Use of Plant Secondary Metabolites as Nutraceuticals for Treatment and Management of Cancer: Approaches and Challenges

  • Zahid H. Siddiqui
  • B. Hareramdas
  • Zahid K. Abbas
  • Talat Parween
  • Mohammad Nasir Khan


Nowadays cancer has become a common and life-threatening disease, claiming millions of lives and adding many more millions of new cases every year globally. Due to increasing incidences of cancer, a new trend is emerging globally due to accessibility of information on the internet; a lot of cancer patients’ claimed to be “cancer survivor” by use of dietary supplements or nutraceuticals. Nutraceuticals are rich source of nutrients or part of a food that has a medical or health benefit, including the prevention and treatment of diseases. In this chapter, we will discuss the most important nutraceuticals as a source of anticancer agents, such as green tea, chili, pepper, saffron, turmeric, soy, black pepper, fenugreek, cloves, and ginger. These agents are the source of phytomolecules, such as curcumin, crocin, crocetin, capsaicin, diosgenin, isoflavones, resveratrol, epigallocatechin gallate, piperine, eugenol, and gingerol. It has been reported that these phytomolecules are able to prevent, reverse, or delay the carcinogenic process. Over the decades, attention over these nutraceuticals has been increased due to their promising effects on tumor cells. These nutraceuticals exhibit anticancer properties by induction of apoptosis, DNA damage, causing G2/M arrest, inhibition of proliferation, migration and invasion of cancer cells, and sensitizing cancer cells to chemotherapy and radiotherapy. The aim of this chapter is to focus on the sources of nutraceutical compounds and their importance in the management of cancer. Moreover, the mechanism of action is also highlighted.


Apoptosis Cancer management Curcumin Nutraceuticals Secondary metabolites 


Conflict of Interest

The author declares that there is no conflict of interest.


  1. Abdelhamed S, Yokoyama S, Refaat A, Ogura K, Yagita H, Awale S, Saiki I (2014) Piperine enhances the efficacy of TRAIL-based therapy for triple-negative breast cancer cells. Anticancer Res 34:1893–1899PubMedGoogle Scholar
  2. Abdullaev FI (2003) Crocus sativus against cancer. Arch Med Res 34:354–363CrossRefPubMedGoogle Scholar
  3. ACS (2009) Cancer facts and figures 2009. American Cancer Society, AtlantaGoogle Scholar
  4. ACS (2015) Global cancer facts and figures 2015. American Cancer Society, AtlantaGoogle Scholar
  5. Aggarwal BB (2010) Targeting inflammation-induced obesity and metabolic diseases by curcumin and other nutraceuticals. Annu Rev Nutr 30:173–199CrossRefPubMedPubMedCentralGoogle Scholar
  6. Aggarwal BB, Kunnumakkara AB, Harikumar KB, Tharakan ST, Sung B, Anand P (2008) Potential of spice-derived phytochemicals for cancer prevention. Planta Med 74:1560–1569CrossRefPubMedGoogle Scholar
  7. Akimoto M, Lizuka M, Kanematsu R, Yoshida M, Takenaga K (2015) Anticancer effect of ginger extract against pancreatic cancer cells mainly through reactive oxygen species-mediated autotic cell death. PLoS One 10:e0126605CrossRefPubMedPubMedCentralGoogle Scholar
  8. Al-Daghri NM, Alokail MS, Alkharfy KM, Mohammed AK, Abd-Alrahman SH, Yakout SM, Amer OE, Krishnaswamy S (2012) Fenugreek extract as an inducer of cellular death via autophagy in human T lymphoma Jurkat cells. BMC Compl Altern Med 12:202.
  9. Alsemari A, Alkhodairy F, Aldakan A, Al-Mohanna M, Bahoush E, Shinwari Z, Alaiya A (2014) The selective cytotoxic anti-cancer properties and proteomic analysis of Trigonella foenum-graecum. BMC Compl Altern Med 14:114.
