Advertisement

Intuitionistic Fuzzy Shortest Path in a Multigraph

  • Siddhartha Sankar BiswasEmail author
  • Bashir Alam
  • M. N. Doja
Conference paper
  • 1.1k Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 799)

Abstract

Mutigraphs are a generalized model of graphs. Multigraphs may have multiple edges between a pair of its vertices. The existing algorithms to find the fuzzy shortest path or intuitionistic fuzzy shortest paths in graphs is not applicable to multigraphs. Our work here is on the theory of multigraphs. In this paper we develop a method to search for an intuitionistic fuzzy shortest path in a directed multigraph and then develop, as a special case, a fuzzy shortest path in a multigraph. We re-construct classical Dijkstra’s rule that is applicable to graphs with crisp weights which can then be extendable to IFN multigraphs. It’s claimed that the tactic might play a significant role in several application areas of technology, specifically in those networks that may not be shaped into graphs but however into multigraphs.

Keywords

IFS IFN IF-min-cost arch-set IF min path estimation IF relaxation 

References

  1. 1.
    Abbasbandy, S.: Ranking of fuzzy numbers, some recent and new formulas. In: IFSA-EUSFLAT, pp. 642– 646 (2009)Google Scholar
  2. 2.
    Allahviranloo, T., Abbasbandy, S., Saneifard, R.: A method for ranking of fuzzy numbers using new weighted distance. Math. Comput. Appl. 16(2), 359–369 (2011)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Varghese, A., Sunny, K.: Centroid of an intuitionistic fuzzy number. Notes Intuitionistic Fuzzy Sets 18(1), 19–24 (2012)zbMATHGoogle Scholar
  4. 4.
    Gani, A.N.: On searching intuitionistic fuzzy shortest path in a network. Appl. Math. Sci. 4(69), 3447–3454 (2010)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Atanassov, K.: Intuitionistic fuzzy sets. Fuzzy Sets Syst. 20, 87–96 (1986)CrossRefGoogle Scholar
  6. 6.
    Atanassov, K.: Intuitionistic Fuzzy Sets: Theory and Applications. Springer, Heidelberg (1999)CrossRefGoogle Scholar
  7. 7.
    Atanassov, K.: On Intuitionistic Fuzzy Sets Theory. Springer, Berlin (2012)CrossRefGoogle Scholar
  8. 8.
    Atanassov, K.: More on intuitionistic fuzzy sets. Fuzzy Sets Syst. 33, 37–46 (1989)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Atanassov, K.: Index matrix representation of the intuitionistic fuzzy graphs. In: Fifth Scientific Session of the Mathematical Foundations of Artificial Intelligence Seminar, Sofia, 5 October 1994, pp. 36–41. Preprint MRL-MFAIS-10-94 (1994)Google Scholar
  10. 10.
    Atanassov, K.: On index matrix interpretations of intuitionistic fuzzy graphs. Notes Intuitionistic Fuzzy Sets 8(4), 73–78 (2002)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Atanassov, K.: Temporal intuitionistic fuzzy graphs. Notes Intuitionistic Fuzzy Sets 4(4), 59–61 (1998)MathSciNetGoogle Scholar
  12. 12.
    Atanassov, K., Papadopoulos, B., Syropoulos, A.: An application of the theory of intuitionistic fuzzy multigraphs. Mathw. Soft Comput. 11(1), 45–49 (2004)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Balakrishnan, V.K.: Graph Theory. McGraw-Hill, New York (1997)zbMATHGoogle Scholar
  14. 14.
    Bollobas, B.: Modern Graph Theory. Springer, New York (2002)zbMATHGoogle Scholar
  15. 15.
    Li, D.F.: A ratio ranking method of triangular intuitionistic fuzzy numbers and its application to MADM problem. Comput. Math Appl. 60, 1557–1570 (2010)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Dat, L.Q., Yu, V.F., Chou, S.-Y.: An improved ranking method for fuzzy numbers using left and right indices. In: 2nd International Conference on Computer Design and Engineering, IPCSIT, vol. 49, pp. 89–94 (2012).  https://doi.org/10.7763/ipcsit.2012.v49.17
  17. 17.
    Li, D.F., Nan, J.X., Zhang, M.J.: A ranking method of triangular intuitionistic fuzzy numbers and application to decision making. Int. J. Comput. Intell. Syst. 3(5), 522–530 (2010).  https://doi.org/10.1080/18756891.2010.9727719CrossRefGoogle Scholar
  18. 18.
    Diestel, R.: Graph Theory. Springer, New York (2000)zbMATHGoogle Scholar
  19. 19.
    Dubois, D., Prade, H.: Fuzzy Sets and Systems. Academic Press, New York (1980)zbMATHGoogle Scholar
  20. 20.
    Farhadinia, B.: Ranking fuzzy numbers based on lexicoograhical ordering. World Academy of Science, Engineering and Technology, pp. 1029–1032 (2009)Google Scholar
  21. 21.
    Harary, F.: Graph Theory, Addison Wesley Publishing Company (1995)Google Scholar
  22. 22.
    Mitchell, H.B.: Ranking intuitionistic fuzzy numbers. Int. J. Uncertain. Fuzziness Knowl. Based Syst. 12(3), 377–386 (2004)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Jenson, P., Barnes, J.: Network Flow Programming. Wiley, New York (1980)Google Scholar
