Advertisement

Preparation Technology of Silicon–Carbon Composite Anode Material Based on Expanded Graphite for Lithium-Ion Battery for Vehicles

  • Huiming Chen
  • Tao Jiang
  • Changru Rong
  • Dan Wang
  • Xinyan Mi
  • Kejin Zhang
Conference paper
Part of the Lecture Notes in Electrical Engineering book series (LNEE, volume 486)

Abstract

By the method of directly inserting the silicon source into the expanded graphite layer, the silicon-rich expanded graphite was obtained. Then, the silicon carbon composite negative electrode material was prepared by ball-milling the silicon-rich expanded graphite and the commercialized graphite material. The result of the physical properties and the electrochemical performance of the material showed that the initial reversible specific capacity reached 761.6 mAh/g at 70 mA/g. After 100 cycles, the capacity retention rate was 90.63%. The expanded graphite was used to buffer the expansion of silicon. The preparation process was simple and suitable for industrial batch production.

Keywords

Li-ion battery Silicon–carbon composite anode materials Expanded graphite Electrochemical performance Silicon-rich expanded graphite 

References

  1. 1.
    Wu Y, Jiang C, Wan C, Tsucida E (2000) Effects of catalytic oxidation on the electrochemical performance of common natural graphite as an anode material for lithium ion batteries. Electrochem Commun 2(4):272–275CrossRefGoogle Scholar
  2. 2.
    Johnson BA, White RE (1998) Characterization of commercially available lithium-ion batteries. J Power Sources 70(1):48–54CrossRefGoogle Scholar
  3. 3.
    Kasavajjula U, Wang C, Appleby AJ (2007) Nano- and bulk-silicon-based insertion anodes for lithium-ion secondary cells. J Power Sources 163(2):1003–1039CrossRefGoogle Scholar
  4. 4.
    Dou P, Cao Z, Wang C, Zheng J, Xu X (2017) Ultrafine Sn nanoparticles embedded in shell of N-doped hollow carbon spheres as high rate anode for lithium-ion batteries. J Power Sources 404(15):342–349Google Scholar
  5. 5.
    Zhang F, Liu S, Wang J, Du Y, Sun L (2017) Experimental investigation and thermodynamic assessment of the Li-Sb system. Calphad 57:28–36CrossRefGoogle Scholar
  6. 6.
    Yuan X, Xin H, Qin X, Li X, Liu Y, Guo H (2015) Self-assembly of SiO/Reduced Graphene Oxide composite as high-performance anode materials for Li-ion batteries. Electrochim Acta 155(10):251–256CrossRefGoogle Scholar
  7. 7.
    Tian Q, Tian Y, Zhang W, Huang J, Zhang Z, Yang L (2017) Impressive lithium storage of SnO2@TiO2 nanospheres with a yolk-like core derived from self-assembled SnO2 nanoparticles. J Alloy Compd 702(25):99–105CrossRefGoogle Scholar
  8. 8.
    Chan Candace K, Peng Hailin, Liu Gao, McIlwrath Kevin, Zhang Xiao Feng, Huggins Robert A, Cui Yi (2008) High-Performance Li battery Anodes using silicon nanowires. Nature Nanotech 3(1):31–35CrossRefGoogle Scholar
  9. 9.
    Yoshio M, Wang H, Fukuda K, Umeno T, Dimov N, Ogumi Z (2002) Carbon-Coated Si as a lithium-ion battery anode material. J Electrochem Soc 149(12):A1598–A1603CrossRefGoogle Scholar
  10. 10.
    Hasegawa T, Mukai SR, Shirato Y, Tamon H (2004) Preparation of carbon gel microspheres containing silicon powder for lithium ion battery anodes. Carbon 42(12–13):2573–2579CrossRefGoogle Scholar
  11. 11.
    Wu Junxiong, Qin Xianying, Liang Gemeng, et al (2016) A binder-free web-like silicon-carbon nanofiber-graphene hybrid member for use as the anode of a lithium-ion battery. New Carbon Mater 31(3):321–327Google Scholar
  12. 12.
    Huang X, Yang J, Mao S, Chang J et al (2014) Controllable synthesis of hollow Si anode for long-cycle-life lithium-ion batteries. Adv Mater 26(25):4326–4332CrossRefGoogle Scholar
  13. 13.
    Wang C, Zhao H, Wang J, Wang J, Lv P (2012) Electrochemical performance of modified artificial graphite as anode materia for lithium ion batteries. Ionics 19(2):221–226CrossRefGoogle Scholar
  14. 14.
    Dong A, Shen L, Qiao Y (2014) Preparation and performance of Si-carbon composite. Chinese Battery Ind 13(3):119–122Google Scholar
  15. 15.
    Li H, Huang X, Chen L (1999) Electrochemical impedance spectroscopy study of SnO and nano-SnO anodes in lithium rechargeable batteries. J Power Sources 81–82:340–345CrossRefGoogle Scholar
  16. 16.
    Zuo P, Yin G, Ma Y (2007) Electrochemical stability of silicon/carbon composite anode for lithium ion batteries. Electrochim Acta 52:4878–4883CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2019

Authors and Affiliations

  • Huiming Chen
    • 1
  • Tao Jiang
    • 1
  • Changru Rong
    • 1
  • Dan Wang
    • 1
  • Xinyan Mi
    • 1
  • Kejin Zhang
    • 1
  1. 1.China FAW Co., Ltd.ChangchunChina

Personalised recommendations