  10. Amin A, Bajbouj K, Koch A, Gandesiri M, Schneider-Stock R (2015) Defective autophagosome formation in p53-null colorectal cancer reinforces crocin-induced apoptosis. Int J Mol Sci 16:1544–1561CrossRefPubMedPubMedCentralGoogle Scholar
  11. Arnonson JK (2017) Defining ‘nutraceuticals’: neither nutritious nor pharmaceutical. Br J Clin Pharmacol 83:8–19CrossRefGoogle Scholar
  12. Bachmeier BE, Killian P, Pfeffer U, Nerlich AG (2010) Novel aspects for the application of curcumin in chemoprevention of various cancers. Front Biosci 2:697–717CrossRefGoogle Scholar
  13. Bakshi H, Sam S, Rozati R, Sultan P, Islam T, Rathore B, Lone Z, Sharma M, Triphati J, Saxena RC (2010) DNA fragmentation and cell cycle arrest: a Hallmark of apoptosis induced by crocin from Kashmiri saffron in a human pancreatic cancer cell line. Asian Pac J Cancer Prev 11:675–679PubMedPubMedCentralGoogle Scholar
  14. Bathaie SZ, Hoshyar R, Miri H, Sadeghizadeh M (2013) Anticancer effects of crocetin in both human adenocarcinoma gastric cancer cells and rat model of gastric cancer. Biochem Cell Biol 91:397–403CrossRefPubMedGoogle Scholar
  15. Bezerra DP, de Castro FO, Alves APNN, Pessoa C, de Moraes MO, Silveira ER, Lima MA, Elmiro FJ, de Alencar NM, Mesquita RO, Lima MW, Costa-Lotufo LV (2008) In vitro and in vivo antitumor effect of 5-FU combined with piplartine and piperine. J Appl Toxicol 28:156–163CrossRefPubMedGoogle Scholar
  16. Bhandari PR (2015) Crocus sativus L. (saffron) for cancer chemoprevention: a mini review. J Tadit Compl Med 5:81–87CrossRefPubMedPubMedCentralGoogle Scholar
  17. Bull E (2000) What is nutraceutical. Pharm J 265:57–58Google Scholar
  18. Butt MS, Sultan MT (2009) Green tea: nature’s defense against malignancies. Crit Rev Food Sci Nutr 49:463–473CrossRefPubMedGoogle Scholar
  19. Cao SW, Chen HJ, Xiang SJ, Hong JH, Weng LD, Zhu HX, Liu Q (2015) Anti-cancer effects and mechanisms of capsaicin in chili peppers. American J Plant Sci 6:3075–3081CrossRefGoogle Scholar
  20. Chatelain K, Phippen S, McCabe J, Teeters CA, O’Malley S, Kingsley K (2008) Cranberry and grape seed extracts inhibit the proliferative phenotype of oral squamous cell carcinomas. eCAM 2008:nen047Google Scholar
  21. Chryssanthi DG, Lamari FN, Iatrou G, Pylara A, Karamanos NK, Cordopatis P (2007) Inhibition of breast cancer cell proliferation by style constituents of different Crocus species. Anticancer Res 27:357–362PubMedGoogle Scholar
  22. Clark R, Lee SH (2016) Anticancer properties of capsaicin against human cancer. Anticancer Res 36:837–843PubMedPubMedCentralGoogle Scholar
  23. Clifford MN, Van der Hooft JJ, Crozier A (2013) Human studies on the absorption, distribution, metabolism, and excretion of tea polyphenols. Am J Clin Nutr 98:S1619–S1630CrossRefGoogle Scholar
  24. Cragg GM, Newman DJ (2013) Natural products: a continuing source of novel drug leads. Biochim Biophys Acta 1830:3670–3695CrossRefPubMedPubMedCentralGoogle Scholar
  25. Das L, Bhaumik E, Raychaudhari U (2012) Role of nutraceuticals in human health. J Food Sci Technol 49:173–183CrossRefPubMedGoogle Scholar
  26. De Amicis F, Perri A, Vizza D, Russo A, Panno ML, Bonofiglio D, Ando S (2013) Epigallocatechin gallate inhibits growth and epithelial-to-mesenchymal transition in human thyroid carcinoma cell lines. J Cell Physiol 228:2054–2062CrossRefPubMedGoogle Scholar
  27. DeBono A, Capuano B, Scammells PJ (2015) Progress toward the development of noscapine and derivatives as anticancer agents. J Med Chem 58:5699–5727CrossRefPubMedGoogle Scholar
  28. Del Follo-Martinez A, Banerjee N, Li X, Safe S, Mertens-Talcott S (2013) Resveratrol and quercetin in combination have anticancer activity in colon cancer cells and repress oncogenic microRNA-27a. Nutr Cancer 65:494–504CrossRefPubMedPubMedCentralGoogle Scholar
  29. DeVita VT, Hellman S, Rosenberg SA (2008) Cancer: principles and practice of oncology, 8th edn. Lippincott-Williams & Wilkins, PhiladelphiaGoogle Scholar
  30. Déziel BA, Patel K, Neto C, Gottschall-Pass K, Hurta RA (2010) Proanthocyanidins from the American cranberry (Vaccinium macrocarpon) inhibit matrix metalloproteinase-2 and matrix metalloproteinase-9 activity in human prostate cancer cells via alterations in multiple cellular signalling pathways. J Cell Biochem 111:742–754CrossRefPubMedGoogle Scholar
  31. Dillard CJ, German JB (2000) Phytochemicals: nutraceuticals and human health. J Sci Food Agric 80:1744–1756CrossRefGoogle Scholar
  32. Do MT, Kim HG, Choi JH, Khanal T, Park BH, Tran TP, Jeong TC, Jeong HG (2013) Antitumor efficacy of piperine in the treatment of human HER2-overexpressing breast cancer cells. Food Chem 141:2591–2599CrossRefPubMedPubMedCentralGoogle Scholar
  33. Dugasani S, Pichika MR, Nadarajah VD, Balijepalli MK, Tandra S, Korlakunta JN (2010) Comparative antioxidant and anti-inflammatory effects of [6]-gingerol, [8]-gingerol, [10]-gingerol and [6]-shogaol. J Ethnopharmacol 127:515–520CrossRefPubMedPubMedCentralGoogle Scholar
  34. Dureja H, Kaushik D, Kumar V (2003) Developments in nutraceuticals. Indian J Pharm 35:363–372Google Scholar