  24. 24.
    Ivančo, J.: Decompositions of multigraphs into parts with the same size. Discuss. Math. Graph Theory 30(2), 335–347 (2010)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Ivančo, J., Meszka, M., Skupień, Z.: Decompositions of multigraphs into parts with two edges. Discuss. Math. Graph Theory 22(1), 113–121 (2002)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Bryś, K., Kouider, M., Lonc, Z., Maheo, M.: Decomposition of multigraphs. Discuss. Math. Graph Theory 18(2), 225–232 (1998)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Klein, Cerry M.: Fuzzy shortest paths. Fuzzy Sets Syst. 39, 27–41 (1991)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Karunambigai, M.G., Rangasamy, P., Atanassov, K., Palaniappan, N.: an intuitionistic fuzzy graph method for finding the shortest paths in networks. Adv. Soft Comput. 42, 3–10 (2007)Google Scholar
  29. 29.
    Meszka, M., Skupien, Z.: Decomposition of a complete multigraph into almost arbitrary paths. Discuss. Math. Graph Theory 32(2), 357–372 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Okada, S., Soper, T.: A shortest path problem on a network with fuzzy arc lengths. Fuzzy Sets Syst. 109, 129–140 (2000)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Parandin, N., Araghi, M.A.F.: Ranking of fuzzy numbers by distance method. J. Appl. Math. 5(19), 47–55 (2008). Islamic Azad University of LahijanGoogle Scholar
  32. 32.
    Biswas, Ranjit: Fuzzy numbers redefined. Information 15(4), 1369–1380 (2012)MathSciNetzbMATHGoogle Scholar
  33. 33.
    Rao, P.P.B., Shankar, N.R.: Ranking fuzzy numbers with a distance method using circumcenter of centroids and an index of modality. Adv. Fuzzy Syst. 2011, 1–7 Article ID 178308,  https://doi.org/10.1155/2011/178308
  34. 34.
    Mukherjee, Sathi: Dijkstra’s algorithm for solving the shortest path problem on networks under intuitionistic fuzzy environment. J. Math. Model. Algorithms 11(4), 345–359 (2012)MathSciNetCrossRefGoogle Scholar
  35. 35.
    Saneifard, R., Ezzati, R.: A new approach for ranking fuzzy numbers with continuous weighted quasi-arithmatic means. Math. Sci. 4(2), 143–158 (2010)MathSciNetzbMATHGoogle Scholar
  36. 36.
    Shannon, A., Atanassov, K.: A first step to a theory of the intuitionistic fuzzy graphs. In: Lakov, D. (ed.) Proceedings of the First Workshop on Fuzzy Based Expert Systems, Sofia, 28–30 September, pp. 59-61 (1994)Google Scholar
  37. 37.
    Shannon, A., Atanassov, K.: On intuitionistic fuzzy multigraphs and their index matrix interpretations. In: Proceedings of 2004 Second International IEEE Conference Intelligent Systems, vol. 2, pp. 440–443 (2004)Google Scholar
  38. 38.
    Biswas, S.S., Alam, B., Doja, M.N.: A theoretical characterization of the data structure ‘multigraphs’. J. Contemporary Appl. Math. 2(2), 88–106 (2012)Google Scholar
  39. 39.
    Biswas, S.S., Alam, B., Doja, M.N.: Generalization of dijkstra’s algorithm for extraction of shortest paths in directed multigraphs. J. Comput. Sci. 9(3), 377–382 (2013).  https://doi.org/10.3844/jcssp.2013.377.382, ISSN 1549–3636
  40. 40.
    Biswas, S.S., Alam, B., Doja, M.N.: Fuzzy shortest path in a directed multigraph. Eur. J. Sci. Res. 101(3), 333–339 (2013). ISSN 1450-216X/1450-202XGoogle Scholar
  41. 41.
    Biswas, S.S., Alam, B., Doja, M.N.: Real time multigraphs for communication networks: an intuitionistic fuzzy mathematical model. J. Comput. Sci. 9(7), 847–855 (2013).  https://doi.org/10.3844/jcssp.2013.847.855, ISSN 1549-3636
  42. 42.
    Biswas, S.S., Alam, B., Doja, M.N.: Intuitionistic fuzzy real time multigraphs for communication networks: a theoretical model. In: Proceedings of DCS©2013, Singapore (2013)Google Scholar
  43. 43.
    Sujatha, L., Elizabeth, S.: Fuzzy shortest path problem based on similarity degree. Appl. Math. Sci. 5(66), 3263–3276 (2011)MathSciNetzbMATHGoogle Scholar
  44. 44.
    Yao, J.-S., Lin, F.-T.: Fuzzy shortest-path network problems with uncertain edge weights. J. Inf. Sci. Eng. 19, 329–351 (2003)MathSciNetGoogle Scholar
  45. 45.
    Yu, Jing-Rung, Wei, Tzu-Hao: Solving the fuzzy shortest path problem by using a linear multiple objective programming. J. Chin. Inst. Industrial Eng. 24(5), 360–365 (2007)CrossRefGoogle Scholar
  46. 46.
    Skupien, Zdzislaw: On distance edge coloring of a cyclic multigraph. Discuss. Math. Graph Theory 19, 251–252 (1999)CrossRefGoogle Scholar
  47. 47.
    Zadeh, L.A.: Fuzzy sets. Inf. Control 8, 338–353 (1965)CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Jamia HamdardNew DelhiIndia
  2. 2.Jamia Millia IslamiaNew DelhiIndia

Personalised recommendations