Biomedical Image Enhancement Using Different Techniques - A Comparative Study

Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 799)


In medical applications, processing of various medical images like chest X-rays, projection images of trans-axial tomography, cineangiograms and other medical images that occur in radiology, ultrasonic scanning and nuclear magnetic resonance (NMR) is required. These images may be used for patients’ screening and monitoring for detection of diseases in patients. Image enhancement algorithms are employed to emphasize, smoothen or sharpen image features for display and analysis. In the biomedical field, image enhancement faces the greatest difficulty in quantifying the criterion for enhancement. Enhancement methods are application specific and often developed empirically. The theme work presented in this paper is a detailed analysis of enhancement of medical images using contrast manipulation, noise reduction, edge sharpening, gray level slicing, edge crispening, magnification, interpolation, and pseudo-coloring. Comparison of these techniques is necessary for deciding an apt algorithm applicable for enhancement of all medical images and further processing. This paper reviews the background of enhancement techniques in three domains i.e. spatial, frequency and fuzzy domain. The comparative analysis of different techniques is shown using results that are obtained by applying these techniques to medical images.


Biomedical images Image enhancement Frequency Fuzzy and spatial domain techniques 


  1. 1.
    Przytulska, M., Kulikowski, J.L.: Quantitative test-based assessment of biomedical image enhancement procedures. Biocybern. Biomed. Eng. 36(1), 205–216 (2016)CrossRefGoogle Scholar
  2. 2.
    Isa, I.S., Sulaiman, S.N., Mustapha, M., Karim, N.K.A.: Automatic contrast enhancement of brain MR images using Average Intensity Replacement based on Adaptive Histogram Equalization (AIR-AHE). Biocybern. Biomed. Eng. 37(1), 24–34 (2017)CrossRefGoogle Scholar
  3. 3.
    Gao, G., Wan, X., Yao, S., Cui, Z., Zhou, C., Sun, X.: Reversible data hiding with contrast enhancement and tamper localization for medical images. Inf. Sci. 385, 250–265 (2017)CrossRefGoogle Scholar
  4. 4.
    Gonzalez, R.C., Woods, R.E.: Image processing. Digital image processing, 2nd edn. (2007)Google Scholar
  5. 5.
    Wu, Q., Merchant, F., Castleman, K.: Microscope Image Processing. Academic Press, Boston (2013)Google Scholar
  6. 6.
    Perperidis, A., Cusack, D., White, A., McDicken, N., MacGillivray, T., Anderson, T.: Dynamic enhancement of B-mode cardiac ultrasound image sequences. Ultrasound Med. Biol. 43(7), 1533–1548 (2017)CrossRefGoogle Scholar
  7. 7.
    Maurya, L., Mahapatra, P.K., Kumar, A.: A social spider optimized image fusion approach for contrast enhancement and brightness preservation. Appl. Soft Comput. 52, 575–592 (2017)CrossRefGoogle Scholar
  8. 8.
    Chou, G.Y., Moy, L., Kim, S.G., Leite, A.P.K., Baete, S.H., Babb, J.S., Sodickson, D.K., Sigmund, E.E.: Comparison of contrast enhancement and diffusion-weighted magnetic resonance imaging in healthy and cancerous tissue. Eur. J. Radiol. 84, 1888–1893 (2015)CrossRefGoogle Scholar
  9. 9.
    Pratt, W.K.: Introduction to Digital Image Processing. CRC Press, Boco Raton (2013)CrossRefGoogle Scholar
  10. 10.
    Milanfar, P.: A tour of modern image filtering: new insights and methods, both practical and theoretical. IEEE Sig. Process. Mag. 30(1), 106–128 (2013)CrossRefGoogle Scholar
  11. 11.
    Akila, K., Jayashree, L.S., Vasuki, A.: Mammographic image enhancement using indirect contrast enhancement techniques–a comparative study. Procedia Comput. Sci. 47, 255–261 (2015)CrossRefGoogle Scholar
  12. 12.
