Advertisement

A Semantic Web-Based Framework for Information Retrieval in E-Learning Systems

  • Olaperi Yeside Sowunmi
  • Sanjay MisraEmail author
  • Nicholas Omoregbe
  • Robertas Damasevicius
  • Rytis Maskeliūnas
Conference paper
  • 1.1k Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 799)

Abstract

The advent of the internet, the evolution of the World Wide Web (WWW), coupled with the e-learning paradigm has resulted in the availability of a plethora of learning resources on the Web. However, these resources are not being fully utilized to their greatest potential. Learners, educators and researchers seeking educational content usually spend a great deal of time sorting through resources on the web without satisfactory results. Most times, this is not because the information is not available, but because the techniques being applied by major search engines do not handle the semantics and personalization required in this context. In a bid to proffer a solution to the problem of discovering relevant resources online by different categories of users, this work presents an integrated framework for personalized information retrieval of educational content. The framework exploits semantic web technologies. Further work will include the implementation and testing of the framework.

Keywords

Personalized information retrieval E-learning Semantic web Ontology 

Notes

Acknowledgements

We acknowledge the support and sponsorship provided by Covenant University through the Centre for Research, Innovation and Discovery (CUCRID).

References

  1. 1.
    Antoniou, G., Groth, P., Van Harmelen, F., Hoekstra, R.: A Semantic Web Primer. The MIT Press, Cambridge (2012)Google Scholar
  2. 2.
    Rubens, N., Kaplan, D., Okamoto, T.: E-learning 3.0: anyone, anywhere, anytime, and AI. In: Chiu, D.K.W., Wang, M., Popescu, E., Li, Q., Lau, R. (eds.) ICWL 2012. LNCS, vol. 7697, pp. 171-180. Springer, Heidelberg (2014).  https://doi.org/10.1007/978-3-662-43454-3_18CrossRefGoogle Scholar
  3. 3.
    Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Am. 284, 28-37 (2001)CrossRefGoogle Scholar
  4. 4.
    Guri-Rosenblit, S.: “Distance education” and “e-learning”: not the same thing. High. Educ. 49, 467-493 (2005)CrossRefGoogle Scholar
  5. 5.
  6. 6.
    Sikos, L.: Mastering Structured Data on the Semantic Web: From HTML5 Microdata to Linked Open Data. Apress, New York (2015)CrossRefGoogle Scholar
  7. 7.
    Al-Yahya, M., George, R., Alfaries, A.: Ontologies in E-learning: review of the literature. Int. J. Softw. Eng. Appl. 9, 67-84 (2015)Google Scholar
  8. 8.
    Dicheva, D.: Ontologies and semantic web for E-learning. In: Adelsberger, H.H., Kinshuk, Pawlowski, J.M., Sampson, D.G. (eds.) Handbook on Information Technologies for Education and Training, pp. 47-65. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-3-540-74155-8_3
  9. 9.
    Monachesi, P., Simov, K., Mossel, E., Osenova, P., Lemnitzer, L.: What ontologies can do for eLearning. In: Proceedings of IMCL International Conference on Mobile and Computer Aided Learning, Amman, Jordan (2008)Google Scholar
  10. 10.
    Askar, P., Kalinyazgann, K., Altun, A., Pekince, S.S.: An ontology driven model for E-learning in K-12 education. In: Kidd, T.T., Song, H. (eds.) Handbook of Research on Instructional Systems and Technology, pp. 107-116. IGI Global (2008)Google Scholar
  11. 11.
    Kizilkaya, G., Torun, E.D., Askar, P.: Restructuring e-learning with ontologies. In: Fifth International Conference on Computational Science and Applications, pp. 161-164. IEEE (2007)Google Scholar
  12. 12.
    Dicheva, D., Mizoguchi, R., Greer, J.: Semantic Web Technologies for e-Learning: The Future of Learning, vol. 4. IOS Press, Amsterdam (2009)Google Scholar
