Research Trends in Malware Detection on Android Devices

  • Leesha AnejaEmail author
  • Sakshi Babbar
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 799)


Mobile phones have become the necessity of modern human life to store our valuable information such as passwords, reminders, messages, photos, videos and social contacts. The advent in mobile technology has made human life easier and more efficient. However, at the same time, our excessive dependency on mobile devices has drawn attention of malware authors and cyber criminals leading to large number of cyber-attacks. Amongst all, the major concern of security threat is on Android smartphones. The key reason for it is that it does not restrict users to download applications from unsafe sites. So, it is important to develop robust and efficient Android Malware detection system in order to protect our sensitive data from cyber-attacks on Android platform. In this work, we discuss different types of Android Malwares and provide critical review on their detection approaches that exist in literature. We also highlight promising new directions of research in the domain of Malware detection on Android devices.


Security Android Forensic Malware Intrusion detection techniques 


  1. 1.
    Varol, N., Aydogan, A.F., Varol, A.: Cyber attacks targetting android cell-phones. IEEE (2017)Google Scholar
  2. 2.
    Malhotra, A., Bajaj, K.: A survey on various malware detection techniques on mobile platform. Int. J. Comput. Appl. 139(5) (2016). ISSN 0975-8887Google Scholar
  3. 3.
    Baskaran, B., Ralescu, A.: A study of android malware detection techniques and machine learning. In: MAICS 2016 (2016)Google Scholar
  4. 4.
    Kapratwar, A.: Static and dynamic analysis for android malware detection. San Jose State University (2016)Google Scholar
  5. 5.
    Tong, F., Yan, Z.: A hybrid approach of mobile malware detection in android. J. Parallel Distrib. Comput. 103, 22–31 (2016)CrossRefGoogle Scholar
  6. 6.
    Roy, N.R., Khanna, A.K., Aneja, L.: Android phone forensic: tools and techniques. In: IEEE Conference, Galgotias University, Greater Noida (2016)Google Scholar
  7. 7.
    Malik, S., Khatter, K.: System call analysis of android malware families. Indian J. Sci. Technol. (IJST) 9(21) (2016)Google Scholar
  8. 8.
    Rana, S., Aneja, L.: Static and dynamic analysis of android malware. In: International Conference, REDSET 2016 (2016)Google Scholar
  9. 9.
    Feizollah, A., Anuar, N.B., Salleh, R., Wahab, A.W.A.: A review on feature selection in mobile malware detection. Digit. Investig. 13, 22–37 (2015)CrossRefGoogle Scholar
  10. 10.
    Babu Rajesh, V., Reddy, P., Himanshu, P., Patil, M.U.: Androinspector: a system for comprehensive analysis of android applications. Int. J. Netw. Secur. Appl. (IJNSA) 7(5) (2015)Google Scholar
  11. 11.
    Vijayarani, S., Sylviaa, M.: Intrusion detection system – a study. Int. J. Secur. Priv. Trust Manag. (IJSPTM) 4(1) (2015)Google Scholar
  12. 12.
    Lindorfer, M., Neugschwandtner, M., Platzer, C.: MARVIN: efficient and comprehensive mobile app classification through static and dynamic analysis. In: IEEE 39th Annual International Computers, Software and Applications Conference (2015)Google Scholar
  13. 13.
    Kaushik, P., Jain, A.: Malware detection techniques in android. Int. J. Comput. Appl. 122(17) (2015). ISSN 0975-8887Google Scholar
  14. 14.
    Mahesh, P., Jayawant, A., Kale, G.: Smartphone security: review of attacks, detection and prevention. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 5(3) (2015)Google Scholar
  15. 15.
    Sheen, S., Anitha, R., Natarajan, V.: Android based malware detection using a multifeature collaborative decision fusion approach. Neurocomputing 151, 905–912 (2015)CrossRefGoogle Scholar
  16. 16.
    Malik, S., Khatter, K.: AndroData: a tool for static and dynamic feature extraction of android app. Int. J. Appl. Eng. Res. 10, 98–102 (2015)Google Scholar
  17. 17.
    Walnycky, D., Baggili, I., Marrington, A., Moore, J.: Network and device forensic analysis of android social-messaging applications. Digit. Investig. 14, S77–S84 (2015)CrossRefGoogle Scholar
  18. 18.
