Role of ACC Deaminase as a Stress Ameliorating Enzyme of Plant Growth-Promoting Rhizobacteria Useful in Stress Agriculture: A Review

  • Pallab Kumar Ghosh
  • Tarun Kumar De
  • Tushar Kanti Maiti


The crop production is inhibited by a large number of both biotic and abiotic stresses. These stresses include presence of toxic heavy metals, high salt, flood, drought, temperature, wounding, various pathogens, etc. The agricultural production was intensified by management of these stresses with increased use of chemicals, and it needs more attention for incoming population explosion. These chemical inputs caused several harmful effects on the environment and sustainable agriculture. It is ne3cessary to decrease dependence of chemical input for sustainable agriculture with a holistic approach and also essential for environmental protection. One such possible approach is the use of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-producing plant growth-promoting rhizobacteria (PGPR) to protect the crop plants from the harmful effects of both biotic and abiotic stresses. The enzyme ACC deaminase (EC regulates stress ethylene production by catalysing ACC into α-ketobutyrate and ammonia. Various research works have documented the application of ACC deaminase-producing PGPR under both normal and stressed conditions responsible for the increased growth, health and productivity of crop plant. These beneficial rhizobacteria may decrease the dependence on agrochemicals (fertilizer and pesticides) to stabilize the agroecosystems and maintained sustainable agriculture. Different biochemical and biophysical properties of this enzyme and its regulation have been briefly described. This review also describes the role of ACC deaminase enzyme in plant growth and production by ameliorating different stress conditions including heavy metal, salinity, drought, flood, temperature, etc. Finally, the latest paradigms for useful application of ACC deaminase-containing plant growth-promoting rhizobacteria in different agroecosystems have been discussed comprehensively under stress conditions to highlight the recent scenario with the aim to develop future insights.


ACC deaminase Biotic and abiotic stress Ethylene Phylogeny Signalling 





1-Aminocyclopropane-1-carboxylate deaminase


Auxin response factor


Indole-3-acetic acid


Induce systemic resistance


Plant growth-promoting rhizobacteria



The financial support for the first author provided by DST (SERB), New Delhi, India (NPDF/2016/00323 dt.05.07.2016) as providing National Post-Doctoral Fellowship, through the Department of Marine Science, Ballygunge Science College Campus, Calcutta University, WB, India, is gratefully acknowledged.


  1. Aamir M, Aslam A, Khan YM, Jamshaid MU, Ahmad M, Asghar HN, Zahir ZA (2013) Co-inoculation with Rhizobium and plant growth promoting rhizobacteria (PGPR) for inducing salinity tolerance in mung bean under field condition of semi-arid climate. Asian J Agri Biol 1(1):17–22Google Scholar
  2. Abbaspoor A, Zabihi HR, Movafegh S, Asl MHA (2009) The efficiency of plant growth promoting Rhizobacteria (PGPR) on yield and yield components of two varieties of wheat in salinity condition. Am Eurasian J Sustain Agric 3(4):824–828Google Scholar
  3. Abeles FB, Morgan PW, Saltveit ME (1992) Regulation of ethylene production by internal, environmental and stress factors. In: Ethylene in plant biology, 2nd edn. Academic, San Diego, pp 56–119CrossRefGoogle Scholar
  4. Achilea O, Fuchs Y, Chalutz E, Rot I (1985) The contribution of host and pathogen to ethylene biosynthesis in Penicillium digitatum-infected citrus fruit. Physiol. Plant Pathol 27:55–63Google Scholar
  5. Ahmad E, Khan Md S, Almas Z (2013) ACC deaminase producing Pseudomonas putida strain PSE3 and Rhizobium leguminosarum strain RP2 in synergism improves growth, nodulation and yield of pea grown in alluvial soils. Symbiosis 61:93–104CrossRefGoogle Scholar
  6. Ahmad I, Akhtar MJ, Zahir ZA, Naveed M, Mitter B, Sessitsch A (2014) Cadmium-tolerant bacteria induce metal stress tolerance in cereals. Environ Sci Pollut Res 21:11054–11065CrossRefGoogle Scholar
  7. Ahmad M, Nadeem SM, Naveed M, Zahir ZA (2016) Potassium-solubilizing bacteria and their application in agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 293–313. CrossRefGoogle Scholar
  8. Ahmadi N, Mibus H, Serek M (2009) Characterization of ethylene-induced organ abscission in F1 breeding lines of miniature roses (Rosa hybrida L.) Post Harvest Biol Technol 52:260–266CrossRefGoogle Scholar
  9. Akhgar R, Arzanlou M, Bakker PAHM, Hamidpour M (2014) Characterization of 1-Aminocyclopropane-1-Carboxylate (ACC) deaminase-containing Pseudomonas spp. in the rhizosphere of salt-stressed canola. Pedosphere 24(4):461–468CrossRefGoogle Scholar
  10. Akhtar S, Ali B (2011) Evaluation of rhizobacteria as non-rhizobial inoculants for mung beans. Aust J Crop Sci 5(13):1723–1729Google Scholar
  11. Ali S, Charles TC, Glick BR (2014a) Amelioration of high salinity stress damage by plant growth promoting bacterial endophytes that contain ACC deaminase. Plant Physio Bioche 80:160–167CrossRefGoogle Scholar
  12. Ali SZ, Sandhya V, Rao LV (2014b) Isolation and characterization of drought-tolerant ACC deaminase and exopolysaccharide-producing fluorescent Pseudomonas sp. Ann Microbiol 64:493–502CrossRefGoogle Scholar
  13. Apelbaum A, Yang SF (1981) Biosynthesis of stress ethylene induced by water deficit. Plant Physiol 68(3):594–596PubMedPubMedCentralCrossRefGoogle Scholar
  14. Arshad M, Frankenberger WT (2002) Ethylene: agricultural sources and applications. Kluwer Academic, New York. ISBN 0-306-46666-X, EUR 158/USD 145.0/GBP 98.00.plant sci 162(6), pp1020Google Scholar
  15. Arshad M, Shaharoona B, Mahmood T (2008) Inoculation with Pseudomonas spp. containing ACC-deaminase partially eliminates the effects of drought stress on growth, yield, and ripening of pea (Pisum sativum L.) Pedosphere 18(5):611–620CrossRefGoogle Scholar
  16. Babalola OO (2010) Beneficial bacteria of agricultural importance. Biotechnol Lett 32:1559–1570PubMedCrossRefGoogle Scholar
  17. Babalola OO, Osir EO, Sanni AI, Odhiambo GD, Bulimo WD (2003) Amplification of 1-amino-cyclopropane-1-carboxylic acid (ACC) deaminase from plant growth promoting rhizobacteria in Striga-infested soil. Afri J Biotechnol 2:157–160CrossRefGoogle Scholar
  18. Bahadur I, Meena VS, Kumar S (2014) Importance and application of potassic biofertilizer in Indian agriculture. Int Res J Biol Sci 3:80–85Google Scholar
  19. Bahadur I, Maurya BR, Kumar A, Meena VS, Raghuwanshi R (2016a) Towards the soil sustainability and potassium-solubilizing microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 225–266. CrossRefGoogle Scholar
  20. Bahadur I, Maurya BR, Meena VS, Saha M, Kumar A, Aeron A (2016b) Mineral release dynamics of tricalcium phosphate and waste muscovite by mineral-solubilizing rhizobacteria isolated from indo-gangetic plain of India. Geomicrobiol J.