  35. Dwivedi V, Shrivastava R, Hussain S, Ganguly C, Bharadwaj M (2011) Comparative anticancer potential of clove (Syzygium aromaticum)-an Indian spice against cancer cell lines of various anatomical origin. Asian Pac J Cancer Prev 12:1989–1993PubMedPubMedCentralGoogle Scholar
  36. El-Rayes BF, Philip PA, Sarkar FH, Shields AF, Ferris AM, Hess K, Kaseb AO, Javle MM, Varadhachary GR, Wolff RA, Abbruzzese JL (2011) A phase II study of isoflavones, erlotinib, and gemcitabine in advanced pancreatic cancer. Investig New Drugs 29:694–699CrossRefGoogle Scholar
  37. Farina HG, Pomies M, Alonso DF, Gomez DE (2006) Antitumor and antiangiogenic activity of soy isoflavone genistein in mouse models of melanoma and breast cancer. Oncol Rep 16:885–891PubMedPubMedCentralGoogle Scholar
  38. Farnsworth NR, Akerele O, Bingel AS, Soejarto DD, Guo Z (1985) Medicinal plants in therapy. Bull World Health Organ 63:965–981PubMedPubMedCentralGoogle Scholar
  39. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136:E359–E386. Scholar
  40. Fernando W, Rupasinghe HPV (2013) Anticancer properties of phytochemicals present in medicinal plants of north America. In: Kulka M (ed) Using old solutions to new problems-natural drug discovery in the 21st century. InTech, Rijeka, p 424. Scholar
  41. Franke AA, Halm BM, Kakazu K, Li X, Custer LJ (2009) Phytoestrogenic isoflavonoids in epidemiologic and clinical research. Drug Test Ana 1:14–21CrossRefGoogle Scholar
  42. Gagliano N, Aldini G, Colombo G, Rossi R, Colombo R, Gioia M, Milzani A, Dalle-Donne I (2010) The potential of resveratrol against human gliomas. Anticancer Drugs 21:140–150CrossRefPubMedPubMedCentralGoogle Scholar
  43. Garg RC (2016) Fenugreek: multiple health benefits. In: Gupta RC (ed) Nutraceuticals: efficacy, safety and toxicity. Academic, Tokyo, pp 599–617CrossRefGoogle Scholar
  44. Gidding CEM, Kellie SJ, Kamps WA, de Graaf SSN (1999) Vincristine revisited. Crit Rev Oncology 29:267–287CrossRefGoogle Scholar
  45. Goel A, Jhurani S, Aggarwal BB (2008) Multi-targeted therapy by curcumin: how spicy is it? Mol Nutr Food Res 52:1010–1030CrossRefPubMedPubMedCentralGoogle Scholar
  46. Greenshields AL, Doucette CD, Sutton KM, Madera L, Annan H, Yaffe PB, Knickle AF, Dong Z, Hoskin DW (2015) Piperine inhibits the growth and motility of triple-negative breast cancer cells. Cancer Lett 357:129–140CrossRefPubMedPubMedCentralGoogle Scholar
  47. Grimble RF (2003) Nutritional therapy for cancer cachexia. Gut 52:1391–1392CrossRefPubMedPubMedCentralGoogle Scholar
  48. Hardy G (2000) Nutraceuticals and functional foods: introduction and meaning. Nutrition 16:688–689CrossRefPubMedPubMedCentralGoogle Scholar
  49. Hazgui S, Bonnomet A, Nawrocki-Raby B, Milliot M, Terryn C, Cutrona J, Polette M, Birembaut P, Zahm JM (2008) Epigallocatechin-3-gallate (EGCG) inhibits the migratory behavior of tumor bronchial epithelial cells. Respir Res 9:33.
  50. Hooper L, Ryder JJ, Kurzer MS, Lampe JW, Messina MJ, Phipps WR, Cassidy A (2009) Effects of soy protein and isoflavones on circulating hormone concentrations in pre- and post-menopausal women: a systematic review and meta-analysis. Hum Reprod Update 15:423–440CrossRefPubMedPubMedCentralGoogle Scholar
  51. Horie S (2012) Chemoprevention of prostate cancer: soy isoflavones and curcumin. Korean J Urol 53:665–672CrossRefPubMedPubMedCentralGoogle Scholar
  52. Hsieh TC, Wu JM (2010) Resveratrol: biological and pharmaceutical properties as anticancer molecule. Bio Factors 36:360–369Google Scholar
  53. Issa AY, Volate SR, Muga SJ, Nitcheva D, Smith T, Wargovich MJ (2007) Green tea selectively targets initial stages of intestinal carcinogenesis in the AOM-ApcMin mouse model. Carcinogenesis 28:1978–1984CrossRefPubMedGoogle Scholar
  54. Iwano H, Ujita W, Nishikawa M, Ishii S, Inoue H, Yokota H (2014) Effect of dietary eugenol on xenobiotic metabolism and mediation of UDP and glucuronosyltransferase and cytochrome P4501A1 expression in rat liver. Int J Food Sci Nutr 65:241–244CrossRefPubMedGoogle Scholar
  55. Jaganathan SK, Supriyanto E (2012) Antiproliferative and molecular mechanism of eugenol-induced apoptosis in cancer cells. Molecules 17:6290–6304CrossRefPubMedGoogle Scholar
  56. Kakarala M, Brenner D, Korkaya H, Cheng C, Tazi K, Ginestier C, Liu S, Dontu G, Wicha MS (2010) Targeting breast stem cells with the cancer preventive compounds curcumin and piperine. Breast Cancer Res Treat 122:777–785CrossRefPubMedPubMedCentralGoogle Scholar
  57. Karna P, Chagani S, Gundala SR, Rida P, Asif G, Sharma V, Gupta MV, Aneja R (2012) Benefits of whole ginger extract in prostate cancer. Br J Nutr 107:473–484CrossRefPubMedGoogle Scholar
  58. Kato K, Long NK, Makita H, Toida M, Yamashita T, Hatakeyama D, Hara A, Mori H, Shibata T (2008) Effects of green tea polyphenol on methylation status of RECK gene and cancer cell invasion in oral squamous cell carcinoma cells. Br J Cancer 99:647–654CrossRefPubMedPubMedCentralGoogle Scholar
  59. Khalil MIM, Ibrahim MM, El-Galy GA, Sultan AS (2015) Trigonella foenum (Fenugreek) induced apoptosis in hepatocellular carcinoma cell line, HepG2, mediated by upregulation of p53 and proliferating cell nuclear antigen. Biomed Res Int 2015:914645.