  13. 13.
    Dicheva, D., Dichev, C.: Authoring and exploring learning content: share content by sharing concepts. In: Dicheva, D., Mizoguchi, R., Greer, J. (eds.) Semantic Web Technologies for e-Learning: The Future of Learning, vol. 4, pp. 24-43. IOS Press, Amsterdam, The Netherlands (2009)Google Scholar
  14. 14.
    Mizoguchi, R., Hayashi, Y., Bourdeau, J.: Inside a theory-aware authoring system. In: Dicheva, D., Mizoguchi, R., Greer, J. (eds.) Semantic Web Technologies for e-Learning: The Future of Learning, vol. 4, pp. 59-76. IOS Press, Amsterdam (2009)Google Scholar
  15. 15.
    Suraweera, P., Mitrovic, A., Martin, B., Holland, J., Milik, N., Zakharov, K.: Using ontologies to author constraint- based intelligent tutoring systems. In: Dicheva, D., Mizoguchi, R., Greer, J. (eds.) Semantic Web Technologies for e-Learning: The Future of Learning, vol. 4, pp. 77-95. IOS Press, Amsterdam (2009)Google Scholar
  16. 16.
    Jovanovic, J., Gasevic, D., Torniai, C., Devedzic, V.: Using semantic web technologies to provide contextualized feedback to instructors. In: Dicheva, D., Mizoguchi, R., Greer, J. (eds.) Semantic Web Technologies for e-Learning: The Future of Learning, vol. 4, pp. 117-135. IOS Press, Amsterdam (2009)Google Scholar
  17. 17.
    Melis, E., Goguadze, G., Libbrecht, P., Ullrich, C.: ActiveMath - a learning platform with semantic web features. In: Dicheva, D., Mizoguchi, R., Greer, J. (eds.) Semantic Web Technologies for e-Learning: The Future of Learning, vol. 4, pp. 159-177. IOS Press, Amsterdam (2009)Google Scholar
  18. 18.
    Jovanovic, J., Gasevic, D., Devedzic, V.: E-learning and the social semantic web. In: Dicheva, D., Mizoguchi, R., Greer, J. (eds.) Semantic Web Technologies for e-Learning: The Future of Learning, vol. 4, pp. 245-259. IOS Press, Amsterdam (2009)Google Scholar
  19. 19.
    Al-Yahya, M., Al-Faries, A., George, R.: CURONTO: an ontological model for curriculum representation. In: Proceedings of the 18th ACM Conference on Innovation and Technology in Computer Science Education - ITiCSE 2013, p. 358. ACM Press, New York (2013)Google Scholar
  20. 20.
    Litherland, K., Carmichael, P., Martínez-García, A.: Ontology-based e-assessment for accounting: outcomes of a pilot study and future prospects. J. Account. Educ. 31, 162-176 (2013)CrossRefGoogle Scholar
  21. 21.
    Sameh, A.: Ontology-based feedback E-learning system for mobile computing. In: Mastorakis, N., Mladenov, V., Kontargyri, V. (eds.) Proceedings of the European Computing Conference. LNEE, vol 27. Springer, Boston (2009).  https://doi.org/10.1007/978-0-387-84814-3_48
  22. 22.
    Cobos, C., Rodriguez, O., Rivera, J., Betancourt, J., Mendoza, M., León, E., Herrera-Viedma, E.: A hybrid system of pedagogical pattern recommendations based on singular value decomposition and variable data attributes. Inf. Process. Manag. 49, 607-625 (2013)CrossRefGoogle Scholar
  23. 23.
    Panagiotopoulos, I., Kalou, A., Pierrakeas, C., Kameas, A.: An ontology-based model for student representation in intelligent tutoring systems for distance learning. In: Iliadis, L., Maglogiannis, I., Papadopoulos, H. (eds.) AIAI 2012. IAICT, vol. 381, pp. 296-305. Springer, Heidelberg (2012).  https://doi.org/10.1007/978-3-642-33409-2_31CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Olaperi Yeside Sowunmi
    • 1
  • Sanjay Misra
    • 1
    Email author
  • Nicholas Omoregbe
    • 1
  • Robertas Damasevicius
    • 2
  • Rytis Maskeliūnas
    • 2
  1. 1.Covenant UniversityOtaNigeria
  2. 2.Kaunas Technological UniversityKaunasLithuania

Personalised recommendations