  21. Bal HB, Nayak L, Das S, Adhya TK (2013) Isolation of ACC deaminase producing PGPR from rice rhizosphere and evaluating their plant growth promoting activity under salt stress. Plant Soil 366:93–105CrossRefGoogle Scholar
  22. Bangash N, Khalidi A, Mahmood T, Siddique TM (2013) Screening rhizobacteria containing ACC deaminase for growth promotion of wheat under water stress. Pak J Bot 45(SI):91–96Google Scholar
  23. Barea JM, Pozo MJ, Azcon R, Azcon-Aguilar C (2005) Microbial co-operation in the rhizosphere. J Exp Bot 56(417):1761–1778PubMedPubMedCentralCrossRefGoogle Scholar
  24. Barka EA, Nowak J, Clement C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN. Appl Env Microbiol 72:7246–7252CrossRefGoogle Scholar
  25. Barnawal D, Bharti N, Maji D, Chanotiya CS, Kalra A (2014) ACC deaminase containing Arthrobacter protophormiae induces NaCl stress tolerance through reduced ACC oxidase activity and ethylene production resulting in improved nodulation and mycorrhization in Pisum sativum. J Plant Physiol 171(11):884–894PubMedPubMedCentralCrossRefGoogle Scholar
  26. Barnawala D, Bhartia N, Majia D, Chanotiy CS, Kalra A (2012) 1-Aminocyclopropane1carboxylic acid (ACC) deaminase containing rhizobacteria protect Ocimum sanctum plants during waterlogging stress via reduced ethylene generation. Plant Physiol Biochem 58:227–235CrossRefGoogle Scholar
  27. Belimov AA, Wenzel WW (2009) The role of rhizosphere microorganisms in heavy metal tolerance of higher plants. Asp Appl Biol 98:81–90Google Scholar
  28. Belimov AA, Safronova VI, Sergeyeva TA, Egorova TN, Matveyeva VA, Tsyganov VE, Borisov AY, Tikhonovich IA, Kluge C, Preisfeld A, Dietz KJ, Stepanok VV (2001) Characterization of plant growth promoting rhizobacteria isolated from polluted soils and containing 1-aminocyclopropane-1-carboxylate deaminase. Can J Microbiol 47:642–652PubMedCrossRefGoogle Scholar
  29. Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L. Czern.) Soil Biol Biochem 37:241–250CrossRefGoogle Scholar
  30. Belimov AA, Dodd IC, Safronova VI, Hontzeas N, Davies WJ (2007) Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato. J Exp Bot 58:1485–1495PubMedCrossRefGoogle Scholar
  31. Belimov AA, Dodd IC, Safronova VI, Davies WJ (2009) ACC-deaminase-containing rhizobacteria improve vegetative development and yield of potato plants grown under water limited conditions. Asp Appl Biol 98:163–169Google Scholar
  32. Bernardo MA, Dieguez ET, Jones HG, Chairez FA, Ojanguren CLT, Cortes AL (2000) Screening and classification of cowpea genotypes for salt tolerance during germination. Int J Exp Bot 67:71–84Google Scholar
  33. Bertolla F, Simonet P (1999) Horizontal gene transfer in the environment: natural transformation as a potential process for gene transfer between transgenic plants and microorganisms. Res Microbiol 150:375–384PubMedCrossRefGoogle Scholar
  34. Blumwald E (2000) Sodium transport and salt tolerance in plants. Curr Opin Cell Biol 12:431–434PubMedCrossRefGoogle Scholar
  35. Boyd RS (2010) Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol 36:46–58PubMedCrossRefGoogle Scholar
  36. Bradford KJ, Yang SF (1980) Xylem transport of 1-aminocyclopropane-1-carboxylic acid, an ethylene precursor in waterlogged tomato plants. Plant Physiol 65:322–326PubMedPubMedCentralCrossRefGoogle Scholar
  37. Brown RW (1977) Water relations of rane plants. In: Sosebee RE (ed) Rangeland plant physiology. Rane Sc. Ser.4.Soc for rane Manage, Denver, Colo, pp 7–140Google Scholar
  38. Burd GI, Dixon DG, Glick BR (1998) A plant growth-promoting bacterium that decreases nickel toxicity in seedlings. Appl Env Microbiol 64:3663–3668Google Scholar
  39. Burd GI, Dixon DG, Glick BR (2000) Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245PubMedCrossRefGoogle Scholar
  40. Cardinale M, Ratering S, Suarez C, Montoya AMZ, Plaum RG, Schnell S (2015) Paradox of plant growth promotion potential of rhizobacteria and their actual promotion effect on growth of barley (Hordeum vulgare L.) under salt stress. Microbiol Res 181:22–32PubMedCrossRefGoogle Scholar
  41. Carlos MHJ, Stefani PVY, Janette AM, Melani MSS, Gabriela PO (2016) Assessing the effects of heavy metals in ACC deaminase and IAA production on plant growth promoting bacteria. Microbiol Res 188(189):53–61PubMedCrossRefGoogle Scholar
  42. Cavalca L, Zanchi R, Corsini A, Colombo M, Romagnoli C, Canzi E, Andreoni V (2010) Arsenic-resistant bacteria associated with roots of the wild Cirsium arvense (L.) plant from anarsenic polluted soil, and screening of potential plant growth-promoting characteristics. Syst Appl Microbiol 33:154–164PubMedCrossRefGoogle Scholar
  43. Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein and related proteins. Cell 89:1133–1144PubMedCrossRefGoogle Scholar
  44. Chaudhary D, Sindhu SS (2015) Inducing salinity tolerance in chickpea (Cicer arietinum L.) by inoculation of 1-aminocyclopropen-1-carboxylic acid deaminase-containing Mesorhizobium strains. Afri J Microbiol Res 9(2):117–124CrossRefGoogle Scholar
  45. Cheikh N, Jones RJ (1994) Disruption of maize kernel growth and development by heat stress (role of cytokinin/abscisic acid balance). Plant Physiol 106:45–51PubMedPubMedCentralCrossRefGoogle Scholar
  46. Cheng Z, Park E, Glick BR (2007) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas putida UW4 facilitates the growth of canola in the presence of salt. Can J Microbiol 53:912–918PubMedCrossRefGoogle Scholar
  47. Chookietwattana K, Maneewan K (2012) Selection of efficient salt-tolerant bacteria containing ACC deaminase for promotion of tomato growth under salinity stress. Soil Environ 31(1):30–36Google Scholar
  48. Das I, Pradhan M (2016) Potassium-solubilizing microorganisms and their role in enhancing soil fertility and health. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 281–291. CrossRefGoogle Scholar
  49. Dashti N, Prithiviraj B, Zhou X, Hynes RK, Smith DL (2000) Combined effects of plant growth promoting biotypes of stellaria media. Ann Bot 68:167–172Google Scholar
  50. de Souza R, Meyer J, Schoenfeld R, Costa PB, Passaglia LMP (2015) Characterization of plant growth-promoting bacteria associated with rice cropped in iron-stressed soils. Ann Microbiol 65:951–964CrossRefGoogle Scholar
  51. Dell’Amico A, Cavalca L, Andreoni V (2008) Improvement of Brassica napus growth under cadmium stress by cadmium-resistant rhizobacteria. Soil Biol Biochem 40:74–84CrossRefGoogle Scholar
  52. Dey R, Pal KK, Bhatt DM, Chauhan SM (2004) Growth promotion and yield enhancement of peanut (Arachis hypogaea L.) by application of plant growth-promoting rhizobacteria. Microbiol Res 159:371–394PubMedCrossRefGoogle Scholar
  53. Dobbelaere S, Vanderleyden J, Okon Y (2003) Plant growth-promoting effects of diazotrophs in the rhizosphere. Crit Rev Plant Sci 22:107–149CrossRefGoogle Scholar
  54. Dodd IC, Belimov AA, Sobeih WY, Safronova VI, Grierson D, Davies WJ (2005) Will modifying plant ethylene status improve plant productivity in water-limited environments? In: 4th International Crop Science Congress, BrisbaneGoogle Scholar
  55. Domenech J, Reddy MS, Kloepper JW, Ramos B, Gutierrez-Manero J (2006) Combined application of the biological product LS213 with Bacillus, Pseudomonas or Chryseobacterium for growth promotion and biological control of soil borne diseases in pepper and tomato. BioControl 51:245CrossRefGoogle Scholar
  56. Dominguez-Nunez JA, Benito B, Berrocal-Lobo M, Albanesi A (2016) Mycorrhizal fungi: role in the solubilization of potassium. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 77–98. CrossRefGoogle Scholar
  57. Donate-Correa J, Leon-Barrios M, Perez-Galdona R (2004) Screening for plant growth-promoting rhizobacteria in Chamaecytisus proliferus (tagasaste), a forage tree-shrub legume endemic to the Canary Islands. Plant Soil 266:261–272CrossRefGoogle Scholar
  58. Dotaniya ML, Meena VD, Basak BB, Meena RS (2016) Potassium uptake by crops as well as microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 267–280. CrossRefGoogle Scholar
