Advertisement

Toward the Unculturable Microbes for Sustainable Agricultural Production

  • Reeta Goel
  • Vinay Kumar
  • Deep Chandra Suyal
  • Narayan
  • Ravindra Soni
Chapter

Abstract

The microbes are elemental to maintain the life on the Earth, yet we have very little understanding about the majority of microbial forms present in various environments like soils. As per the information available from published researches, a big portion of microbial wealth is unculturable which may contain several beneficial traits, including the plant growth-promoting activities for sustainable agricultural production. Exploitation of these unculturable microbes can enhance our understanding of present practices of organic agriculture. The only way to exploit this unculturable wealth is the “metagenomics,” the culture-independent approach where we are analyzing microbial DNA extracted directly from an environmental sample.

Keywords

Metagenomics Rhizosphere Agriculture Organic agriculture 

Notes

Acknowledgment

The work mentioned in this chapter from author group was supported by the National Bureau of Agriculturally Important Microorganisms; India (NBAIM/ICAR) grant to R. G.

References

  1. Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 293–313.  https://doi.org/10.1007/978-81-322-2776-2_21 CrossRefGoogle Scholar
  2. Akinsanya MA, Goh JK, Lim SP, Ting AY (2015) Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology. Genom Data 6:159–163PubMedPubMedCentralCrossRefGoogle Scholar
  3. Alagukannan, Kumar A (2015) Role of effective microorganisms (em) in sustainable agriculture – a review and recommendations. Int J Scient Res 4:9Google Scholar
  4. Algar E, Ribitsch D, Antonio LJ, Ramos-Solano B, Schwab H, Gutierrez-Mañero FJ, Garcia-Villaraco A (2015) Identification and characterization of two novel thermostable and thermoresistant esterases isolated from rice rhizosphere by activity- based on metagenomic screening. Int J Curr Microbiol App Sci 4(12):413–433Google Scholar
  5. Altieri MA (2004) Linking ecologists and traditional farmers in the search for sustainable agriculture. Front Ecol Environ 2:35–42CrossRefGoogle Scholar
  6. Arjun JK, Harikrishnan K (2011) Metagenomic analysis of bacterial diversity in the rice rhizosphere soil microbiome research article. Biotechnol Bioinformatics Bioeng 1(3):361–367Google Scholar
  7. Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85Google Scholar
  8. Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 225–266.  https://doi.org/10.1007/978-81-322-2776-2_18 CrossRefGoogle Scholar
  9. Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J.  https://doi.org/10.1080/01490451.2016.1219431
  10. Barea JM (2015) Future challenges and perspectives for applying microbial biotechnology in sustainable agriculture based on a better understanding of plant-microbiome interactions. J Soil Sci Plant Nutr 15(2):261–282Google Scholar
  11. Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56:1761–1778PubMedPubMedCentralCrossRefGoogle Scholar
  12. Barret M, Morrissey JP, Gara FO (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47:729–743CrossRefGoogle Scholar
  13. Baudoin E, Couillerot O, Spaepen S, Moënne-Loccoz Y, Nazaret S (2009) Applicability of the 16S-23S rDNA internal spacer for PCR detection of the phytostimulatory PGPR inoculant Azospirillum lipoferum CRT1 in field soil. J Appl Microbiol 108:25–38PubMedCrossRefGoogle Scholar