    Zhang, K., Wang, H., Yuan, B., Wang, L.: An image enhancement technique using nonlinear transfer function and unsharp masking in the multispectral endoscope. In: International Conference on Innovative Optical Health Science, p. 1024504. International Society for Optics and Photonics, January 2017Google Scholar
  13. 13.
    Liu, S.: Study on medical image enhancement based on wavelet transform fusion algorithm. J. Med. Imaging Health Inform. 7(2), 388–392 (2017)CrossRefGoogle Scholar
  14. 14.
    Li, W., Zhao, Z., Du, J., Wang, Y.: Edge-preserve filter image enhancement with application to medical image fusion. J. Med. Imaging Health Inform. 7(1), 16–24 (2017)CrossRefGoogle Scholar
  15. 15.
    Ko, J., Hong, W.K.: Inverse sigmoid-based X-Ray image enhancement. Indian J. Sci. Technol. 9(47) (2016)Google Scholar
  16. 16.
    Daniel, E., Anitha, J.: Optimum wavelet-based masking for the contrast enhancement of medical images using enhanced cuckoo search algorithm. Comput. Biol. Med. 71, 149–155 (2016)CrossRefGoogle Scholar
  17. 17.
    Grigoryan, A.M., Johna, A., Agaian, S.S.: Color image enhancement of medical images using alpha-rooting and zonal alpha-rooting methods on 2-D QDFT. In: SPIE Medical Imaging, p. 1013618. International Society for Optics and Photonics, March 2017Google Scholar
  18. 18.
    Rui, W., Guoyu, W.: Medical X-ray image enhancement method based on dark channel prior. In: Proceedings of the 5th International Conference on Bioinformatics and Computational Biology, pp. 38–41. ACM, January 2017Google Scholar
  19. 19.
    Zhou, M., Jin, K., Wang, S., Ye, J., Qian, D.: Color retinal image enhancement based on luminosity and contrast adjustment. IEEE Trans. Biomed. Eng. (2017)Google Scholar
  20. 20.
    Teare, P., Fishman, M., Benzaquen, O., Toledano, E., Elnekave, E.: Malignancy detection on mammography using dual deep convolutional neural networks and genetically discovered false color input enhancement. J. Digit. Imaging 30, 1–7 (2017)CrossRefGoogle Scholar
  21. 21.
    Magudeeswaran, V., Ravichandran, C.G., Thirumurugan, P.: Brightness preserving bi-level fuzzy histogram equalization for MRI brain image contrast enhancement. Int. J. Imaging Syst. Technol. 27(2), 153–161 (2017)CrossRefGoogle Scholar
  22. 22.
    Zhou, F., Jia, Z., Yang, J., Kasabov, N.: Method of improved fuzzy contrast combined adaptive threshold in NSCT for medical image enhancement. BioMed. Res. Int. (2017)Google Scholar
  23. 23.
    Rubio, Y., Montiel, O., Sepúlveda, R.: Microcalcification detection in mammograms based on fuzzy logic and cellular automata. In: Melin, P., Castillo, O., Kacprzyk, J. (eds.) Nature-Inspired Design of Hybrid Intelligent Systems. SCI, vol. 667, pp. 583–602. Springer, Cham (2017). Scholar
  24. 24.
    Rao, B.S.: A fuzzy fusion approach for modified contrast enhancement based image forensics against attacks. Multimedia Tools Appl. 1–21 (2017)Google Scholar
  25. 25.
    Magudeeswaran, V., Singh, J.F.: Contrast limited fuzzy adaptive histogram equalization for enhancement of brain images. Int. J. Imaging Syst. Technol. 27(1), 98–103 (2017)CrossRefGoogle Scholar
  26. 26.
    Reyes-Galaviz, O.F., Pedrycz, W.: Enhancement of the classification and reconstruction performance of fuzzy C-means with refinements of prototypes. Fuzzy Sets Syst. 318, 80–99 (2017)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Chaira, T.: An improved medical image enhancement scheme using type II fuzzy set. Appl. Soft Comput. 25, 293–308 (2014)CrossRefGoogle Scholar
  28. 28.
    Gandhamal, A., Talbar, S., Gajre, S., Hani, A.F.M., Kumar, D.: Local gray level S-curve transformation–a generalized contrast enhancement technique for medical images. Comput. Biol. Med. 83, 120–133 (2017)CrossRefGoogle Scholar
  29. 29.
    deAraujo, A.F., Constantinou, C.E., Tavares, J.M.R.: Smoothing of ultrasound images using a new selective average filter. Expert Syst. Appl. 60, 96–106 (2016)CrossRefGoogle Scholar
  30. 30.