  59. Duan J, Kirsten MM, Trevor C, Vesely C, Vesely S, Glick BR (2009) 1-Aminocyclopropane-1-Carboxylate (ACC) deaminase genes in Rhizobia from Southern Saskatchewan. Microb Ecol 57:423–436PubMedCrossRefGoogle Scholar
  60. Egamberdieva D, Berg G, Lindstrom K, Rasanen LA (2013) Alleviation of salt stress of symbiotic Galega offi cinalis L. (Goat’s Rue) by co-inoculation of Rhizobium with root colonising Pseudomonas. Plant Soil 369:453–465CrossRefGoogle Scholar
  61. Farajzadeh D, Aliasgharzad N, Bashir NS, Yakhchali B (2010) Cloning and characterization of a plasmid encoded ACC deaminase from an indigenous Pseudomonas fluorescens FY32. Curr Microbiol 61:37–43PubMedCrossRefGoogle Scholar
  62. Farwell AJ, Vesely S, Nero V, Rodriguez H, McCormack K, Shah S, Dixon DG, Glick BR (2007) Tolerance of transgenic canola plants (Brassica napus) amended with plant growth-promoting bacteria to flooding stress at a metal-contaminated field site. Environ Pollut 147:540–545PubMedCrossRefGoogle Scholar
  63. Frankenberger WT, Arshad M (1995) Phytohormones in soils: microbial production and function. Marcel Dekker, New York, p 503Google Scholar
  64. Fujino A, Ose T, Yao M, Tokiwano T, Honma M, Watanabe N, Tanaka I (2004) Structural and enzymatic properties of 1-aminocyclopropane-1-carboxylate deaminase homologue from Pyrococcus horikoshii. J Mol Biol 341:999–1013PubMedCrossRefGoogle Scholar
  65. Gamalero E, Berta G, Glick BR (2009) The use of microorganisms to facilitate the growth of plants in saline soils. In: Microbial strategies for crop improvement. Springer, Berlin, pp 1–22Google Scholar
  66. Ganesan V (2008) Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting Rhizopseudomonad. Curr Microbiol 56:403–407PubMedCrossRefGoogle Scholar
  67. Ghosh S, Penterman JN, Little RD, Chavez R, Glick BR (2003) Three newly isolated plant growth promoting bacilli facilitates the seedling growth of canola, Brassica campestris. Plant Physiol Biochem 41:277–281CrossRefGoogle Scholar
  68. Ghosh PK, Saha P, Mayilraj S, Maiti TK (2013) Role of IAA metabolizing enzymes on production of IAA in root, nodule of Cajanus cajan and its PGP Rhizobium sp. Biocata Agri Biotech 2:234–239Google Scholar
  69. Ghosh PK, Sen SK, Maiti TK (2015a) Characterization of IAA producing Enterobacter spp. (Gammaproteobacteria) isolated from root nodules of a legume Abrus precatorius L. Biocata Agri Biotech 4:296–303Google Scholar
  70. Ghosh PK, De TK, Maiti TK (2015b) Production and metabolism of indole acetic acid in root nodules and symbiont (Rhizobium undicola) isolated from root nodule of aquatic medicinal legume Neptunia oleracea Lour. J Bot :1–11. CrossRefGoogle Scholar
  71. Glazebrook J (2005) Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens. Annu Rev Phytopathol 43:205–227PubMedCrossRefGoogle Scholar
  72. Glick BR (2005) Modulation of plant ethylene levels by the bacterial enzyme ACC deaminase. FEMS Microbiol Lett 251:1–7PubMedCrossRefGoogle Scholar
  73. Glick BR (2014) Bacteria with ACC deaminase can promote plant growth and help to feed the world. Microbiol Res 169:30–39PubMedCrossRefGoogle Scholar
  74. Glick BR, Jacobson CB, Schwarze MMK, Pasternak JJ (1994) 1-Aminocyclopropane-1-carboxylic acid deaminase mutants of the plant growth promoting rhizobacteria Pseudomonas putida GR12-2 do not stimulate canola root elongation. Can J Microbiol 40:911–915CrossRefGoogle Scholar
  75. Glick BR, Karaturovic DM, Newell PC (1995) A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol 41:533–536CrossRefGoogle Scholar
  76. Glick BR, Penrose DM, Li J (1998) A model for the lowering of plant ethylene concentrations by plant growth promoting bacteria. J Theor Biol 190:63–68PubMedCrossRefGoogle Scholar
  77. Glick BR, Patten CL, Holgiun G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth promoting bacteria. Imperial College Press, London, p 276CrossRefGoogle Scholar
  78. Glick BR, Cheng ZY, Czarny J, Duan J (2007) Promotion of plant growth by ACC deaminase producing soil bacteria. Eur J Plant Pathol 119(3):329–339CrossRefGoogle Scholar
  79. Goodlass G, Smith KA (1979) Effects of ethylene on root extension and nodulation of pea (Pisum sativum L.) and white clover (Trifolium repens L.) Plant Soil 51:387–395CrossRefGoogle Scholar
  80. Govindasamy V, Senthil KM, Gaikwad K, Annapurna K (2008a) Isolation and characterization of ACC deaminase gene from two plant growth promoting rhizobacteria. Curr Microbiol 57:312–317PubMedCrossRefGoogle Scholar
  81. Govindasamy V, Senthil KM, Upendra K, Annapurna K (2008b) PGPR-biotechnology for management of abiotic and biotic stresses in crop plants. In: Maheshwari DK, Dubey RC (eds) Potential microorganisms for sustainable agriculture. IK International, New Delhi, pp 26–48Google Scholar
  82. Govindasamy V, Senthilkumar M, Annapurna K (2015) Effect of mustard rhizobacteria on wheat growth promotion under cadmium stress: characterization of acdS gene coding ACC deaminase. Ann Microbiol 65:1679–1687CrossRefGoogle Scholar
  83. Grichko VP, Glick BR (2001a) Amelioration of flooding stress by ACC deaminase-containing plant growth-promoting bacteria. Plant Physiol Biochem 39:11–17CrossRefGoogle Scholar
  84. Grichko VP, Glick BR (2001b) Flooding tolerance of transgenic tomato plants expressing the bacterial enzyme ACC deaminase controlled by the 35S, rolD or PRB-1b promoter. Plant Physiol Biochem 39:19–25CrossRefGoogle Scholar
  85. Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb, and Zn. J Biotechnol 81:45–53PubMedCrossRefGoogle Scholar
  86. Grobbelaar N, Clarke B, Hough MC, Grobbelaar N, Clarke B, Hough MC (1971) The nodulation and nitrogen fixation of isolated roots of Phaseolus vulgaris L. III. The effect of carbon dioxide and ethylene. Plant Soil:216–223Google Scholar
  87. Guinel FC, Sloetjes LL (2000) Ethylene is involved in the nodulation phenotype of Pisum sativum R50 (sym 16), a pleiotropic mutant that nodulates poorly and has pale green leaves. J Exp Bot 51:885–894PubMedGoogle Scholar
  88. Guo J, Chi J (2014) Effect of Cd-tolerant plant growth-promoting rhizobium on plant growth and Cd uptake by Lolium multiflorum Lam. and Glycine max (L.) Cd-contaminated soil. Plant Soil 375:205–214CrossRefGoogle Scholar
  89. Habib SH, Kausar H, Saud HM (2015) Plant growth-promoting rhizobacteria enhance salinity stress tolerance in okra through ROS-scavenging enzymes. BioMed Res Int (Hindawi Publishing Corporation)
  90. Han Y, Wang R, Yang Z, Zhan Y, Ma Y, Ping S, Zhang L, Lin M, Yan Y (2015) 1-Aminocyclopropane-1-carboxylate deaminase from Pseudomonas stutzeri A1501 facilitates the growth of Rice in the presence of salt or heavy metals. J Microbiol Biotechnol 25(7):1119–1128PubMedCrossRefGoogle Scholar
  91. Hao Y, Charles TC, Glick BR (2007) ACC deaminase from plant growth-promoting bacteria affects crown gall development. Can J Microbiol 53:1291–1299PubMedCrossRefGoogle Scholar
  92. Hassan W, Bano R, Bashir F, David J (2014) Comparative effectiveness of ACC-deaminase and/or nitrogen fixing rhizobacteria in promotion of maize (Zea mays L.) growth under lead pollution. Environ Sci Pollut Res 21:10983–10996PubMedCrossRefGoogle Scholar
  93. Hassan W, Bashir S, Ali F, Ijaz M, Hussain M, David J (2016) Role of ACC-deaminase and/or nitrogen fixing rhizobacteria in growth promotion of wheat (Triticum aestivum L.) under cadmium pollution. Environ Earth Sci 75:267CrossRefGoogle Scholar
  94. Honma M, Shimomura T (1978) Metabolism of l-aminocyclopropane-1-carboxylic acid. Agri Biol Chem 42:1825–1831Google Scholar
  95. Hontzeas N, Saleh S, Glick BR (2004a) Changes in gene expression in canola roots induced by ACC-deaminase-containing plant-growth-promoting bacteria. Mol Plant-Microbe Interact 12:951–959Google Scholar
  96. Hontzeas N, Zoidakis J, Glick BR, Abu-Omar MM (2004b) Expression and characterization of 1-aminocyclopropane-1-carboxylate deaminase from the rhizobacterium Pseudomonas putida UW4: a key enzyme in bacterial plant growth promotion. Biochem Biophys Acta 1703:11–19PubMedGoogle Scholar
  97. Hontzeas N, Richardson AO, Belimov A, Safronova V, Abu-Omar MM, Glick BR (2005) Evidence for horizontal transfer of 1-aminocyclopropane-1-carboxylate deaminase genes. Appl Env Microbiol 71:7556–7558CrossRefGoogle Scholar