  14. Bhattacharyya P, Roy KS, Dasa M, Raya S, Balachandar D, Karthikeyan S, Nayak AK, Mohapatra T (2016) Elucidation of rice rhizosphere metagenome in relation to methane and nitrogen metabolism under elevated carbon dioxide and temperature using whole genome metagenomic approach. Sci Total Environ 542:886–898PubMedCrossRefGoogle Scholar
  15. Boubakri H, Beuf M, Simonet P, Vogel TM (2006) Development of metagenomic DNA shuffling for the construction of a xenobiotic gene. Gene 375:87–94PubMedCrossRefGoogle Scholar
  16. Bresolin JD, Bustamante MMC, Krüger RH, Silva MRSS, Perez KS (2010) Structure and composition of bacterial and fungal community in soil under soybean monoculture in the Brazilian Cerrado. Braz J Microbiol 41:391–403PubMedPubMedCentralCrossRefGoogle Scholar
  17. Bulgarel D, Garrido-Oter R, Philipp CM, Weiman A, Dröge J, Pan Y, McHardy AC, Schulze-Lefert P (2015) Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17:392–403CrossRefGoogle Scholar
  18. Chauhan A, Smartt A, Wang J, Utturkar S, Frank A, Bi M, Liu J, Williams D, Xu T, Eldridge M, Arreaza A, Rogers A, Gonzalez HC, Layton AC, Baxter HL, Mazarei M, De Bruyn JM, Stewart CN Jr, Brown SD, Hauser LJ, Sayler GS (2014) Integrated metagenomics and metatranscriptomics analyses of root-associated soil from transgenic switchgrass. Genome Announc 2:e00777–e00714PubMedPubMedCentralGoogle Scholar
  19. Correa-Galeote D, Bedmar EJ, Fernández-González AJ, Arone GJ (2016) Bacterial communities in the rhizosphere of Amilaceous maize (Zea mays L.) as assessed by pyrosequencing. Front Plant Sci 7:1016PubMedPubMedCentralCrossRefGoogle Scholar
  20. Cui J, Wang Y, Han J, Cai B (2016) Analyses of the community compositions of root rot pathogenic fungi in the soybean rhizosphere soil. Chil J Agric Res 76(2):179–187CrossRefGoogle Scholar
  21. da Rocha UN, van Overbeek L, van Elsas JD (2009) Exploration of hitherto-uncultured bacteria from the rhizosphere. FEMS Microbiol Ecol 69:313–328PubMedCrossRefGoogle Scholar
  22. Daniel R (2004) The soil metagenome – a rich resource for the discovery of novel natural products. Curr Opin Biotechnol 15:199PubMedCrossRefGoogle Scholar
  23. Daniel R (2005) The metagenomics of soil. Nat Rev Microbiol 3:470–478PubMedCrossRefGoogle Scholar
  24. Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 281–291.  https://doi.org/10.1007/978-81-322-2776-2_20 CrossRefGoogle Scholar
  25. Debode J, De Tender C, Soltaninejad S, Van Malderghem C, Haegeman A, Van der Linden I, Cottyn B, Heyndrickx M, Maes M (2016) Chitin mixed in potting soil alters lettuce growth, the survival of zoonotic bacteria on the leaves and associated rhizosphere microbiology. Front Microbiol 7:565Google Scholar
  26. Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 77–98.  https://doi.org/10.1007/978-81-322-2776-2_6 CrossRefGoogle Scholar
  27. Donato JJ, Moe LA, Converse BJ, Smart KD, Berklein PS, McManus, Handelsman J (2010) Metagenomic analysis of apple orchard soil reveals antibiotic resistance genes encoding predicted bifunctional proteins. Appl Environ Microbiol 76(13):4396–4401PubMedPubMedCentralCrossRefGoogle Scholar
  28. Donn S, Kirkegaard JA, Perera G, Richardson AE, Watt M (2015) Evolution of bacterial communities in the wheat crop rhizosphere. Environ Microbiol 17(3):610–621PubMedCrossRefGoogle Scholar
  29. Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 267–280.  https://doi.org/10.1007/978-81-322-2776-2_19 CrossRefGoogle Scholar
  30. El-Badry MA (2016) Bacterial community metagenomic and variation of some medicinal plant rhizosphere collected form Sinai. SCIREA J Agric 1(1):16Google Scholar