  60. Khan N, Afaq F, Mukhtar H (2007) Apoptosis by dietary factors: the suicide solution for delaying cancer growth. Carcinogenesis 28:233–239CrossRefPubMedPubMedCentralGoogle Scholar
  61. Khoja KK, Shaf G, Hasan TN, Syed NA, Al-Khalifa AS, Al-Assaf AH, Alshatwi AA (2011) Fenugreek, a naturally occurring edible spice, kills MCF-7 human breast cancer cells via an apoptotic pathway. Asian Pac J Cancer Prev 12:3299–3304PubMedGoogle Scholar
  62. Kim JM, Noh EM, Kwon KB, Kim JS, You YO, Hwang JK, Hwang BM, Kim BS, Lee SH, Lee SJ, Jung SH, Youn HJ, Lee YR (2012) Curcumin suppresses the TPA-induced invasion through inhibition of PKC alpha-dependent MMP-expression in MCF-7 human breast cancer cells. Phytomedicine 19:1085–1092CrossRefPubMedGoogle Scholar
  63. Kinghorn AD, Pan L, Fletcher JN, Chai H (2011) The relevance of higher plants in lead compound discovery programs. J Nat Prod 74:1539–1555CrossRefPubMedPubMedCentralGoogle Scholar
  64. Koh T, Murakami Y, Tanaka S, Machino M, Onuma H, Kaneko M, Sugimoto M, Soga T, Tomita M, Sakagami H (2013) Changes of metabolic profiles in an oral squamous cell carcinoma cell line induced by eugenol. In Vivo 27:233–243PubMedGoogle Scholar
  65. Kubatka P, Mojzis J, Pilatova M, Pec M, Kruzliak P (2016) Soy isoflavones in the breast cancer risk: from preclinical findings to clinical strategy. In: Ullah MF, Ahmad A (eds) Critical dietary factors in cancer chemoprevention. Springer, Switzerland, pp 213–238CrossRefGoogle Scholar
  66. Kundu JK, Na HK, Surh YJ (2009) Ginger-derived phenolic substances with cancer preventive and therapeutic potential. Forum Nut 61:182–192CrossRefGoogle Scholar
  67. Kuo CL, Wu SY, Ip SW, Wu PP, Yu CS, Yang JS, Chen PY, Wu SH, Chung JG (2011) Apoptotic death in curcumin-treated NPC-TW 076 human nasopharyngeal carcinoma cells is mediated through the ROS, mitochondrial depolarization and caspase-3-dependent signaling responses. Int J Oncol 39:319–328PubMedGoogle Scholar
  68. Kwon SJ, Song BH (2011) Meta-analysis for effect of dietary isoflavones on breast density and hot flush suppression. Korean J Microbiol Biotechnol 39:224–237Google Scholar
  69. Lakshman M, Xu L, Ananthanarayanan V, Cooper J, Takimoto CH, Helenowski I, Pelling JC, Bergan RC (2008) Dietary genistein inhibits metastasis of human prostate cancer in mice. Cancer Res 68:2024–2032CrossRefPubMedPubMedCentralGoogle Scholar
  70. Larsen CA, Dashwood RH (2010) Epigallocatechin-3-gallate inhibits Met signaling, proliferation, and invasiveness in human colon cancer cells. Arch Biochem Biophys 501:52–57CrossRefPubMedPubMedCentralGoogle Scholar
  71. Lau JK, Brown CK, Dom AM, Witte TR, Thornhill BA, Crabtree CM, Perry HE, Brown JM, Ball JG, Creel RG, Damron CL, Rollyson WD, Stevenson CD, Hardman WE, Valentovic MA, Carpenter AB, Dasgupta P (2014) Capsaicin induces apoptosis in human small cell lung cancer via the TRPV6 receptor and the calpain pathway. Apoptosis 19:1190–1201CrossRefPubMedPubMedCentralGoogle Scholar
  72. Lechtenberg M, Schepmann D, Niehues M, Hellenbrand N, Wünsch B, Hensel A (2008) Quality and functionality of saffron: quality control, species assortment and affinity of extract and isolated saffron compounds to NMDA and sigma1 (sigma-1) receptors. Planta Med 74:764–772CrossRefPubMedGoogle Scholar
  73. Lee SH, Krisanapun C, Baek SJ (2010) NSAID-activated gene-1 as a molecular target for capsaicin induced apoptosis through a novel molecular mechanism involving GSK3beta, C/EBPbeta and ATF3. Carcinogenesis 31:719–728CrossRefPubMedPubMedCentralGoogle Scholar
  74. Lee S, Richardson RL, Dashwood RH, Baek SJ (2012) Capsaicin represses transcriptional activity of β-catenin in human colorectal cancer cells. J Nutr Biochem 23:646–655CrossRefPubMedGoogle Scholar
  75. Li Y, Sarkar FH (2002) Gene expression profiles of genistein-treated PC3 prostate cancer cells. J Nutr 132:3623–3631CrossRefPubMedGoogle Scholar
  76. Li F, Fernandez PP, Rajendran P, Hui KM, Sethi G (2010) Diosgenin, a steroidal saponin, inhibits STAT3 signaling pathway leading to suppression of proliferation and chemosensitization of human hepatocellular carcinoma cells. Cancer Lett 292:197–207CrossRefPubMedGoogle Scholar
  77. Liu PL, Tsai JR, Charles AL, Hwang JJ, Chou SH, Ping YH, Lin FY, Chen YL, Hung CY, Chen WC, Chen YH, Chong IW (2010) Resveratrol inhibits human lung adenocarcinoma cell metastasis by suppressing heme oxygenase 1-mediated nuclear factor-kappaB pathway and subsequently downregulating expression of matrix metalloproteinases. Mol Nutr Food Res 54:S196–S204CrossRefPubMedGoogle Scholar