  98. Hontzeas N, Hontzeas CE, Glick BR (2006) Reaction mechanisms of bacterial enzyme 1-aminocyclopropane-1-carboxylate deaminase. Biotechnol Adv 24:420–426PubMedCrossRefGoogle Scholar
  99. Hu X, Boyer GL (1996) Siderophore-mediated aluminium uptake by Bacillus megaterium ATCC 19213. Appl Environ Microbiol 62:4044–4048PubMedPubMedCentralGoogle Scholar
  100. Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004) Multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476PubMedCrossRefGoogle Scholar
  101. Husen E, Wahyudi AT, Suwanto A, Saraswati R (2008) Prospective use of 1-Aminocyclopropane-1-carboxylate deaminase-producing bacteria for plant growth promotion and defense against biotic and abiotic stresses in peat-soil-agriculture. Microbiology 2(3):107–111Google Scholar
  102. Islam F, Yasmeen T, Arif SM, Riaz M, Shahzad MS, Imran Q, Ali I (2016) Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiol Biochem 108:456–467PubMedCrossRefGoogle Scholar
  103. Jacobson CB, Pasternak JJ, Glick BR (1994) Partial purification and characterization of ACC deaminase from the plant growth-promoting rhizobacterium Pseudomonas putida GR12-2. Can J Microbiol 40:1019–1025CrossRefGoogle Scholar
  104. Jain S, Vaishnav A, Kasotia A, Kumari S, Gaur RK, Choudhary DK (2013) Bacteria-induced systemic resistance and growth promotion in Glycine max L. Merrill upon challenge inoculation with Fusarium oxysporum. Proc Natl Acad Sci, India Sect B Biol Sci 83(4):561–567CrossRefGoogle Scholar
  105. Jaiswal DK, Verma JP, Prakash S, Meena VS, Meena RS (2016) Potassium as an important plant nutrient in sustainable agriculture: a state of the art. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 21–29. CrossRefGoogle Scholar
  106. Jaleel CA, Manivannan P, Sankar B, Kishore KA, Gopi R, Somasundaram R, Panneerselvam R (2007) Pseudomonas fluorescens enhances biomass yield and ajmalicine production in Catharanthus roseus under water deficit stress. Colloids Surf B Biointer 60:7–11CrossRefGoogle Scholar
  107. Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR, Miransari M (2009) Isolation and characterization of ACC deaminase-producing fluorescent pseudomonads, to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674PubMedCrossRefGoogle Scholar
  108. Jat LK, Singh YV, Meena SK, Meena SK, Parihar M, Jatav HS, Meena RK, Meena VS (2015) Does integrated nutrient management enhance agricultural productivity? J Pure Appl Microbiol 9(2):1211–1221Google Scholar
  109. Jha Y, Subramanian RB (2016) Regulation of plant physiology and antioxidant enzymes for alleviating salinity stress by potassium-mobilizing bacteria. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 149–162. CrossRefGoogle Scholar
  110. Ji Y, Huang X (2008) Amelioration of salt stress on annual rye grass by ACC deaminase containing plant growth-promoting rhizobacteria. In: 2nd international conference on bioinformatics and biomedical engineering (ICBBE), Shanghai, pp 16–18Google Scholar
  111. Jia YJ, Kakuta Y, Sugawara M, Igarashi T, Oki N, Kisaki M, Shoji T, Kanetuna Y, Horita T, Matsui H, Honma M (1999) Synthesis and degradation of 1-aminocyclopropane-1-carboxylic acid by Penicillium citrinum. Biosci Biotechnol Biochem 63:542–549PubMedCrossRefGoogle Scholar
  112. Jiang C, Xia-fang S, Meng Q, Wang Q (2008) Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere 72(2):157–164PubMedCrossRefGoogle Scholar
  113. Jiang F, Chen L, Belimov AA, Shaposhnikov AI, Gong F, Meng X, Hartung W, Jeschke DW, Davies WJ, Dodd IC (2012) Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. J Exp Bot 63(18):6421–6430PubMedPubMedCentralCrossRefGoogle Scholar
  114. Kamran MA, Syed JH, Eqani SAMAS, Munis MFH, Chaudhary HJ (2015) Effect of plant growth-promoting rhizobacteria inoculation on cadmium (Cd) uptake by Eruca sativa. Environ Sci Pollut Res 22:9275–9283CrossRefGoogle Scholar
  115. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa K, Iriguchi M, Kawashima K, Kimura T, Mochizuki Y, Nakayama S, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2000) Complete genome sequence of the nitrogen- fixing symbiotic bacterium Mesorhizobium loti. DNA Res 7:331–338PubMedCrossRefGoogle Scholar
  116. Kaneko T, Nakamura Y, Sato S, Minamisawa K, Uchiumi T, Sasamoto S, Watanabe A, Idesawa IKM, Kawashima K, Kohara M, Matsumoto M, Shimpo S, Tsuruoka H, Wada T, Yamada M, Tabata S (2002) Complete genome sequence of nitrogen – fixing symbiotic bacterium Bradyrhizobium japonicum USD 110. DNA Res 31:189–197CrossRefGoogle Scholar
  117. Karthikeyan S, Zhou Q, Zhao Z, Kao C, Tao Z, Robinson H (2004) Structural analysis of Pseudomonas 1-aminocyclopropane-1-carboxylate deaminase complexes: insight into the mechanism of a unique pyridoxal-5-phosphate dependent cyclopropane ring opening reaction. Bioche 43:13328–13339CrossRefGoogle Scholar
  118. Karthikeyan B, Joe MM, Islam Md R, Sa T (2012) ACC deaminase containing diazotrophic endophytic bacteria ameliorate salt stress in Catharanthus roseus through reduced ethylene levels and induction of antioxidative defense systems. Symbiosis 56:77–86CrossRefGoogle Scholar
  119. Kausar R, Shahzad SM (2006) Effect of ACC-deaminase containing rhizobacteria on growth promotion of maize under salinity stress. J Agri Soc Sci 2:216–218Google Scholar
  120. Khandelwal A, Sindhu SS (2013) ACC deaminase containing Rhizobacteria enhance nodulation and plant growth in cluster bean (Cyamopsis tetragonoloba L.) J Microbiol Res 3(3):117–123Google Scholar
  121. Kiani MZ, Ali A, Sultan T, Ahmad R, Hydar SI (2015) Plant growth promoting Rhizobacteria having 1-Aminocyclopropane-1-carboxylic acid deaminase to induce salt tolerance in sunflower (Helianthus annuus L.) Nat Res 6:391–397Google Scholar
  122. Kim SY, Mulkey TJ (1997) Effect of ethylene antagonists on auxin-induced inhibition of intact primary root elongation in maize (Zea mays L.) J Plant Biol 40:256–260CrossRefGoogle Scholar
  123. KiYoon K, TongMin S (2013) Effect of ACC deaminase producing PGPR strains inoculation on the early growth and nutrient uptake of crop plants in saemangeum reclaimed soil. Proceedings of 3rd Asian Conference on Plant Growth Promoting Rhizobacteria (PGPR) and other Microbials, Manila, PhilippinesGoogle Scholar
  124. Kloepper JW, Lifshitz R, Zablotowicz RM (1989) Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol 7:39–43CrossRefGoogle Scholar
  125. Kong Z, Glick BR, Duan J, Ding S, Tian J, McConkey BJ, Wei G (2015) Effects of 1-aminocyclopropane-1-carboxylate (ACC) deaminase-over producing Sinorhizobium meliloti on plant growth and copper tolerance of Medicago lupulina. Plant Soil 391:383–398CrossRefGoogle Scholar
  126. Kumar MD, Patel A, Ravindranath R, Singh OP (2008a) Chasing a mirage: water harvesting and artificial recharge in naturally water-scarce regions. Econ Polit Wkly 43:61–71Google Scholar
  127. Kumar KV, Singh N, Behl HM, Srivastava S (2008b) Influence of plant growth promoting bacteria and its mutant on heavy metal toxicity in Brassica juncea grown in fly ash amended soil. Chemosphere 72:678–683PubMedCrossRefGoogle Scholar
  128. Kumar A, Kumar A, Pratush A (2014) Molecular diversity and functional variability of environmental isolates of Bacillus species. Springer Plus 3:312PubMedPubMedCentralCrossRefGoogle Scholar
  129. Kumar A, Bahadur I, Maurya BR, Raghuwanshi R, Meena VS, Singh DK, Dixit J (2015) Does a plant growth-promoting rhizobacteria enhance agricultural sustainability? J Pure Appl Microbiol 9:715–724Google Scholar
  130. Kumar A, Meena R, Meena VS, Bisht JK, Pattanayak A (2016a) Towards the stress management and environmental sustainability. J Clean Prod 137:821–822CrossRefGoogle Scholar
  131. Kumar A, Patel JS, Bahadur I, Meena VS (2016b) The molecular mechanisms of KSMs for enhancement of crop production under organic farming. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 61–75. CrossRefGoogle Scholar
  132. Kumar A, Maurya BR, Raghuwanshi R, Meena VS, Islam MT (2017) Co-inoculation with Enterobacter and Rhizobacteria on yield and nutrient uptake by wheat (Triticum aestivum L.) in the alluvial soil under indo-gangetic plain of India. J Plant Growth Regul.