    The volatility framework: volatile memory artifact, Systems, Volatile. Accessed 9 Oct 2015
  19. 19.
    Shabtai, A., Tenenboim-Chekina, L., Mimran, D., Rokach, L., Shapira, B., Elovici, Y.: Mobile malware detection through analysis of deviations in application network behaviour. Digit. Investig. 43, 1–8 (2014)Google Scholar
  20. 20.
    Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., Rieck, K.: Drebin: effective and explainable detection of android malware in your pocket. In: Network and Distributed System Security (NDSS) Symposium (2014)Google Scholar
  21. 21.
    Quick, D., Choo, K.-K.R.: Impacts of increasing volume of digital forensic data: a survey and future research challenges. Digit. Investig. 11, 273–294 (2014)CrossRefGoogle Scholar
  22. 22.
    Uppal, H.A.M., Javed, M., Arshad, M.J.: An overview of intrusion detection system (IDS) along with its commonly used techniques and classifications. Int. J. Comput. Sci. Telecommun. 5(2) (2014)Google Scholar
  23. 23.
    Ayers, R., Brothers, S., Jansen, W.: Guidelines on mobile device forensics. NIST Special Publication 800-101r1, May 2014.
  24. 24.
    Dhaya, R., Poongodi, M.: Detecting software vulnerabilities in android using static analysis. IEEE (2014)Google Scholar
  25. 25.
    Raveendranath, R., Rajamani, V., Babu, A.J., Datta, S.K.: Android malware attacks and countermeasures: current and future directions. IEEE (2014)Google Scholar
  26. 26.
    Dua, L., Bansal, D.: Review on mobile threats and detection techniques. Int. J. Distrib. Parallel Syst. (IJDPS)Google Scholar
  27. 27.
    Kaart, M., Laraghy, S.: Android forensics: interpretation of timestamps. Digit. Investig. 11, 234–248 (2014)CrossRefGoogle Scholar
  28. 28.
    Chakraborty, N.: Intrusion detection system and intrusion prevention system: a comparative study. Int. J. Comput. Bus. Res. (IJCBR) 4(2) (2013)Google Scholar
  29. 29.
    Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Bringas, P., Álvarez, G.: PUMA: permission usage to detect malware in android. In: Herrero, Á., et al. (eds.) International Joint Conference CISIS’12-ICEUTE’12-SOCO’12 Special Sessions. AISC, vol. 189, pp. 289–298. Springer, Heidelberg (2013). Scholar
  30. 30.
    Zhang, Y., Yang, M., Xu, B., Yang, Z., Gu, G., Ning, P., et al.: Vetting undesirable behaviors in android apps with permission use analysis. In: ACM SIGSAC Conference on Computer & Communications Security, p. 611e22 (2013)Google Scholar
  31. 31.
    Demme, J., Maycock, M., Schmitz, J., Tang, A.: On the feasibility of online malware detection with performance counters. In: ISCA 2013 (2013)Google Scholar
  32. 32.
    Wu, K.-P.: DroidMat: android malware detection through manifest and API calls tracing. In: Information Security (Asia JCIS), pp. 62–69 (2012)Google Scholar
  33. 33.
    Shaerpour, K., Dehghantanha, A., Mahmod, R.: Trends in android malware detection. J. Digit. Forensics Secur. Law 8(3)Google Scholar
  34. 34.
    Casey, E.: Digital Evidence and Computer Crime: Forensic Science, Computers, and the Internet. Elsevier Academic Press, Amsterdam (2011)Google Scholar
  35. 35.
    Oh, J., Lee, S., Lee, S.: Advanced evidence collection and analysis of web browser activity. Digit. Investig. 8, S62–S70 (2011). ISSN 1742-2876CrossRefGoogle Scholar
  36. 36.
    Thing, V.L., Ng, K.-Y., Chang, E.-C.: Live memory forensics of mobile phones. Digit. Investig. 7(Suppl.), S74–S82 (2010). ISSN 1742-2876CrossRefGoogle Scholar
  37. 37.
    Enck, W., Ongtang, M., Drew, P.: Understanding android security. IEEE Secur. Priv. 7(1), 50–57 (2009)CrossRefGoogle Scholar
  38. 38.
    Mislan, R.P., Wedge, T.: Designing laboratories for small scale digital device forensics. In: ADFSL Conference on Digital Forensics, Security and Law (2008)Google Scholar
  39. 39.
    Aron, L., Hanacek, P.: Overview of security on mobile devices. IEEE (2015)Google Scholar
  40. 40.
    Zhou, Y., Jiang, X.: Dissecting android malware: characterization and evolution. In: IEEE Symposium on Security and Privacy (2012)Google Scholar
  41. 41.

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.GD Goenka UniversityGurugramIndia

Personalised recommendations