  31. Falkowski P, Scholes R, Boyle E, Canadell J, Canfield D, Elser J, Gruber N, Hibbard K, Högberg P, Linder S, Mackenzie FT, Moore B, Pedersen T, Rosenthal Y, Seitzinger S, Smetacek V, Steffen W (2000) The global carbon cycle: a test of our knowledge of earth as a system. Science 290:291–296PubMedCrossRefGoogle Scholar
  32. Finzi AC, Austin AT, Cleland EE, Frey S, Houlton BZ, Wallenstein MD (2011) Responses and feedbacks of coupled biogeochemical cycles to climate change: examples from terrestrial ecosystems. Front Ecol Environ 9:61–67CrossRefGoogle Scholar
  33. García-Salamanca A, Molina-Henares MA, van Dillewijn P, Solano J, Pizarro-Tobías P, Roca A, Duque E, Ramos JL (2013) Bacterial diversity in the rhizosphere of maize and the surrounding carbonate-rich bulk soil. Microb Biotechnol 6:36–44PubMedCrossRefGoogle Scholar
  34. Harwani D (2013) Bacteria eating pollution and generating electricity. Int J Pharm Bio Sci Oct 4(4):(B) 996–1002Google Scholar
  35. Hernández-León R, Martínez-Trujillo M, Valencia-Cantero E et al (2012) Construction and characterization of a metagenomic DNA library from the rhizosphere of wheat (Triticum aestivum). Phyton Int J Exp Bot 81:133–137Google Scholar
  36. Hernández M, Marc GD, Yuan Q et al (2015) Different bacterial populations associated with the roots and rhizosphere of Rice incorporate plant-derived carbon. Appl Environ Microbiol 81(6):2244–2253PubMedPubMedCentralCrossRefGoogle Scholar
  37. Hill RT, Fenical W (2010) Pharmaceuticals from marine natural products: surge or ebb. Curr Opin Biotechnol 21(6):777–779PubMedCrossRefGoogle Scholar
  38. Hong S, Kim K, Yoon S, Park WY, Sim S, Yu JR (2014) Detection of Cryptosporidium parvum in environmental soil and vegetables. J Korean Med Sci 29:1367–1371PubMedPubMedCentralCrossRefGoogle Scholar
  39. Jackson CR, Randolph KC, Osborn SL, Tyler HL (2013) Culture dependent and independent analysis of bacterial communities associated with commercial salad leaf vegetables. BMC Microbiol 13:274PubMedPubMedCentralCrossRefGoogle Scholar
  40. Jacquiod S, Franqueville L, Cécillon S, Vogel TM, Simonet P (2013) Soil bacterial community shifts after chitin enrichment: an integrative metagenomic approach. PLoS One 8:e79699PubMedPubMedCentralCrossRefGoogle Scholar
  41. Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 21–29.  https://doi.org/10.1007/978-81-322-2776-2_2 CrossRefGoogle Scholar
  42. Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221Google Scholar
  43. Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 149–162.  https://doi.org/10.1007/978-81-322-2776-2_11 CrossRefGoogle Scholar
  44. Jie W, Liu X, Cai B (2013) Diversity of rhizosphere soil arbuscular mycorrhizal fungi in various soybean cultivars under different continuous cropping regimes. PLoS One 8(8):e72898PubMedPubMedCentralCrossRefGoogle Scholar
  45. Johan HJ, Leveau (2007) The magic and menace of metagenomics: prospects for the study of plant growth-promoting rhizobacteria. Eur J Plant Pathol. (2007 119:279–300CrossRefGoogle Scholar
  46. Kopke B, Wilms R, Engelen B, Cypionka H, Sass H (2005) Microbial diversity in coastal subsurface sediments: a cultivation approach using various electron acceptors and substrate gradients. Appl Environ Microb 71:7819–7830CrossRefGoogle Scholar
  47. Kouzuma A, Kaku N, Watanabe K (2014) Microbial electricity generation in rice paddy fields: recent advances and perspectives in rhizosphere microbial fuel cells. Appl Microbiol Biotechnol 98:9521–9526PubMedCrossRefGoogle Scholar