  133. Kunkel BN, Brooks DM (2002) Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 5:325–331PubMedCrossRefGoogle Scholar
  134. Lambers H (2003) Dry land salinity: a key environmental issue in southern Australia. Plant Soil 218:5–7Google Scholar
  135. Lee KH, LaRue TA (1992) Exogenous ethylene inhibits nodulation of Pisum sativum L. cv. Sparkle. Plant Physiol 100:1759–1763PubMedPubMedCentralCrossRefGoogle Scholar
  136. Lemus JO, Lucas IH, Girard L, Caballero-Mellado J (2009) ACC (1-Aminocyclopropane-1-carboxylate) deaminase Activity,a widespread trait in Burkholderia species, and its growth-promoting effect on tomato plants. Appl Environ Microbiol 75(20):6581–6590CrossRefGoogle Scholar
  137. Leong J (1986) Siderophores: their biochemistry and possible role in control of plant pathogens. Annu Rev Phytopathol 24(1):187–209CrossRefGoogle Scholar
  138. Li Z, Chang S, Lin L, Li Y, An Q (2011) A colorimetric assay of 1-aminocyclopropane-1-carboxylate (ACC) based on ninhydrin reaction for rapid screening of bacteria containing ACC deaminase. Lett Appl Microbiol 53:178–185PubMedCrossRefGoogle Scholar
  139. Lim JH, Kim SD (2013) Induction of drought stress resistance by multi-functional PGPR Bacillus licheniformis K11 in pepper. Plant Pathol 29:201–208CrossRefGoogle Scholar
  140. Liu L, Kloepper JW, Tuzun S (1995a) Induction of systemic resistance in cucumber against Fusarium wilt by plant growth promoting rhizobacteria. Phytopathology 85:695–698CrossRefGoogle Scholar
  141. Liu L, Kloepper JW, Tuzun S (1995b) Induction of systemic resistance in cucumber against bacterial angular leaf spot by plant growth-promoting rhizobacteria. Phytopathology 85:843–847CrossRefGoogle Scholar
  142. Liu L, Kloepper JW, Tuzun S (1995c) Induction of systemic resistance in cucumber by plant growth-promoting rhizobacteria: duration of protection and effect of host resistance on protection and root colonization. Phytopathology 85:1064–1068CrossRefGoogle Scholar
  143. Lorteau MA, Ferguson BJ, Guinel FC (2001) Effects of cytokinin on ethylene production and nodulation in pea (Pisum sativum) cv. Sparkle. Physiol Plant 112:421–428PubMedCrossRefGoogle Scholar
  144. Lund ST, Stall RE, Klee HJ (1998) Ethylene regulates the susceptible response to pathogen infection in tomato. Plant Cell 10:371–382PubMedPubMedCentralCrossRefGoogle Scholar
  145. Ma W, Guinel FC, Glick BR (2003) Rhizobium leguminosarum biovar viciae 1-aminocyclopropane-1-carboxylate deaminase promotes nodulation of pea plants. Appl Env Microbiol 69:4396–4402CrossRefGoogle Scholar
  146. Madhaiyan M, Poonguzhali S, Ryu J, Sa T (2006) Regulation of ethylene levels in canola (Brassica campestris) by 1-aminocyclopropane-1-carboxylate deaminase-containing Methylobacterium fujisawaense. Planta 224:268–278PubMedCrossRefGoogle Scholar
  147. Madhaiyan M, Kim BY, Poonguzhali S, Kwon SW, Song MH, Ryu JH, Go SJ, Koo BS, Sa TM (2007) Methylobacterium oryzae sp. nov., an aerobic, pink-pigmented, facultatively methylotrophic, 1-aminocyclopropane-1-carboxylate deaminase-producing bacterium isolated from rice. Int J Syst Evol Microbiol 57:326–331PubMedCrossRefGoogle Scholar
  148. Masood S, Bano A (2016) Mechanism of potassium solubilization in the agricultural soils by the help of soil microorganisms. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 137–147. CrossRefGoogle Scholar
  149. Maurya BR, Meena VS, Meena OP (2014) Influence of Inceptisol and Alfisol’s potassium solubilizing bacteria (KSB) isolates on release of K from waste mica. Vegetos 27:181–187Google Scholar
  150. Mayak S, Tirosh T, Glick BR (1999) Effect of wild-type and mutant plant growth-promoting rhizobacteria on the rooting of mung bean cuttings. J Plant Growth Regul 18:49–53PubMedCrossRefGoogle Scholar
  151. Mayak S, Tirosh T, Glick BR (2004a) Plant growth-promoting bacteria confer resistance in tomato plants to salt stress. Plant Physiol Biochem 42:565–572PubMedCrossRefGoogle Scholar
  152. Mayak S, Tirosh T, Glick BR (2004b) Plant growth-promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Sci 166:525–530CrossRefGoogle Scholar
  153. McDonnell L, Plett JM, Andersson GS, Kozela C, Dugardeyn J, Van Der SD, Glick BR, Sundberg B, Regan S (2009) Ethylene levels are regulated by a plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase. Physiol Plant 136:94–109PubMedCrossRefGoogle Scholar
  154. McKeon TA, Fernández-Maculet JC, Yang SF (1995) Biosynthesis and metabolism of ethylene. In plant hormones: physiology, biochemistry and molecular biology, 2nd edn. P.J. Davies, Kluwer, Dordrecht, pp 118–139Google Scholar
  155. Meena OP, Maurya BR, Meena VS (2013a) Influence of K-solubilizing bacteria on release of potassium from waste mica. Agric Sust Dev 1:53–56Google Scholar
  156. Meena VS, Maurya BR, Bohra JS, Verma R, Meena MD (2013b) Effect of concentrate manure and nutrient levels on enzymatic activities and microbial population under submerged rice in alluvium soil of Varanasi. Crop Res 45(1,2 & 3):6–12Google Scholar
  157. Meena VS, Maurya BR, Verma R, Meena RS, Jatav GK, Meena SK, Meena SK (2013c) Soil microbial population and selected enzyme activities as influenced by concentrate manure and inorganic fertilizer in alluvium soil of Varanasi. The Bioscan 8(3):931–935Google Scholar
  158. Meena VS, Maurya BR, Bahadur I (2014a) Potassium solubilization by bacterial strain in waste mica. Bang J Bot 43:235–237Google Scholar
  159. Meena VS, Maurya BR, Verma JP (2014b) Does a rhizospheric microorganism enhance K+ availability in agricultural soils? Microbiol Res 169:337–347PubMedPubMedCentralCrossRefGoogle Scholar
  160. Meena RS, Meena VS, Meena SK, Verma JP (2015a) The needs of healthy soils for a healthy world. J Cleaner Prod 102:560–561CrossRefGoogle Scholar
  161. Meena RS, Meena VS, Meena SK, Verma JP (2015b) Towards the plant stress mitigate the agricultural productivity: a book review. J Clean Prod 102:552–553CrossRefGoogle Scholar
  162. Meena VS, Maurya BR, Meena RS (2015c) Residual impact of wellgrow formulation and NPK on growth and yield of wheat (Triticum aestivum L.) Bangladesh J Bot 44(1):143–146CrossRefGoogle Scholar
  163. Meena VS, Maurya BR, Verma JP, Aeron A, Kumar A, Kim K, Bajpai VK (2015d) Potassium solubilizing rhizobacteria (KSR): isolation, identification, and K-release dynamics from waste mica. Ecol Eng 81:340–347CrossRefGoogle Scholar
  164. Meena VS, Meena SK, Verma JP, Meena RS, Ghosh BN (2015e) The needs of nutrient use efficiency for sustainable agriculture. J Clean Prod 102:562–563. CrossRefGoogle Scholar
  165. Meena VS, Verma JP, Meena SK (2015f) Towards the current scenario of nutrient use efficiency in crop species. J Clean Prod 102:556–557. CrossRefGoogle Scholar
  166. Meena RK, Singh RK, Singh NP, Meena SK, Meena VS (2016a) Isolation of low temperature surviving plant growth-promoting rhizobacteria (PGPR) from pea (Pisum sativum L.) and documentation of their plant growth promoting traits. Biocatalysis and agricultural. Biotechnology 4:806–811Google Scholar
  167. Meena RS, Bohra JS, Singh SP, Meena VS, Verma JP, Verma SK, Sihag SK (2016b) Towards the prime response of manure to enhance nutrient use efficiency and soil sustainability a current need: a book review. J Clean Prod 112(1):1258–1260CrossRefGoogle Scholar
  168. Meena VS, Meena SK, Bisht JK, Pattanayak A (2016c) Conservation agricultural practices in sustainable food production. J Clean Prod 137:690–691CrossRefGoogle Scholar
  169. Mendelsohn R, Rosenberg NJ (1994) Framework for integrated assessments of global warming impacts. Clim Chang 28:15–44CrossRefGoogle Scholar
  170. Minami R, Uchiyama K, Murakami T, Kawai J, Mikami K, Yamada T (1998) Properties, sequence, and synthesis in Escherichia coli of 1-aminocyclopropane-1-carboxylate deaminase from Hansenula saturnus. J Biochem (Tokyo) 123:1112–1118CrossRefGoogle Scholar
  171. Miransari M, Jalili F, Khavazi K, Pazira E, Nejati A, Rahmani HA, Sadaghiani HR (2009) Isolation and characterization of ACC deaminase producing fluorescent pseudomonads to alleviate salinity stress on canola (Brassica napus L.) growth. J Plant Physiol 166:667–674PubMedCrossRefGoogle Scholar
  172. Moreira H, Marques APGC, Franco AR, Rangel AOSS, Castro PML (2014) Phytomanagement of Cd-contaminated soils using maize (Zea mays L.) assisted by plant growth-promoting rhizobacteria. Environ Sci Pollut Res 21:9742–9753CrossRefGoogle Scholar
  173. Morgan W, Drew MC (1997) Ethylene and plant responses to stress. Physiol Plant 100:620–630CrossRefGoogle Scholar
  174. Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250PubMedCrossRefGoogle Scholar
  175. Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681PubMedCrossRefGoogle Scholar
  176. Musarrat J, Khedhairy AA, Al-Arifi S, Khan MS (2009) Role of 1-aminocyclopropane-1-427 carboxylate deaminase in rhizobium-legume symbiosis. In: Khan MS, Zaidi A, Musarat J (eds) 428 microbial strategies for crop improvement. Springer, Berlin, pp 63–83CrossRefGoogle Scholar