  78. Liu J, Zhu J, Tang L, Wen W, Lv S, Yu R (2014) Enhancement of vindoline and vinblastine production in suspension-cultured cells of Catharanthus roseus by artemisinic acid elicitation. World J Microbiol Biotechnol 30:175–180CrossRefPubMedGoogle Scholar
  79. Manikandan P, Murugan RS, Priyadarsini RV, Vinothini G, Nagini S (2010) Eugenol induces apoptosis and inhibits invasion and angiogenesis in a rat model of gastric carcinogenesis induced by MNNG. Life Sci 86:936–941CrossRefPubMedGoogle Scholar
  80. Manikandan P, Vinothini G, Vidya Priyadarsini R, Prathiba D, Nagini S (2011) Eugenol inhibits cell proliferation via NF-κB suppression in a rat model of gastric carcinogenesis induced by MNNG. Investig New Drugs 29:110–117CrossRefGoogle Scholar
  81. Mann J (2002) Natural products in cancer chemotherapy: past, present and future. Nat Rev Cancer 2:143–148CrossRefPubMedGoogle Scholar
  82. Mohansrinivasan M, Devi SC, Deori M, Biswas A, Naine JS (2015) Exploring the anticancer activity of grape seed extract on skin cancer cell lines A431. Braz Arch Biol Technol 58:540–546CrossRefGoogle Scholar
  83. Mondal S, Bandyopadhyay S, Ghosh MK, Mukhopadhyay S, Roy S, Mandal C (2012) Natural products: promising resources for cancer drug discovery. Anticancer Agents Med Chem 12:49–75CrossRefPubMedGoogle Scholar
  84. Morrison WB (2010) Cancer chemotherapy: an annotated history. J Vet Intern Med 24:1249–1262CrossRefPubMedGoogle Scholar
  85. Mukherjee S, Mazumdar M, Chakraborty S, Manna A, Saha S, Khan P, Bhattacharjee P, Guha D, Adhikary A, Mukhjerjee S, Das T (2014) Curcumin inhibits breast cancer stem cell migration by amplifying the E-cadherin/β -catenin negative feedback loop. Stem Cell Res Ther 5:116. Scholar
  86. Nasri H, Baradaran A, Shirzad H, Mahmoud RK (2014) New concepts in nutraceuticals as alternative for pharmaceuticals. Int J Prev Med 5:1487–1499PubMedPubMedCentralGoogle Scholar
  87. Newman DJ, Cragg GM (2007) Natural products as sources of new drugs over the last 25 years. J Nat Prod 70:461–477CrossRefPubMedGoogle Scholar
  88. Oyagbemi AA, Saba AB, Azeez OI (2010) Capsaicin: a novel chemopreventive molecule and its underlying molecular mechanisms of action. Indian J Cancer 47:53–58CrossRefPubMedGoogle Scholar
  89. Pandey M, Verma RK, Saraf SA (2010) Nutraceuticals: new era of medicine and health. Asian J Pharm Clin Res 3:11–15Google Scholar
  90. Papac RJ (2002) Origins of cancer therapy. Yale J Biol Med 74:391–398Google Scholar
  91. Park GH, Park JH, Song HM, Eo HJ, Kim KM, Lee JW, Lee MH, Cho K-H, Lee JK, Cho HJ, Jeong JB (2014) Anti-cancer activity of ginger (Zingiber officinale) leaf through the expression of activating transcription factor 3 in human colorectal cancer cells. BMC Compl Altern Med 14:408–415Google Scholar
  92. Percival SS (2009) Grape consumption supports immunity in animals and humans. J Nutr 139:S1801–S1805CrossRefGoogle Scholar
  93. Plengsuriyakaran T, Viyanant V, Eursitthichai V, Tesana S, Chaijaroenkul W, Itharat A, Na-Bangchang K (2012) Cytotoxicity, toxicity and anticancer activity of Zingiber officinale Roscoe against cholangiocarcinoma. AJCP 13:4597–4606Google Scholar
  94. Pradeep CR, Kuttan G (2002) Effect of piperine on the inhibition of lung metastasis induced B16F-10 melanoma cells in mice. Clin Exp Metastasis 19:703–708CrossRefPubMedGoogle Scholar
  95. Prasad S, Tyagi AK (2015) Ginger and its constituents: role in prevention and treatment of gastrointestinal cancer. Gastroenterol Res Pract 2015:142979. Scholar
  96. Raju J, Bird RP (2007) Diosgenin, a naturally occurring steroid saponin suppresses 3- hydroxy-3-methylglutaryl CoA reductase expression and induces apopto-sis in HCT-116 human colon carcinoma cells. Cancer Lett 255:194–204CrossRefPubMedGoogle Scholar
  97. Raju J, Mehta R (2009) Cancer chemopreventive and therapeutic effects of diosgenin, a food saponin. Nutr Cancer 61:27–35CrossRefPubMedGoogle Scholar
  98. Rakha EA, Reis-Filho JS, Ellis IO (2010) Combinatorial biomarker expression in breast cancer. Breast Cancer Res Treat 120:293–308CrossRefPubMedGoogle Scholar
  99. Ranzato E, Martinotti S, Magnelli V, Murer B, Biffo S, Mutti L, Burlando B (2012) Epigallocatechin-3-gallate induces mesothelioma cell death via H2O2-dependent T-type Ca2+ channel opening. J Cell Mol Med 16:2667–2678CrossRefPubMedPubMedCentralGoogle Scholar