  48. Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724Google Scholar
  49. Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822CrossRefGoogle Scholar
  50. Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 61–75.  https://doi.org/10.1007/978-81-322-2776-2_5 CrossRefGoogle Scholar
  51. Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul.  https://doi.org/10.1007/s00344-016-9663-5
  52. Lakhdari O, Cultrone A, Tap J, Gloux K, Bernard F, Ehrlich SD, Lefèvre F, Doré J, Blottière HM (2010) Functional metagenomics: a high throughput screening method to decipher microbiota-driven NF-kappaB modulation in the human gut. PLoS One 5(9):e13092PubMedPubMedCentralCrossRefGoogle Scholar
  53. Leff JW, Fierer N (2013) Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLoS One 8(3):e59310PubMedPubMedCentralCrossRefGoogle Scholar
  54. Leonard SR, Mammel MK, Lacher DW et al (2015) Application of metagenomic sequencing to food safety: detection of Shiga toxin-producing Escherichia coli on fresh bagged spinach. Appl Environ Microbiol 81(23):8183–8191PubMedPubMedCentralCrossRefGoogle Scholar
  55. Li C, WeidongXL YK, Wang WJ (2010) Effect of monoculture soybean on soil microbial community in the Northeast China. Plant Soil 330:423CrossRefGoogle Scholar
  56. Li X, Rui J, Xiong J, Li J, He Z, Zhou J, Yannarell AC, Mackie RI, Wang S (2014) Functional Potential of Soil Microbial Communities in the Maize Rhizosphere. PLoS ONE 9(11):e112609PubMedPubMedCentralCrossRefGoogle Scholar
  57. Li K, Li Z, Yang Q (2016) Improving light distribution by zoom lens for electricity savings in a plant factory with light-emitting diodes. Front Plant Sci 7:92Google Scholar
  58. Mahyarudin, Rusmana I, Yulin L (2015) Metagenomic of Actinomycetes based on 16S rRNA and nifH genes in soil and roots of four Indonesian rice cultivars using PCR-DGGE. H J Bios 22:113e121Google Scholar
  59. Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 137–147.  https://doi.org/10.1007/978-81-322-2776-2_10 CrossRefGoogle Scholar
  60. Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187Google Scholar
  61. Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56Google Scholar
  62. Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1, 2 & 3):6–12Google Scholar
  63. Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. Bioscan 8(3):931–935Google Scholar
  64. Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237Google Scholar
  65. Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347PubMedPubMedCentralCrossRefGoogle Scholar
  66. Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Clean Prod 102:560–561CrossRefGoogle Scholar
  67. Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553CrossRefGoogle Scholar
  68. Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J Bot 44(1):143–146CrossRefGoogle Scholar
  69. Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347CrossRefGoogle Scholar
  70. Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563.  https://doi.org/10.1016/j.jclepro.2015.04.044 CrossRefGoogle Scholar
  71. Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557.  https://doi.org/10.1016/j.jclepro.2015.04.030 CrossRefGoogle Scholar
  72. Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatal Agric Biotechnol 4:806–811Google Scholar
  73. Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260CrossRefGoogle Scholar
  74. Meena SK, Rakshit A, Meena VS (2016c) Effect of seed bio-priming and N doses under varied soil type on nitrogen use efficiency (NUE) of wheat (Triticum aestivum L.) under greenhouse conditions. Biocatal Agric Biotechnol 6:68–75Google Scholar