  177. Nadeem SM, Zahir ZA, Naveed M, Arshad M (2007) Preliminary investigations on inducing salt tolerance in maize through inoculation with rhizobacteria containing ACC deaminase activity. Can J Microbiol 53:1141–1149PubMedCrossRefGoogle Scholar
  178. Nadeem SM, Zahir ZA, Naveed M, Arshad M (2009) Rhizobacteria containing ACC-deaminase confers salt tolerance in maize grown on salt affected fields. Can J Microbiol 55:1302–1309PubMedCrossRefGoogle Scholar
  179. Nadeem SM, Zahir ZA, Naveed M, Asghar HN, Arshad M (2010) Rhizobacteria capable of producing ACC-deaminase may mitigate salt stress in wheat. Soil Sci Soc Am J 74:533–542CrossRefGoogle Scholar
  180. Nadeem SM, Zahir ZA, Naveed M, Nawaz S (2013) Mitigation of salinity-induced negative impact on the growth and yield of wheat by plant growth-promoting rhizobacteria in naturally saline conditions. Ann Microbiol 63:225–232CrossRefGoogle Scholar
  181. Nie L, Shah S, Burd GI, Dixon DG, Glick BR (2002) Phytoremediation of arsenate contaminated soil by transgenic canola and the plant growth-promoting bacterium Enterobacter cloacae CAL2. Plant Physiol Biochem 40:355–361CrossRefGoogle Scholar
  182. Nukui N, Ezura H, Yuhashi K, Yasuta T, Minamisawa K (2000) Effects of ethylene precursor and inhibitors for ethylene biosynthesis and perception on nodulation in Lotus japonicus and Macroptilium atropurpureum. Plant Cell Physiol 41:893–897PubMedCrossRefGoogle Scholar
  183. Oldroyd GE, Engstrom EM, Long SR (2001) Ethylene inhibits the Nod factor signal transduction pathway of Medicago truncatula. Plant Cell 13:1835–1849PubMedPubMedCentralCrossRefGoogle Scholar
  184. Orhan F (2016) Alleviation of salt stress by halotolerant and halophilic plant growth-promoting bacteria in wheat (Triticum aestivum). Braz J Microbial 47:621–627CrossRefGoogle Scholar
  185. Ose T, Fujino A, Yao M, Watanabe N, Honma M, Tanaka I (2003) Reaction intermediate structures of 1-aminocyclopropane-1-carboxylate deaminase. J Biol Chem 278:41069–41076PubMedCrossRefGoogle Scholar
  186. Palaniyandi SA, Damodharan K, Yang SH, Suh JW (2014) Streptomyces sp. strain PGPA39 alleviates salt stress and promotes growth of ‘Micro Tom’ tomato plants. J Appl Microbiol 117:766–773PubMedCrossRefGoogle Scholar
  187. Pande AM, Kulkarni NS, Bodhankar MG (2015) Effect of PGPR with ACC- deaminase activity on growth performance of wheat cultivated under stress conditions. Int J Appl Res 2(1):723–726Google Scholar
  188. Pandey S, Ghosh PK, Ghosh S, De TK, Maiti TK (2013) Role of heavy metal resistant Ochrobactrum sp. and Bacillus spp. strains in bioremediation of a Rice cultivar and their PGPR like activities. J Microbiol 51:11–17PubMedCrossRefGoogle Scholar
  189. Parewa HP, Yadav J, Rakshit A, Meena VS, Karthikeyan N (2014) Plant growth promoting rhizobacteria enhance growth and nutrient uptake of crops. Agric Sustain Dev 2(2):101–116Google Scholar
  190. Pastor N, Masciarelli O, Fischer S, Luna V, Rovera M (2016) Potential of Pseudomonas putida PCI2 for the protection of tomato plants against fungal pathogens. Curr Microbiol 73:346–353PubMedCrossRefGoogle Scholar
  191. Paul D, Nair S (2008) Stress adaptations in a plant growth promoting Rhizobacterium (PGPR) with increasing salinity in the coastal agricultural soils. J Basic Microbiol 48:378–384PubMedCrossRefGoogle Scholar
  192. Penrose DM, Glick BR (2001) Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth-promoting bacteria. Can J Microbial 47:368–372CrossRefGoogle Scholar
  193. Pereira SIA, Barbosa L, Castro PML (2015) Rhizobacteria isolated from a metal-polluted area enhance plant growth in zinc and cadmium-contaminated soil. Int J Environ Sci Technol 12:2127–2142CrossRefGoogle Scholar
  194. Peterson TA, Rensel MD, Krizek DT (1991) Tomato (Lycopersicon esculentum Better Bush) plant response to root restriction. I. Alteration of plant morphology. J Expt Bot 42:1233–1240CrossRefGoogle Scholar
  195. Plett JM, McDonnell L, Regan S (2009) Plant encoded 1-aminocyclopropane-1-carboxylic acid deaminase activity rhizobacteria and genistein on nitrogen fixation in soybean at suboptimal root zone temperatures. J Plant Nutri 23:593–604Google Scholar
  196. Poonguzhali S, Madhaiyan M, Sa T (2008) Isolation and identification of phosphate solubilizing bacteria from chinese cabbage and their effect on growth and phosphorus utilization of plants. J Microbiol Biotechnol 18:773–777PubMedGoogle Scholar
  197. Pourbabaee AA, Bahmani E, Alikhani HA, Emami S (2016) Promotion of wheat growth under salt stress by halotolerant bacteria containing ACC deaminase. J Agr Sci Tech 18:855–864Google Scholar
  198. Prakash S, Verma JP (2016) Global perspective of potash for fertilizer production. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 327–331. CrossRefGoogle Scholar
  199. Priyadharsini P, Muthukumar T (2016) Interactions between arbuscular mycorrhizal fungi and potassium-solubilizing microorganisms on agricultural productivity. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 111–125. CrossRefGoogle Scholar
  200. Qadir M, Quillérou E, Nangia V, Murtaza G, Singh M, Thomas RJ, Drechsel P, Noble AD (2014) Economics of salt-induced land degradation and restoration. Nat Resour Forum UN Sustain Dev J 38(4):282–295. DOI:  10.1111/1477-8947.12054 CrossRefGoogle Scholar
  201. Raghavendra MP, Nayaka NC, Nuthan BR (2016) Role of rhizosphere microflora in potassium solubilization. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 43–59. CrossRefGoogle Scholar
  202. Raja N (2013) Biopesticides and biofertilizers: ecofriendly sources for sustainable agriculture. J Biofertil Biopestici 1000e112:1000e112Google Scholar
  203. Rajkumar M, Freitas H (2008) Effects of inoculation of plant growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol 99:3491–3498PubMedCrossRefGoogle Scholar
  204. Rajput L, Imran A, Mubeen F, Hafeez F (2013) Salt tolerant PGPR strain Planococcus rifietoensis promotes the growth and yield of wheat (Triticum aestivum L.) cultivated in saline soil. Pak J Bot 45(6):1955–1962Google Scholar
  205. Rana A, Saharan B, Joshi M, Prasanna R, Kumar K, Nain L (2011) Identification of multi-trait PGPR isolates and evaluating their potential as inoculants for wheat. Ann Microbiol 61:893–900CrossRefGoogle Scholar
  206. Rasche F, Marco-Noales E, Velvis H, Overbeek LSV, Lopez MM, van Elsas JD, Sessitsch A (2006a) Structural characteristics and plant-beneficial effects of bacteria colonizing the shoots of field grown conventional and genetically modified T4-lysozyme producing potatoes. Plant Soil 289:123–140CrossRefGoogle Scholar
  207. Rasche F, Velvis H, Zachow C, Berg G, Van Elsas JD, Sessitsch A (2006b) Impact of transgenic potatoes expressing anti-bacterial agents on bacterial endophytes is comparable with the effects of plant genotype, soil type and pathogen infection. J Appl Ecol 43:555–566CrossRefGoogle Scholar
  208. Raupach GS, Liu L, Murphy JF, Tuzun S, Kloepper JW (1996) Induced systemic resistance in cucumber and tomato against cucumber mosaic cucumovirus using plant growth-promoting rhizobacteria (PGPR). Plant Dis 80:891–894CrossRefGoogle Scholar
  209. Rawat J, Sanwal P, Saxena J (2016) Potassium and its role in sustainable agriculture. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 235–253. CrossRefGoogle Scholar
  210. Reed MLE, Warner BG, Glick BR (2005) Plant growth-promoting bacteria facilitate the growth of the common reed Phragmites australis in the presence of copper or polycyclic aromatic hydrocarbons. Curr Microbiol 51:425–429PubMedCrossRefGoogle Scholar
  211. Robinson MM, Shah S, Tamot B, Pauls KP, Moffatt BA, Glick BR (2001) Reduced symptoms of Verticillium wilt in transgenic tomato expressing a bacterial ACC deaminase. Mol Plant Pathol 2:135–145CrossRefGoogle Scholar
  212. Rolli E, Marasco R, Vigani G, Ettoumi B, Mapelli F, Deangelis ML, Gandolfi C, Casati E, Previtali F, Gerbino R, Cei FP, Borin S, Sorlini C, Zocchi G, Daffonchio D (2014) Improved plant resistance to drought is promoted by the root-associated microbiome as a water stress-dependent trait. Env Microbiol 17:316–331CrossRefGoogle Scholar
  213. Sadrnia M, Maksimava N, Khromsova E, Stanislavich S, Owlia P, Arjomandzadegan M (2011) Study the effect of bacterial 1-Aminocyclopropane-1-Carboxylate deaminase (ACC deaminase) on resistance to salt stress in tomato plant. Fasci Biol 2:120–123Google Scholar
  214. Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Root-associated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fert Soils 42:267–272CrossRefGoogle Scholar
  215. Saha M, Maurya BR, Bahadur I, Kumar A, Meena VS (2016a) Can potassium-solubilising bacteria mitigate the potassium problems in India? In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 127–136. CrossRefGoogle Scholar