  100. Ranzato E, Martinitti S, Calabrese CM, Giorgio C (2014) Role of nutraceuticals in cancer therapy. J Food Res 3:18–25CrossRefGoogle Scholar
  101. Rao GV, Kumar S, Islam M, Saber EM (2008) Folk medicines for anticancer therapy-a current status. Cancer Ther 6:913–922Google Scholar
  102. Rao PV, Nallappan D, Madhavi K, Rahman S, Wei LJ, Gan SH (2016) Phytochemicals and biogenic metallic nanoparticles as anticancer agents. Oxidative Med Cell Longev 2016:3685671. Scholar
  103. Rhode J, Fogoros S, Zick S, Wahl H, Griffith KA, Huang J, Liu JR (2007) Ginger inhibits cell growth and modulates angiogenic factors in ovarian cancer cells. BMC Compl Altern Med 7:44Google Scholar
  104. Roudebush P, Davenport DJ, Novotny BJ (2004) The use of nutraceuticals in cancer therapy. Vet Clin North Am Small Anim Pract 34:249–269CrossRefPubMedGoogle Scholar
  105. Ruba PH, Maheshwari M, Gupta A, Arora A, Rachna (2017) Saffron: from flavour to anti-cancer. Int J Applied Res 3:311–314Google Scholar
  106. Sagar SM, Yance D, Wong RK (2006) Natural health products that inhibit angiogenesis: a potential source for investigational new agents to treat cancer-part 1. Curr Oncol 13:14–26PubMedPubMedCentralGoogle Scholar
  107. Samarghandian S, Borji A (2014) Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients. Pharm Res 6:99–107Google Scholar
  108. Samarghandian S, Afshari JT, Davoodi S (2011) Suppression of pulmonary tumor promotion and induction of apoptosis by Crocus sativus l extraction. Appl Biochem Biotechnol 164:238–247CrossRefPubMedGoogle Scholar
  109. Samarghandian S, Borji A, Farahmand SK, Afshari R, Davoodi S (2013) Crocus sativus L. (Saffron) stigma aqueous extract induces apoptosis in alveolar human lung cancer cells through caspase-dependent pathways activation. Biomed Res Int 2013:417928.
  110. Sarkar FH, Li Y (2002) Mechanism of cancer chemoprevention by soy isoflavone genistein. Cancer Metastasis Rev 21:265–280CrossRefPubMedGoogle Scholar
  111. Schamel G (2006) Geography versus brands in a global wine market. Agribusiness 22:363–374CrossRefGoogle Scholar
  112. Schmidt M, Betti G, Hensel A (2007) Saffron in phytotherapy: pharmacology and clinical uses. Wien Med Wochenschr 157:315–319CrossRefPubMedGoogle Scholar
  113. Sebastian KS, Thampan RV (2007) Differential effects of soybean and fenugreek extracts on the growth of MCF-7 cells. Chem Biol Interact 170:135–143CrossRefPubMedGoogle Scholar
  114. Shabbeer S, Sobolewski M, Anchoori RK, Kachhap S, Hidalgo M, Jimeno A, Davidson N, Carducci MA, Khan SR (2009) Fenugreek: a naturally occurring edible spice as an anticancer agent. Cancer Biol Ther 8:272–278CrossRefPubMedPubMedCentralGoogle Scholar
  115. Shamaladevi N, Lyn DA, Shaaban KA, Zhang L, Villate S, Rohr J, Lokeshwar BL (2013) Ericifolin: a novel antitumor compound from allspice that silences androgen receptor in prostate cancer. Carcinogenesis 34:1822–1832CrossRefPubMedPubMedCentralGoogle Scholar
  116. Shankar S, Ganapathy S, Hingorani SR, Srivastava RK (2008) EGCG inhibits growth, invasion, angiogenesis and metastasis of pancreatic cancer. Front Biosci 13:440–452CrossRefPubMedGoogle Scholar
  117. Shishodia S, Aggarwal BB (2006) Diosgenin inhibits osteoclastogenesis, invasion, and proliferation through the down regulation of Akt, I kappa B kinase activation and NF-kappa B-regulated gene expression. Oncogene 25:1463–1473CrossRefPubMedGoogle Scholar
  118. Shrotriya S, Deep G, Gu M, Kaur M, Jain AK, Inturi S, Agarwal R, Agarwal C (2012) Generation of reactive oxygen species by grape seed extract causes irreparable DNA damage leading to G2/M arrest and apoptosis selectively in head and neck squamous cell carcinoma cells. Carcinogenesis 33:848–858CrossRefPubMedPubMedCentralGoogle Scholar
  119. Shukla S, Mehta A (2015) Anticancer potential of medicinal plants and their phytochemicals: a review. Braz J Bot 38:199–210CrossRefGoogle Scholar
  120. Siddiqui ZH, Mujib A, Maqsood M (2011) Liquid overlaying improves somatic embryogenesis in Catharanthus roseus. Plant Cell Tissue Org Cult 104:247–256CrossRefGoogle Scholar
  121. Siddiqui ZH, Mujib A, Mahmooduzzafar AJ, Hakeem KR, Parveen T (2013) In vitro production of secondary metabolites using elicitor in Catharanthus roseus: a case study. In: Hakeem KR, Ahmad P, Ozturk M (eds) Crop improvement: new approaches and modern techniques. Springer, The Netherland, pp 401–419CrossRefGoogle Scholar