    Cao, W., Zhou, Y., Chen, C.P., Xia, L.: Medical image encryption using edge maps. Sig. Process. 132, 96–109 (2017)CrossRefGoogle Scholar
  31. 31.
    Singh, A.K., Dave, M., Mohan, A.: Hybrid technique for robust and imperceptible image watermarking in DWT–DCT–SVD domain. Natl. Acad. Sci. Lett. 37(4), 351–358 (2014)CrossRefGoogle Scholar
  32. 32.
    Firoz, R., Ali, M.S., Khan, M.N.U., Hossain, M.K., Islam, M.K., Shahinuzzaman, M.: Medical image enhancement using morphological transformation. J. Data Anal. Inf. Process. 4(01), 1 (2016)Google Scholar
  33. 33.
    Zhou, X., Zheng, Y., Tan, L., Zhao, J.: medical image contrast enhancement via wavelet homomorphic filtering transform. TELKOMNIKA (Telecommun. Comput. Electron. Control) 14(3), 1203–1212 (2016)CrossRefGoogle Scholar
  34. 34.
    Yang, Y., Que, Y., Huang, S., Lin, P.: Multimodal sensor medical image fusion based on type-2 fuzzy logic in NSCT domain. IEEE Sens. J. 16(10), 3735–3745 (2016)CrossRefGoogle Scholar
  35. 35.
    Putzer, D., Pizzini, A., Liebensteiner, M., Moctezuma, J.L., Nogler, M.: Recognizing the surgical situs in minimally invasive hip arthroplasty: a comparison of different filtering techniques. Biocybern. Biomed. Eng. 36(1), 182–192 (2016)CrossRefGoogle Scholar
  36. 36.
    Rajendran, R., Rao, S.P., Agaian, S.S., Panetta, K.: A versatile edge-preserving image enhancement approach for medical images using a guided filter. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 002341–002346. IEEE, October 2016Google Scholar
  37. 37.
    Roy, S., Pal, A.K.: A blind DCT based color watermarking algorithm for embedding multiple watermarks. AEU-Int. J. Electron. Commun. 72, 149–161 (2017)CrossRefGoogle Scholar
  38. 38.
    Vimala, C., Priya, P.A.: Degraded image enhancement through double density dual tree discrete wavelet transform. Indian J. Sci. Technol. 9(28) (2016)Google Scholar
  39. 39.
    Akansu, A.N., Serdijn, W.A., Selesnick, I.W.: Emerging applications of wavelets: a review. Phys. Commun. 3(1), 1–18 (2010)CrossRefGoogle Scholar
  40. 40.
    Ali, M., Ahn, C.W.: An optimized watermarking technique based on self-adaptive DE in DWT–SVD transform domain. Sig. Process. 94, 545–556 (2014)CrossRefGoogle Scholar
  41. 41.
    Xiao, J., Liu, E., Zhao, L., Wang, Y.F., Jiang, W.: Detail enhancement of image super-resolution based on detail synthesis. Sig. Process. Image Commun. 50, 21–33 (2017)CrossRefGoogle Scholar
  42. 42.
    Luo, Z., Jia, Y.: MR image contrast enhancement by wavelet-based contourlet transform. Int. J. Bioautom. 20(2) (2016)Google Scholar
  43. 43.
    Li, H., Wu, J., Miao, A., Yu, P., Chen, J., Zhang, Y.: Rayleigh-maximum-likelihood bilateral filter for ultrasound image enhancement. Biomed. Eng. Online 16(1), 46 (2017)CrossRefGoogle Scholar
  44. 44.
    Verma, H.K., Pal, S.: Modified sigmoid function based gray scale image contrast enhancement using particle swarm optimization. J. Inst. Eng. (India) Ser. B 97(2), 243–251 (2016)CrossRefGoogle Scholar
  45. 45.
    Hu, H.M., Gao, Y., Guo, Q., Li, B.: A region-based video de-noising algorithm based on temporal and spatial correlations. Neurocomputing 266, 361–374 (2017)CrossRefGoogle Scholar
  46. 46.
    Koh, N.C.Y., Sim, K.S., Tso, C.P.: CT brain lesion detection through a combination of recursive sub-image histogram equalization in wavelet domain and adaptive gamma correction with weighting distribution. In: International Conference on Robotics, Automation and Sciences (ICORAS), pp. 1–6. IEEE, November 2016Google Scholar
  47. 47.
    Vig, N., Budhiraja, S., Singh, J.: Hue preserving color image enhancement using a guided filter based sub image histogram equalization. In: 2016 Ninth International Conference on Contemporary Computing (IC3), pp. 1–6. IEEE, August 2016Google Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.The NorthCap UniversityGurgaonIndia

Personalised recommendations