  216. Saha M, Maurya BR, Meena VS, Bahadur I, Kumar A (2016b) Identification and characterization of potassium solubilizing bacteria (KSB) from Indo-Gangetic Plains of India. Biocatal Agric Biotechnol 7:202–209Google Scholar
  217. Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421Google Scholar
  218. Saleem M, Arshad M, Hussain S, Bhatti AS (2007) Perspective of plant growth promoting rhizobacteria (PGPR) containing ACC deaminase in stress agriculture. J Ind Microbiol Biotechnol 34:635–648PubMedCrossRefGoogle Scholar
  219. Samina M, Baig DN, Lazarovits G (2010) Genetic and phenotypic diversity of plant growth promoting Rhizobacteria isolated from sugarcane plants growing in Pakistan. J Microbiol Biotechnol 20(12):1614–1623Google Scholar
  220. Santos VB, Araujo SF, Leite LF, Nunes LA, Melo JW (2012) Soil microbial biomass and organic matter fractions during transition from conventional to organic farming systems. Geoderma 170:227–231CrossRefGoogle Scholar
  221. Saravanakumar D, Samiyappan R (2007) ACC deaminase from Pseudomonas fluorescens mediated saline resistance in groundnut (Arachis hypogea) plants. J Appl Microbiol 102:1283–1292PubMedCrossRefGoogle Scholar
  222. Senthilkumar M, Paulraj S, Alagupalamuthirsolai M, Singh M, Singh J (2016) Synergistic effect of Mesorhizobium ciceri and 1-amino cyclopropane 1-carboxylate (ACC) deaminase producing rhizobacteria on chickpea growth and yield. J Food Legumes 29(1):37–42Google Scholar
  223. Sergeeva E, Shah S, Glick BR (2006) Growth of transgenic canola (Brassica napus cv. Westar) expressing a bacterial 1-aminocyclopropane-1-carboxylate (ACC) deaminase gene on high concentrations of salt. World J Microbiol Biotechnol 22:277–282CrossRefGoogle Scholar
  224. Shah S, Li J, Moffatt BA, Glick BR (1998) Isolation and characterization of ACC deaminase genes from two different plant growth-promoting rhizobacteria. Can J Microbiol 44:833–843PubMedCrossRefGoogle Scholar
  225. Shaharoona B, Jamro GM, Zahir ZA, Arshad M, Memon KS (2007) Effectiveness of various Pseudomonas spp. and Burkholderia caryophylli containing ACC-deaminase for improving growth and yield of wheat (Triticum aestivum L.) J Microbiol Biotechnol 17:1300–1307PubMedGoogle Scholar
  226. Shahzadi I, Khalidi A, Mahmood S, Arshad M, Mahmood T, Aziz I (2013) Effect of bacteria containing ACC deaminase on growth of wheat seedlings grown with chromium contaminated water. Pak J Bot 45:487–494Google Scholar
  227. Shakir MA, Bano A, Arshad M (2012) Rhizosphere bacteria containing ACC-deaminase conferred drought tolerance in wheat grown under semi-arid climate. Soil Environ 31(1):108–112Google Scholar
  228. Sharma P, Khanna V, Kumar P (2013) Efficacy of aminocyclopropane-1-carboxylic acid (ACC)-deaminase-producing rhizobacteria in ameliorating water stress in chickpea under axenic conditions. Afr J Microbiol Res 7:5749–5757CrossRefGoogle Scholar
  229. Sharma A, Shankhdhar D, Shankhdhar SC (2016) Potassium-solubilizing microorganisms: mechanism and their role in potassium solubilization and uptake. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 203–219. CrossRefGoogle Scholar
  230. Shim J, Kim JW, Shea PJ, Oh BT (2015) IAA production by Bacillus sp. JH 2-2 promotes Indian mustard growth in the presence of hexavalent chromium. J Basic Microbiol 55:652–658PubMedCrossRefGoogle Scholar
  231. Shiu OY, Oetiker JH, Yip WK, Yang SF (1998) The promoter of LE-ACS7, an early flooding-induced 1-aminocyclopropane -1-carboxylate synthase gene of the tomato, is tagged by a Sol3 transposon. Proc Natl Acad Sci U S A 95:10334–10339PubMedPubMedCentralCrossRefGoogle Scholar
  232. Shrivastava M, Srivastava PC, D’Souza SF (2016) KSM soil diversity and mineral solubilization, in relation to crop production and molecular mechanism. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 221–234. CrossRefGoogle Scholar
  233. Siddikee MA, Chauhan PS, Anandham R, Han GH, Sa T (2010) Isolation, characterization, and use for plant growth promotion under salt stress, of ACC deaminase-producing halotolerant bacteria derived from coastal soil. J Microbiol Biotechnol 20(11):1577–1584PubMedCrossRefGoogle Scholar
  234. Siddikee MA, Glick BR, Chauhan PS, Yim WJ, Sa T (2011) Enhancement of growth and salt tolerance of red pepper seedlings (Capsicum annuum L.) by regulating stress ethylene synthesis with halotolerant bacteria containing 1-aminocyclopropane1-carboxylic acid deaminase activity. Plant Physiol Biochem 49(4):427–434PubMedCrossRefGoogle Scholar
  235. Sindhu SS, Parmar P, Phour M, Sehrawat A (2016) Potassium-solubilizing microorganisms (KSMs) and its effect on plant growth improvement. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 171–185. CrossRefGoogle Scholar
  236. Singh N, Kashyap S (2012) In-silico identification and characterization of 1-aminocyclopropane-1-carboxylate deaminase from Phytophthora sojae. J Mol Model 18:4101–4111PubMedCrossRefGoogle Scholar
  237. Singh NP, Singh RK, Meena VS, Meena RK (2015a) Can we use maize (Zea mays) rhizobacteria as plant growth promoter? Vegetos 28(1):86–99. CrossRefGoogle Scholar
  238. Singh RP, Shelke GM, Kumar A, Jha PN (2015b) Biochemistry and genetics of ACC deaminase: a weapon to “stress ethylene” produced in plants. Front Microbiol 6:937. CrossRefPubMedPubMedCentralGoogle Scholar
  239. Singh M, Dotaniya ML, Mishra A, Dotaniya CK, Regar KL, Lata M (2016) Role of biofertilizers in conservation agriculture. In: Bisht JK, Meena VS, Mishra PK, Pattanayak A (eds) Conservation agriculture: an approach to combat climate change in Indian Himalaya. Springer, Singapore, pp 113–134. CrossRefGoogle Scholar
  240. Sisler EC, Serek M (1997) Inhibitors of ethylene responses in plants at the receptor level: recent developments. Physiol Plant 100:577–582CrossRefGoogle Scholar
  241. Stearns JC, Shah S, Greenberg BM, Dixon DG, Glick BR (2005) Tolerance of transgenic canola expressing 1-aminocyclopropane-1-carboxylic acid deaminase to growth inhibition by nickel. Plant Physiol Biochem 43:701–708PubMedCrossRefGoogle Scholar
  242. Sugawara M, Okazaki S, Nukui N, Ezura H, Mitsui H, Minamisawa K (2006) Rhizobitoxine modulates plant-microbe interactions by ethylene inhibition. Biotechnol Adv 24:382–388PubMedCrossRefGoogle Scholar
  243. Sullivan JT, Trzebiatowski JR, Cruickshank RW, Gouzy J, Brown SD, Elliot RM, Fleetwood DJ, Mc Callum NG, Rossbach U, Stuart GS, Weaver JE, Webby RJ, De Bruijn FJ, Ronson CW (2002) Complete sequence analysis of the symbiosis island of Mesorhizobium loti strain R7A. J Bacteriol 184:3086–3095PubMedPubMedCentralCrossRefGoogle Scholar
  244. Sun Y, Cheng Z, Glick BR (2009) The presence of a 1-aminocyclopropane-1-carboxylate (ACC) deaminase deletion mutation alters the physiology of the endophytic plant growth-promoting bacterium Burkholderia phyto¢rmans PsJN. FEMS Microbiol Lett 296:131–136PubMedCrossRefGoogle Scholar
  245. Suttle JC, Kende H (1978) Ethylene and senescence in petals of Tradescantia. Plant Physiol 62:267–271PubMedPubMedCentralCrossRefGoogle Scholar
  246. Tak HI (2015) Modulation of growth, antioxidant system in seedling of mustard under different levels of nickel in adaptive response to metal resistant bacteria. Front Biol 10(3):272–278CrossRefGoogle Scholar
  247. Tank N, Saraf M (2010) Salinity-resistant plant growth promoting rhizobacteria ameliorates sodium chloride stress on tomato plants. J Plant Interact 5:51–58CrossRefGoogle Scholar
  248. Tarabily EKA (2008) Promotion of tomato (Lycopersicon esculentum Mill.) plant growth by rhizosphere competent 1-aminocyclopropane-1-carboxylic acid deaminase-producing streptomycete actinomycetes. Plant Soil 308:161–174CrossRefGoogle Scholar
  249. Teotia P, Kumar V, Kumar M, Shrivastava N, Varma A (2016) Rhizosphere microbes: potassium solubilization and crop productivity-present and future aspects. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 315–325. CrossRefGoogle Scholar
  250. Tester M, Davenport R (2003) Na+ tolerance and Na+ transport in higher plants. Ann Bot 91(5):503–527PubMedPubMedCentralCrossRefGoogle Scholar
  251. Timmusk S, Islam A, Abd ED, Lucian C, Tanilas T, Kannaste A (2014) Drought-tolerance of wheat improved by rhizosphere bacteria from harsh environments: enhanced biomass production and reduced emissions of stress volatiles. PLoS One 9:1–13CrossRefGoogle Scholar
  252. Tittabutr P, Piromyou P, Longtonglang A, Noisa-ngiam R, Boonkerd N, Teaumroong N (2013) Alleviation of the effect of environmental stresses using co-inoculation of mungbean by Bradyrhizobium and rhizobacteria containing stress-induced ACC deaminase enzyme. Soil Sci Plant Nutr 59:559–571CrossRefGoogle Scholar
  253. Tittabutr P, Sripakdi S, Boonkerd N, Tanthanuch W, Minamisawa K, Teaumroong N (2015) Possible role of 1-Aminocyclopropane-1-carboxylate (ACC) deaminase activity of Sinorhizobium sp. BL3 on Symbiosis with Mung Bean and determinate nodule senescence. Microbes Environ 30(4):310–320PubMedPubMedCentralCrossRefGoogle Scholar