  75. Meena VS, Bahadur I, Maurya BR, Kumar A, Meena RK, Meena SK, Verma JP (2016d) Potassium-solubilizing microorganism in evergreen agriculture: an overview. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 1–20.  https://doi.org/10.1007/978-81-322-2776-2_1 CrossRefGoogle Scholar
  76. Meena VS, Meena SK, Bisht JK, Pattanayak A (2016e) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691CrossRefGoogle Scholar
  77. Mhuantong W, Charoensawan V, Kanokratana P, Tangphatsornruang S, Champreda V (2015) Comparative analysis of sugarcane bagasse metagenome reveals unique and conserved biomass-degrading enzymes among lignocellulolytic microbial communities. Biotechnol Biofuels 8:16PubMedPubMedCentralCrossRefGoogle Scholar
  78. Morel MA, Braña V, Castro-Sowinski S (2012) In: Aakash G (ed) Legume crops, importance and use of bacterial inoculation to increase production. Plant Crop. Intech, Rijeka, pp 217–240Google Scholar
  79. Navarrete AA, Kuramae EE, de Hollander M, Pijl AS, van Veen JA, Tsai SM (2013) Acidobacterial community responses to agricultural management of soybean in Amazon forest soils. FEMS Microbiol Ecol 83:607–621PubMedCrossRefGoogle Scholar
  80. Naz I, Mirza MS, Bano A (2014) Molecular characterization of rhizosphere bacterial communities associated with wheat (triticum aestivum l.) cultivars at flowering stage. J Ani Pl Sci 24(4):1123–1134Google Scholar
  81. Noble AD, Ruaysoongnern S (2010) The nature of sustainable agriculture. In: Dixon R, Tilston E (eds) Soil microbiology and sustainable crop production. Springer Science and Business Media B.V, Berlin, pp 1–25Google Scholar
  82. Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat Commun 5:4950PubMedCrossRefGoogle Scholar
  83. Ottesen AR, González Peña A, White JR, Pettengill JB, Li C, Allard S, Hill T, Evans P, Strain E, Musser S, Knight R, Brown E (2013) Baseline survey of the anatomical microbial ecology of an important food plant: Solanum lycopersicum (tomato). BMC Microbiol 13:114PubMedPubMedCentralCrossRefGoogle Scholar
  84. Palanga E, Filloux D, Martin DP, Fernandez E, Gargani D, Ferdinand R, Zabré J, Bouda Z, Neya JB, Sawadogo M, Traore O, Peterschmitt M, Roumagnac P (2016) Metagenomic-based screening and molecular characterization of cowpea-infecting viruses in Burkina Faso. PLoS One 11(10):e0165188PubMedPubMedCentralCrossRefGoogle Scholar
  85. Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116Google Scholar
  86. Pascual J, Blanco S, García-López M, García-Salamanca A, Bursakov SA, Genilloud O et al (2016) Assessing bacterial diversity in the rhizosphere of thymus zygis growing in the sierra Nevada National Park (Spain) through culture-dependent and independent approaches. PLoS One 11(1):e0146558PubMedPubMedCentralCrossRefGoogle Scholar
  87. Patrick DS, Handelsman J (2005) Metagenomics for studying unculturable microorganisms: cutting the Gordian knot. Genome Biol 6:229CrossRefGoogle Scholar
  88. Peiffer JA, Spor A, Koren O, Jinb Z, Tringed SG, Dangle JL, Bucklera ES, Ley RE (2013) Diversity and heritability of the maize rhizosphere microbiome under field conditions. PNAS 110(16):6548–6553PubMedPubMedCentralCrossRefGoogle Scholar
  89. Pham VHT, Kim J (2012) Cultivation of unculturable soil bacteria. Trends Biotechnol 30(9):475–484PubMedCrossRefGoogle Scholar
  90. Pirovano W, Miozzi L, Boetzer M, Pantaleo V (2014) Bioinformatics approaches for viral metagenomics in plants using short RNAs: model case of study and application to a Cicer arietinum population. Front Microbiol 5:790PubMedGoogle Scholar
