyltrimethylammonium chloride and sodium styrenesulfonate onto nylon-6 film. Bull. Soc. Sea Water Sci. Jpn. 63, 175–183 (2009)Google Scholar
  79. 79.
    Y. Asari, T. Miyazawa, K. Miyoshi, D. Umeno, K. Saito, T. Nagatani, N, Yoshikawa, Development of novel ion-exchange membranes for electrodialysis of seawater prepared by electron-beam-induced graft polymerization (lll) Co-graft polymerization of glycidyl methacrylate and divinylbenzene onto high-density polyethylene film. Bull. Soc. Sea Water Sci. Jpn. 63, 387–394 (2009)Google Scholar
  80. 80.
    T. Miyazawa, Y. Asari, K. Miyoshi, D. Umeno, K. Saito, T. Nagatani, N. Yoshikawa, R. Motokawa, S. Koizumi, Development of novel ion-exchange membranes for electrodialysis of seawater by electron-beam-induced graft polymerization (lV) polymeric structures of cation-exchange membranes based on nylon-6 film. Bull. Soc. Sea Water Sci. Jpn. 64, 360–365 (2010)Google Scholar
  81. 81.
    K. Ishimori, T. Miyazawa, Y. Asari, D. Miyoshi, D. Umeno, K. Saito, K. Mizuguchi, T. Aritomo, K. Yoshie, Preparation of mono-valent cation selective cation-exchange membranes for electrodialysis of seawater by electron-beam-induced graft polymerization. Bull. Soc. Sea Water Sci. Jpn. 65, 35–41 (2011)Google Scholar
  82. 82.
    N. Yoshikawa, Report of research institute of salt and sea water science. Salt Ind. Cent. Jpn. 10, 25–28 (2008)Google Scholar
  83. 83.
    K. Miyazaki, N. Shoji, Y. Asari, K. Miyoshi, D. Umeno, K. Saito, Preparation of heat- and alkali-resistant anion-exchange membranes by electron-beam-induced graft polymerization of bromo-butyl styrene onto polyethylene film. Membrane (Maku) 35, 305–310 (2010)CrossRefGoogle Scholar
  84. 84.
    Y. Asai, N. Shoji, K. Miyoshi, D. Umeno, K. Saito, Electrodialysis of sulfuric acid with cation-exchange membranes prepared by electron-beam-induced graft polymerization. J. Ion Exch. 22, 53–57 (2011)CrossRefGoogle Scholar
  85. 85.
    Y. Sekiya, Y. Shimoda, D. Umeno, K. Saito, G. Furumoto, H. Shirataki, N. Shinohara, N. Kubota, Preparation of cation-exchange particle designed for high-speed collection of proteins by radiation-induced graft polymerization. J. Ion Exch. 21, 29–34 (2010)CrossRefGoogle Scholar
  86. 86.
    T. Harayama, Y. Okamura, Y. Shimoda, D. Umeno, K. Saito, N. Shinohara, N. Kubota, Protein resolution in elution chromatography using novel cation-exchange polymer-brush-immobilized particles. J. Chem. Eng. Jpn. 45, 896–902 (2012)CrossRefGoogle Scholar
  87. 87.
    T. Someya, Y. Okamura, G. Wada, Y. Shimoda, D. Umeno, K. Saito, N. Shinohara, N. Kubota, Comparison of resolution of proteins in elution chromatography between cation-exchange polymer brush immobilized particle- and commercially available cation-exchange-bead-packed beds. J. Ion Exch. 24, 1–7 (2013)CrossRefGoogle Scholar
  88. 88.
    Y. Shimoda, Y. Sekiya, D. Umeno, K. Saito, G. Furumoto, H. Shirataki, N. Shinohara, N. Kubota, Protein-binding characteristics of anion-exchange particles prepared by radiation-induced graft polymerization at low temperatures. J. Chem. Eng. Jpn. 46, 588–592 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Chiba UniversityChibaJapan
  2. 2.KJK Co.,Ltd.TakasakiJapan
  3. 3.KJK Co.,Ltd.TakasakiJapan

Personalised recommendations