  254. Toklikishvili N, Dandurishvili N, Vainstein A, Tediashvili M, Giorgobiani N, Luried S, Szegedi E, Glick BR, Chernin L (2010) Inhibitory effect of ACC deaminase-producing bacteria on crown gall formation in tomato plants infected by Agrobacterium tumefaciens or A. vitis. Plant Pathol 59:1023–1030CrossRefGoogle Scholar
  255. Trott S, Bauer R, Knackmuss HJ, Stolz A (2001) Genetic and biochemical characterization of an enantio selective amidase from Agrobacterium tumefaciens strain d3. Microbiology 147:1815–1824PubMedCrossRefGoogle Scholar
  256. Trung NT, Hieu HV, Thuan NH (2016) Screening of strong 1-Aminocyclopropane-1-carboxylate deaminase producing bacteria for improving the salinity tolerance of cowpea. Appl Micro 2(1):1–6Google Scholar
  257. Uchiumi T, Ohwada T, Itakura M, Mitsui H, Nukui N, Dawadi P, Kaneko T, Tabata S, Yokoyama T, Tejima K, Saeki K, Omori H, Hayashi M, Maekawa T, Sriprang R, Murooka Y, Tajima S, Simomura K, Nomura M, Suzuki A, Shimoda Y, Sioya K, Abe M, Minamisawa K (2004) Expression islands clustered on the symbiosis island of the Mesorhizobium loti genome. J Bacteriol 186:2439–2448PubMedPubMedCentralCrossRefGoogle Scholar
  258. Vaikuntapu PR, Dutta S, Samudrala RB, Rao VRVN, Kalam S, Podile AR (2014) Preferential promotion of Lycopersicon esculentum (tomato) growth by plant growth promoting bacteria associated with tomato. Indian J Microbiol 54(4):403–412PubMedPubMedCentralCrossRefGoogle Scholar
  259. VanLoon LC, Glick BR (2004) Increased plant fitness by rhizobacteria. In: Sandermann H (ed) Molecular ecotoxicology of plants. Springer, Berlin, pp 177–207CrossRefGoogle Scholar
  260. Velazquez E, Silva LR, Ramírez-Bahena MH, Peix A (2016) Diversity of potassium-solubilizing microorganisms and their interactions with plants. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 99–110. CrossRefGoogle Scholar
  261. Verma R, Maurya BR, Meena VS (2014) Integrated effect of bio-organics with chemical fertilizer on growth, yield and quality of cabbage (Brassica oleracea var capitata). Indian J Agric Sci 84(8):914–919Google Scholar
  262. Verma JP, Jaiswa DK, Meena VS, Meena RS (2015a) Current need of organic farming for enhancing sustainable agriculture. J Clean Prod 102:545–547CrossRefGoogle Scholar
  263. Verma JP, Jaiswal DK, Meena VS, Kumar A, Meena RS (2015b) Issues and challenges about sustainable agriculture production for management of natural resources to sustain soil fertility and health. J Clean Prod 107:793–794CrossRefGoogle Scholar
  264. Viterbo A, Landau U, Kim S, Chernin L, Chet I (2010) Characterization of ACC deaminase from the biocontrol and plant growth-promoting agent Trichoderma asperellum T203. FEMS Microbiol Lett 305:42–48PubMedCrossRefGoogle Scholar
  265. Vivekanandan M, Karthik R, Leela A (2015) Improvement of crop productivity in saline soils through application of saline-tolerant rhizosphere bacteria – current perspective. Int J Adv Res 3(7):1273–1283Google Scholar
  266. Wang C, Knill E, Glick BR, Defago G (2000) Effect of transferring 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase genes into Pseudomonas fluorescens strain CHA0 and its gacA derivative CHA96 on their growth-promoting and disease-suppressive capacities. Can J Microbiol 46:898–907PubMedCrossRefGoogle Scholar
  267. Wang S, Ouyang L, Ju X, Zhang L, Zhang Q, Li Y (2014) Survey of plant drought-resistance promoting bacteria from Populus euphratica tree living in arid area. Indian J Microbiol 54(4):419–426PubMedPubMedCentralCrossRefGoogle Scholar
  268. Wang X, Mavrodi DV, Ke L, Mavrodi OV, Yang M, Thomashow LS, Zheng N, Weller DM, Zhang J (2015) Biocontrol and plant growth-promoting activity of rhizobacteria from Chinese fields with contaminated soils. Microb Biotechnol 8(3):404–418PubMedCrossRefGoogle Scholar
  269. Wang Q, Dodd IC, Belimov AA, Jiang F (2016) Rhizosphere bacteria containing 1-aminocyclopropane-1- carboxylate deaminase increase growth and photosynthesis of pea plants under salt stress by limiting Na+ accumulation. Funct Plant Boil 43:161–172CrossRefGoogle Scholar
  270. Wani PA, Khan MS, Zaidi A (2007) Impact of heavy metal toxicity on plant growth, symbiosis, seed yield and nitrogen and metal uptake in chickpea. Aust J Expt Agric 47:712–720CrossRefGoogle Scholar
  271. Wani PA, Khan MS, Zaidi A (2008) Effect of heavy metal toxicity on growth, symbiosis, seed yield and metal uptake in pea grown in metal amended soil. Bull Environ Contam Toxicol 81(2):152–158PubMedCrossRefGoogle Scholar
  272. White PJ, Broadley MR (2001) Chloride in soils and its uptake and movement within the plant: a review. Ann Bot 88:967–988CrossRefGoogle Scholar
  273. Woitke M, Junge H, Schnitzler WH (2004) Bacillus subtilis as growth promotor in hydrophonically grown tomatoes under saline conditions. Acta Hort 659:363–369CrossRefGoogle Scholar
  274. Wu Z, Yue H, Lu J, Li C (2012) Characterization of rhizobacterial strain Rs-2 with ACC deaminase activity and its performance in promoting cotton growth under salinity stress. World J Microbiol Biotechnol 28:2383–2393PubMedCrossRefGoogle Scholar
  275. Xie ZP, Staehelin C, Wiemken A, Boller T (1996) Ethylene responsiveness of soybean cultivars characterized by leaf senescence, chitinase induction and nodulation. J Plant Physiol 149:690–694CrossRefGoogle Scholar
  276. Yadav BK, Sidhu AS (2016) Dynamics of potassium and their bioavailability for plant nutrition. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 187–201. CrossRefGoogle Scholar
  277. Yan J, Smith MD, Glick BR, Liang Y (2014) Effects of ACC deaminase containing rhizobacteria on plant growth and expression of Toc GTPases in tomato (Solanum lycopersicum) under salt stress. Botany 92(11):775–781CrossRefGoogle Scholar
  278. Yasin M, Munir I, Faisal M (2016) Can Bacillus spp. enhance K+ uptake in crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 163–170. CrossRefGoogle Scholar
  279. Yim WJ, Chauhan PS, Madhaiyan M, Tipayno SC, Sa TM (2010) Plant growth promontory attributes by 1-aminocyclopropane-1-carboxylate (ACC) deaminase producing Methylobacterium oryzae strains isolated from rice. In: Gilkes RJ, Prakongkep N (eds) 19th World Congress of Soil Science, International Union of Soil Sciences, BrisbaneGoogle Scholar
  280. Yim W, Seshadri S, Kim K, Lee G, Sa T (2013) Ethylene emission and PR protein synthesis in ACC deaminase producing Methylobacterium spp. inoculated tomato plants (Lycopersicon esculentum Mill.) challenged with Ralstonia solanacearum under greenhouse conditions. Plant Physiol Biochem 67:95–104PubMedCrossRefGoogle Scholar
  281. Youssef MMA, Eissa MFM (2014) Biofertilizers and their role in management of plant parasitic nematodes. A review E3. J Biotechnol Pharm Res 5:1–6Google Scholar
  282. Yue H, Mo W, Li C, Zheng Y, Li H (2007) The salt stress relief and growth promotion effect of RS-5 on cotton. Plant Soil 297:139–145CrossRefGoogle Scholar
  283. Yuhashi K, Ichikawa N, Ezura H, Akao S, Minakawa Y, Nukui N, Yasuta T, Minamisawa K (2000) Rhizobitoxine production by Bradyrhizobium elkanii enhances nodulation and competitiveness on Macroptilium atropurpureum. Appl Environ Microbiol 66:2658–2663PubMedPubMedCentralCrossRefGoogle Scholar
  284. Zafar-ul-Hye M, Farooq HM, Zahir ZA, Hussain M, Hussain A (2014) Application of ACC-deaminase containing Rhizobacteria with fertilizer improves maize production under drought and salinity stress. Int J Agric Biol 16(3):591–596Google Scholar
  285. Zahedi H (2016) Growth-promoting effect of potassium-solubilizing microorganisms on some crop species. In: Meena VS, Maurya BR, Verma JP, Meena RS (eds) Potassium solubilizing microorganisms for sustainable agriculture. Springer, New Delhi, pp 31–42. CrossRefGoogle Scholar
  286. Zahir ZA, Munir A, Asghar HN, Shahroona B, Arshad M (2008) Effectiveness of rhizobacteria containing ACC-deaminase for growth promotion of peas (Pisum sativum) under drought conditions. J Microbiol Biotechnol 18:958–963PubMedGoogle Scholar
  287. Zahir ZA, Ghani U, Naveed M, Nadeem SM, Asghar HN (2009) Comparative effectiveness of Pseudomonas and Serratia sp. containing ACC deaminase for improving growth and yield of wheat (Triticum aestivum L.) under salt-stressed conditions. Arch Microbiol 191:415–424PubMedCrossRefGoogle Scholar
  288. Zhang YF, He LY, Chen ZJ, Zhang WH, Wang QY, Qian M, Sheng XF (2011) Characterization of lead-resistant and ACC deaminase-producing endophytic bacteria and their potential in promoting lead accumulation of rape. J Hazard Mater 186:1720–1725PubMedCrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  • Pallab Kumar Ghosh
    • 1
  • Tarun Kumar De
    • 1
  • Tushar Kanti Maiti
    • 2
  1. 1.Department of Marine Science, Ballygunge Science College CampusCalcutta UniversityKolkataIndia
  2. 2.Microbiology Laboratory, CAS, Department of BotanyBurdwan UniversityBurdwanIndia

Personalised recommendations