  91. Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 327–331.  https://doi.org/10.1007/978-81-322-2776-2_23 CrossRefGoogle Scholar
  92. Prakash O, Verma M, Sharma P, Kumar M, Kumari K, Singh A, Kumari H, Jit S, Gupta SK, Khanna M, Lal R (2007) Polyphasic approach of bacterial classification- an overview of recent advances. Ind J Microbiol 47:98–108CrossRefGoogle Scholar
  93. Premalatha K, Soni R, Khan M, Marla SS, Goel R (2009) Exploration of csp gene(s) from temperate and glacier soils of Indian Himalaya and in silico analysis of encoding proteins. Curr Microbiol 58(4):343–348CrossRefGoogle Scholar
  94. Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 111–125.  https://doi.org/10.1007/978-81-322-2776-2_8 CrossRefGoogle Scholar
  95. Qi X, Wang E, Xing M, Zhao W, Chen X (2012) Rhizosphere and non-rhizosphere bacterial community composition of the wild medicinal plant Rumex patientia. World J Microbiol Biotechnol 28:2257–2265PubMedCrossRefGoogle Scholar
  96. Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J, Wu L, Zhou J, Ni S, Lin L, Pons N, Batto JM, Kennedy SP, Leonard P, Yuan C, Ding W, Chen Y, Hu X, Zheng B, Qian G, Xu W, Dusko Ehrlich S, Zheng S, Li L (2014) Alterations of the human gut microbiome in liver cirrhosis. Nature 513(7516):59–64PubMedCrossRefGoogle Scholar
  97. Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 43–59.  https://doi.org/10.1007/978-81-322-2776-2_4 CrossRefGoogle Scholar
  98. Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 235–253.  https://doi.org/10.1007/978-81-322-2776-2_17 CrossRefGoogle Scholar
  99. Rincon-Florez VA, Lilia CC, Peer MS (2013) Culture-independent molecular tools for soil and rhizosphere microbiology. Diversity 5:581–612CrossRefGoogle Scholar
  100. Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 127–136.  https://doi.org/10.1007/978-81-322-2776-2_9 CrossRefGoogle Scholar
  101. Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from indo-gangetic plains of India. Biocatal Agric Biotechnol 7:202–209Google Scholar
  102. Schmeisser C, Steele H, Streit WR (2007) Metagenomics, biotechnology with non-culturable microbes. Appl Microb Biotechnol 75:955–962CrossRefGoogle Scholar
  103. Sessitsch A, Hardoim P, Döring J, Weilharter A, Krause A, Woyke T, Mitter B, Hauberg-Lotte L, Friedrich F, Rahalkar M, Hurek T, Sarkar A, Bodrossy L, van Overbeek L, Brar D, van Elsas JD, Reinhold-Hurek B (2012) Functional characteristics of an endophyte community colonizing rice roots as revealed by metagenomic analysis. Mol Plant-Microbe Interact 25:28–36PubMedCrossRefGoogle Scholar
  104. Sharma R, Grover A, Kapardar RK, Sharma R (2005) Unculturable’ bacterial diversity: an untapped resource. Curr Sci 89(1):72–77Google Scholar
  105. Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 203–219.  https://doi.org/10.1007/978-81-322-2776-2_15 CrossRefGoogle Scholar
  106. Shenton M, Iwamoto C, Kurata N, Ikeo K (2016) Effect of wild and cultivated rice genotypes on rhizosphere bacterial community composition. Rice 9:42PubMedPubMedCentralCrossRefGoogle Scholar
  107. Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 221–234.  https://doi.org/10.1007/978-81-322-2776-2_16 CrossRefGoogle Scholar
  108. Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 171–185.  https://doi.org/10.1007/978-81-322-2776-2_13 CrossRefGoogle Scholar
  109. Singh BK & Macdonald CA (2010) Drug discovery from uncultivable microorganisms. Drug. Discov. Today 15, 792–799PubMedCrossRefGoogle Scholar