  122. Singh AV, Franke AA, Blackburn GL, Zhou JR (2006) Soy phytochemicals prevent orthotopic growth and metastasis of bladder cancer in mice by alterations of cancer cell proliferation and apoptosis and tumor angiogenesis. Cancer Res 66:1851–1858CrossRefPubMedPubMedCentralGoogle Scholar
  123. Singh T, Sharma SD, Katiyar SK (2011) Grape proanthocyanidins induce apoptosis by loss of mitochondrial membrane potential of human non-small cell lung cancer cells in vitro and in vivo. PLoS One 6:e27444CrossRefPubMedPubMedCentralGoogle Scholar
  124. Slamenova D, Horvathova E, Wsolova L, Sramkova M, Navarova J (2009) Investigation of anti-oxidative, cytotoxic, DNA-damaging and DNA-protective effects of plant volatiles eugenol and borneol in human-derived HepG2, Caco-2 and VH10 cell lines. Mutat Res 677:46–52CrossRefPubMedGoogle Scholar
  125. Srinivasan K (2007) Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Crit Rev Food Sci Nutr 47:735–748CrossRefPubMedGoogle Scholar
  126. Srinivasan S, Koduru S, Kumar R, Venguswamy G, Kyprianou N, Damodaran C (2009) Diosgenin targets Akt-mediated prosurvival signaling in human breast cancer cells. Int J Cancer 125:961–967CrossRefPubMedGoogle Scholar
  127. Starok M, Preira P, Vayssade M, Haupt K, Salomé L, Rossi C (2015) EGFR inhibition by curcumin in cancer cells: a dual mode of action. Biomacromolecules 16:1634–1642CrossRefPubMedGoogle Scholar
  128. Strofer M, Jelkmann W, Depping R (2011) Curcumin decreases survival of Hep3B liver and MCF-7 breast cancer cells. Strahlenther Onkol 187:393–400CrossRefPubMedGoogle Scholar
  129. Surh YJ (2003) Cancer chemoprevention with dietary phytochemicals. Nat Rev Cancer 3:768–780CrossRefPubMedGoogle Scholar
  130. Taylor WG, Elder JL, Chang PR, Richards KW (2000) Microdetermination of diosgenin from fenugreek (Trigonella foenum-graecum) seeds. J Agric Food Chem 48:5206–5210CrossRefPubMedGoogle Scholar
  131. Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A (2015) Global cancer statistics 2012. CA Cancer J Clin 65:87–108Google Scholar
  132. Tuomisto JT, Tuomisto J, Tainio M, Niittynen M¸ Verkasalo P, Vartiainen T, Kiviranta H, Pekkanen J (2004) Risk-benefit analysis of eating farmed salmon. Science 305:476–477CrossRefPubMedGoogle Scholar
  133. Tyagi A, Raina K, Shrestha SP, Miller B, Thompson JA, Wempe MF, Agarwal R, Agarwal C (2014) Procyanidin B2 3,3-di-O-gallate, a biologically active constituent of grape seed extract, induces apoptosis in human prostate cancer cells via targeting NF-°B, Stat3, and AP1 transcription factors. Nutr Cancer 66:736–746CrossRefPubMedGoogle Scholar
  134. Uchiyama T, Toda K, Takahashi S (2010) Resveratrol inhibits angiogenic response of cultured endothelial F-2 cells to vascular endothelial growth factor, but not to basic fibroblast growth factor. Biol Pharm Bull 33:1095–1100CrossRefPubMedGoogle Scholar
  135. Valeri A, Fiorenzani P, Rossi R, Aloisi AM, Valoti M, Pessina F (2012) The soy phytoestrogens genistein and daidzein as neuroprotective agents against anoxia-glucopenia and reperfusion damage in rat urinary bladder. Pharmacol Res 66:309–316CrossRefPubMedGoogle Scholar
  136. Vantyghem SA, Wilson SM, Postenka CO, Al-Katib W, Tuck AB, Chambers AF (2005) Dietary genistein reduces metastasis in a postsurgical orthotopic breast cancer model. Cancer Res 65:3396–3403CrossRefPubMedGoogle Scholar
  137. Venier NA (2015) Capsaicin as a novel chemopreventive and therapeutic option for prostate cancer. Ph.D. thesis, Institute of Medical Science, University of Toronto, CanadaGoogle Scholar
  138. Volate SR, Muga SJ, Issa AY, Nitcheva D, Smith T, Wargovich MJ (2009) Epigenetic modulation of the retinoid X receptor alpha by green tea in the azoxymethane-Apc Min/+ mouse model of intestinal cancer. Mol Carcinog 48:920–933CrossRefPubMedPubMedCentralGoogle Scholar
  139. Wada K, Nakamura K, Tamai Y, Tsuji M, Kawachi T, Hori A, Takeyama N, Tanabashi S, Matsushita S, Tokimitsu N, Nagata C (2013) Soy isoflavone intake and breast cancer risk in Japan: from the Takayama study. Int J Cancer 133:952–960CrossRefPubMedGoogle Scholar
  140. Wang CH, Wang GC, Wang Y, Zhang XQ, Huang XJ, Zhang DM, Chen MF, Ye WC (2012) Cytotoxic dimeric indole alkaloids from Catharanthus roseus. Fitoterapia 83:765–769CrossRefPubMedGoogle Scholar
  141. Wang Q, Ge X, Tian X, Zhang Y, Zhang J, Zhang P (2013) Soy isoflavones: the multipurpose phytochemical. Biomed Rep 1:697–701Google Scholar