  110. Singh NP, Singh RK, Meena VS, Meena RK (2015) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99.  https://doi.org/10.5958/2229-4473.2015.00012.9 CrossRefGoogle Scholar
  111. Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134.  https://doi.org/10.1007/978-981-10-2558-7_4 CrossRefGoogle Scholar
  112. Soni R, Goel R (2010) Triphasic approach for assessment of bacterial population in different soil systems. Ekologija 56(3–4):99–104CrossRefGoogle Scholar
  113. Soni R, Suyal DC, Sai S, Goel R (2016) Exploration of nifH gene through soil metagenomes of the western Indian Himalayas. 3 Biotech 6(1)Google Scholar
  114. Spence C, Alff E, Johnson C, Ramos C, Donofrio N, Sundaresan V, Bais H (2014) Natural rice rhizospheric microbes suppress rice blast infections. BMC Plant Biol 14:130PubMedPubMedCentralCrossRefGoogle Scholar
  115. Stewart EJ (2012) Growing Unculturable bacteria. J Bacteriol 194(16):4151–4160PubMedPubMedCentralCrossRefGoogle Scholar
  116. Stobbe AH, Roossinck MJ (2014) Plant virus metagenomics: what we know and why we need to know more. Front Plant Sci 5Google Scholar
  117. Sugiyama A, Ueda Y, Zushi T, Takase H, Yazaki K (2014) Changes in the bacterial Community of Soybean Rhizospheres during growth in the field. PLoS One 9(6):e100709PubMedPubMedCentralCrossRefGoogle Scholar
  118. Susannah GT, Edward MR (2005) Metagenomics: DNA sequencing of environmental samples. Nat Rev Gen 6:805–814Google Scholar
  119. Suyal DC, Yadav A, Shouche Y, Goel R (2014) Diversified diazotrophs associated with the rhizosphere of Western Indian Himalayan native red kidney beans (Phaseolus vulgaris L.). 3. Biotech 5(4):433–441Google Scholar
  120. Tahir M, Mirza MS, Hameed S, Dimitrov MR, Smidt H (2015) Cultivation-based and molecular assessment of bacterial diversity in the Rhizosheath of wheat under different crop rotations. PLoS One 10(6):e0130030PubMedPubMedCentralCrossRefGoogle Scholar
  121. Tamaki H, Sekiguchi Y, Hanada S, Nakamura K, Nomura N, Matsumura M, Kamagata Y (2005) Comparative analysis of bacterial diversity in freshwater sediment of a shallow eutrophic lake by molecular and improved cultivation-based techniques. Appl Environ Microb 71:2162–2169CrossRefGoogle Scholar
  122. Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 315–325.  https://doi.org/10.1007/978-81-322-2776-2_22 CrossRefGoogle Scholar
  123. Tian BY, Yi C, Zhang KQ (2015) Metagenomic insights into communities, functions of endophytes, and their associates with infection by root-knot nematode, Meloidogyne incognita, in tomato roots. Sci Rep 5:17087PubMedPubMedCentralCrossRefGoogle Scholar
  124. Tikhonovich, Provorov (2011) Microbiology is the basis of sustainable agriculture: an opinion. Ann Appl Biol 159:155–168CrossRefGoogle Scholar
  125. Torsvik V, Daae FL, Sandaa RA, Øvreås L (2002) Microbial diversity and function in soil: from genes to ecosystems. Curr Opin Microbiol 5:240–245PubMedCrossRefGoogle Scholar
  126. Tringe SG, von Mering C, Kobayashi A, Salamov AA, Chen K, Chang HW, Podar M, Short JM, Mathur EJ, Detter JC, Bork P, Hugenholtz P, Rubin EM (2005) Comparative metagenomics of microbial communities. Science 308:554–557PubMedCrossRefGoogle Scholar
  127. Turner TR, Ramakrishnan K, Walshaw J, Heavens D, Alston M, Swarbreck D, Osbourn A, Grant A, Poole PS (2013) Comparative metatranscriptomics reveals kingdom level changes in the rhizosphere microbiome of plants. ISME J 7:2248–2258PubMedPubMedCentralCrossRefGoogle Scholar
  128. Val-Moraes SP, Pedrinho EAN, Lemos EGM, Carareto-Alves LM (2013) Molecular identification of fungal communities in a soil cultivated with vegetables and soil suppressiveness to Rhizoctonia solani. Appl Environ Soil Sci 2013:1–7CrossRefGoogle Scholar
  129. Vartoukian SR, Palmer RM, Wade WG (2010) Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol Lett 309:1–7PubMedGoogle Scholar
  130. Vartoukian SR, Adamowska A, Lawlor M, Moazzez R, Dewhirst FE, Wade WG (2016) In vitro cultivation of “Unculturable” oral bacteria, facilitated by Community Culture and Media Supplementation with siderophores. In: Wen Z (ed) PLoS ONE. 11(1):e0146926PubMedPubMedCentralCrossRefGoogle Scholar
  131. Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 99–110.  https://doi.org/10.1007/978-81-322-2776-2_7 CrossRefGoogle Scholar
  132. Velazquez-Sepulveda I, Orozco-Mosqueda MC, PrietoBarajas CM, Santoyo G (2012) Bacterial diversity associated with the rhizosphere of wheat plants (Triticum aestivum): toward a metagenomic analysis. Phyton Int J Exp Bot 81:81–87Google Scholar
  133. Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919Google Scholar
  134. Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547CrossRefGoogle Scholar
  135. Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794CrossRefGoogle Scholar
  136. Wade W (2002) Unculturable bacteria—the uncharacterized organisms that cause oral infections. J R Soc Med 95(2):81–83PubMedPubMedCentralGoogle Scholar
  137. Wagner MR, Lundberg DS, del Rio TG, Tringe SG, Dangl JL, Mitchell-Olds T (2016) Host genotype and age shape the leaf and root microbiomes of a wild perennial plant. Nat Commun 7:12151PubMedPubMedCentralCrossRefGoogle Scholar
  138. Wang H, Wang SD, Jiang Y, Zhao SJ, Chen WX (2014) Diversity of rhizosphere bacteria associated with different soybean cultivars in two soil conditions. Soil Sci Plant Nutr 60(5):630–639CrossRefGoogle Scholar
  139. Xu X, Passey T, Wei F, Saville R, Harrison RJ (2015) Amplicon-based metagenomics identified candidate organisms in soils that caused yield decline in strawberry. Hortic Res 2:15022PubMedPubMedCentralCrossRefGoogle Scholar
  140. Xue C, Ryan Penton C, Zongzhuan S, Zhang R, Huang Q, Li R, Ruan Y, Shen Q (2015) Manipulating the banana rhizosphere microbiome for biological control of Panama disease. Sci Rep 5:11124PubMedPubMedCentralCrossRefGoogle Scholar
  141. Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 187–201.  https://doi.org/10.1007/978-81-322-2776-2_14 CrossRefGoogle Scholar
  142. Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 163–170.  https://doi.org/10.1007/978-81-322-2776-2_12 CrossRefGoogle Scholar
  143. Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, India, pp 31–42.  https://doi.org/10.1007/978-81-322-2776-2_3 CrossRefGoogle Scholar
  144. Zarraonaindia I, Owens SM, Weisenhorn P, West K, Hampton-Marcell J, Lax S, Bokulich NA, Mills DA, Martin G, Taghavi S, van der Lelie D, Gilbert JA (2015) The soil microbiome influences grapevine-associated microbiota. MBio 6(2):e02527–e02514. https://doi.org/10.1128/mBio.02527-14 PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Reeta Goel
    • 1
  • Vinay Kumar
    • 2
  • Deep Chandra Suyal
    • 1
  • Narayan
    • 3
  • Ravindra Soni
    • 3
  1. 1.Department of MicrobiologyCBSH, G.B. Pant University of Agriculture and TechnologyPantnagarIndia
  2. 2.ICAR-National Institute of Biotic Stress ManagementRaipurIndia
  3. 3.Department of Agricultural MicrobiologyCollege of Agriculture, Indira Gandhi Krishi Vishva VidyalayaRaipurIndia

Personalised recommendations