  142. Wang CH, Zhang Y, Jiang MM (2014) Indole alkaloids from the roots of Catharanthus roseus. Chem Nat Comp 49:1177–1178CrossRefGoogle Scholar
  143. Wang XD, Li CY, Jiang MM, Li D, Wen P, Song X, Chen JD, Guo LX, Hu XP, Li GQ, Zhang J, Wang CH, He ZD (2016) Induction of apoptosis in human leukemia cells through an intrinsic pathway by cathachunine, a unique alkaloid isolated from Catharanthus roseus. Phytomedicine 23:641–653CrossRefPubMedGoogle Scholar
  144. Wani SA, Kumar PK (2018) Fenugreek: a review on its nutraceutical properties and utilization in various food products. J Saudi Soc Agric Sci 17:97–106CrossRefGoogle Scholar
  145. Wargovich JM, Morris J, Brown V, Ellis J, Logothetis B, Weber R (2010) Nutraceutical use in late-stage cancer. Cancer Metastasis Rev 29:503–510CrossRefPubMedPubMedCentralGoogle Scholar
  146. Wildman REC (2001) Handbook of nutraceuticals and functional foods. CRC Press, Boca Raton, pp 13–30Google Scholar
  147. Yaffe PB, Power Coombs MR, Doucette CD, Walsh M, Hoskin DW (2012) Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cell via G1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol Carcinog 54:1070–1085CrossRefGoogle Scholar
  148. Yaffe PB, Coombs M, Doucette CD, Walsh M, Hoskin DW (2015) Piperine, an alkaloid from black pepper, inhibits growth of human colon cancer cells via g1 arrest and apoptosis triggered by endoplasmic reticulum stress. Mol Carcinog 54:1070–1085CrossRefPubMedGoogle Scholar
  149. Yance DR, Sagar SM (2006) Targeting angiogenesis with integrative cancer therapies. Integr Cancer Therap 5:9–29CrossRefGoogle Scholar
  150. Yang KM, Pyo JO, Kim GY, Yu R, Han IS, Ju SA, Kim WH, Kim BS (2009) Capsaicin induces apoptosis by generating reactive oxygen species and disrupting mitochondrial transmembrane potential in human colon cancer cell lines. Cell Mol Biol Lett 14:497–510CrossRefPubMedGoogle Scholar
  151. Yang CL, Ma YG, Xue YX, Liu YY, Xie H, Qiu GR (2012) Curcumin induces small cell lung cancer NCI-H446 cell apoptosis via the reactive oxygen species-mediated mitochondrial pathway and not the cell death receptor pathway. DNA Cell Biol 31:139–150CrossRefPubMedGoogle Scholar
  152. Yi W, Fischer J, Akoh CC (2005) Study of anticancer activities of muscadine grape phenolics in vitro. J Agric Food Chem 53:8804–8812CrossRefPubMedGoogle Scholar
  153. Yi JL, Shi S, Shen YL, Wang L, Chen HY, Zhu J, Ding Y (2015) Myricetin and methyl eugenol combination enhances the anticancer activity, cell cycle arrest and apoptosis induction of cis-platin against HeLa cervical cancer cell lines. Int J Clin Exp Pathol 8:1116–1127PubMedPubMedCentralGoogle Scholar
  154. Zhang R, Humphreys I, Sahu RP, Shi Y, Srivastava SK (2008) In vitro and in vivo induction of apoptosis by capsaicin in pancreatic cancer cells is mediated through ROS generation and mitochondrial death pathway. Apoptosis 13:1465–1478CrossRefPubMedPubMedCentralGoogle Scholar
  155. Zhang WK, Xu JK, Tian HY, Wang L, Zhang XQ, Xiao XZ, Li P, Ye WC (2013a) Two new vinblastine-type N-oxide alkaloids from Catharanthus roseus. Nat Prod Res 27:1911–1916CrossRefPubMedPubMedCentralGoogle Scholar
  156. Zhang WK, Xu JK, Tian HY, Wang L, Zhang XQ, Xiao XZ, Li P, Ye WC (2013b) Further bisindole alkaloids from Catharanthus roseus and their cytotoxicity. Heterocycles 87:627–636CrossRefGoogle Scholar
  157. Zhang Z, Wang CZ, Wen XD, Shoyama Y, Yuan CS (2013c) Role of saffron and its constituents on cancer chemoprevention. Pharm Biol 51:920–924CrossRefPubMedPubMedCentralGoogle Scholar
  158. Zheng J, Zhou Y, Li Y, Xu DP, Li S, Li HB (2016) Spices for prevention and treatment of cancers. Forum Nutr 8:1–35Google Scholar
  159. Zhou K, Raffoul JJ (2012) Potential anticancer properties of grape antioxidants. J Oncol 2012:803294.
  160. Zick S, Ruffin M, Lee J, Normolle D, Siden R, Alrawi S, Brenner DE (2009) Phase II trial of encapsulated ginger as a treatment for chemotherapy-induced nausea and vomiting. Suppl Care Cancer 17:563–572CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Zahid H. Siddiqui
    • 1
  • B. Hareramdas
    • 2
  • Zahid K. Abbas
    • 1
  • Talat Parween
    • 3
  • Mohammad Nasir Khan
    • 1
  1. 1.Department of Biology, Faculty of ScienceUniversity of TabukTabukKingdom of Saudi Arabia
  2. 2.Department of ZoologyZakir Husain Delhi College, University of DelhiNew DelhiIndia
  3. 3.Division of BioscienceInstitute of Pesticide Formulation TechnologySector 20, Udyog Vihar, NH-8, Gurgaon 122016, HaryanaIndia

Personalised recommendations