Incremental Indoor Map Construction with a Single User

Chapter
Part of the SpringerBriefs in Computer Science book series (BRIEFSCOMPUTER)

Abstract

Lacking of floor plans is a fundamental obstacle to ubiquitous indoor location-based services. Recent work have made significant progress to accuracy, but they largely rely on slow crowdsensing that may take weeks or even months to collect enough data. In this chapter, we propose Knitter that can generate accurate floor maps by a single random user’s one-hour data collection efforts, and demonstrate how such maps can be used for indoor navigation. Knitter extracts high-quality floor layout information from single images, calibrates user trajectories, and filters outliers. It uses a multi-hypothesis map fusion framework that updates landmark positions/orientations and accessible areas incrementally according to evidences from each measurement. Our experiments on three different large buildings and 30+ users show that Knitter produces correct map topology, and 90-percentile landmark location and orientation errors of \(3\sim 5\,\mathrm{m}\) and \(4\sim 6^\circ \), comparable to the state of the art at more than \(20\times \) speed up: data collection can finish in about one hour even by a novice user trained just a few minutes.

References

  1. 1.
    Y. Jiang, Y. Xiang, X. Pan, K. Li, Q. Lv, R.P. Dick, L. Shang, M. Hannigan, Hallway based automatic indoor floorplan construction using room fingerprints, in ACM UbiComp (2013), pp. 315–324Google Scholar
  2. 2.
    D. Philipp, P. Baier, C. Dibak, F. Drr, K. Rothermel, S. Becker, M. Peter, D. Fritsch, Mapgenie: Grammar-enhanced indoor map construction from crowd-sourced data, in PerCom (2014), pp. 139–147Google Scholar
  3. 3.
    G. Shen, Z. Chen, P. Zhang, T. Moscibroda, Y. Zhang, Walkie-markie: Indoor pathway mapping made easy, in NSDI (2013), pp. 85–98Google Scholar
  4. 4.
    H. Shin, Y. Chon, H. Cha, Unsupervised construction of an indoor floor plan using a smartphone. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 42(6), 889–898 (2012)CrossRefGoogle Scholar
  5. 5.
    R. Faragher, R. Harle, Smartslam-an efficient smartphone indoor positioning system exploiting machine learning and opportunistic sensing, in ION GNSS+ (2014)Google Scholar
  6. 6.
    J. Huang, D. Millman, M. Quigley, D. Stavens, S. Thrun, A. Aggarwal, Efficient, generalized indoor wifi graphslam, in IEEE ICRA (2011), pp. 1038–1043Google Scholar
  7. 7.
    M. Alzantot, M. Youssef, Crowdinside: automatic construction of indoor floorplans, in SIGSPATIAL (2012), pp. 99–108Google Scholar
  8. 8.
    R. Gao, M. Zhao, T. Ye, F. Ye, Y. Wang, K. Bian, T. Wang, X. Li, Jigsaw: Indoor floor plan reconstruction via mobile crowdsensing, in ACM MobiCom (2014), pp. 249–260Google Scholar
  9. 9.
    J. Manweiler, P. Jain, R.R. Choudhury, Satellites in our pockets: an object positioning system using smartphones, in MobiSys (2012), pp. 211–224Google Scholar
  10. 10.
    J. Canny, A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)CrossRefGoogle Scholar
  11. 11.
    C. Rother, A new approach to vanishing point detection in architectural environments, in BMVC, (2000), pp. 382–391Google Scholar
  12. 12.
    D.C. Lee, M. Hebert, T. Kanade, Geometric reasoning for single image structure recovery, in IEEE CVPR (2009), pp. 2136–2143Google Scholar
  13. 13.
    A. Rai, K.K. Chintalapudi, V.N. Padmanabhan, R. Sen, Zee: zero-effort crowdsourcing for indoor localization, in ACM MobiCom (2012), pp. 293–304Google Scholar
  14. 14.
    H. Wang, S. Sen, A. Elgohary, M. Farid, M. Youssef, R.R. Choudhury, No need to war-drive: Unsupervised indoor localization, in ACM MobiSys (2012), pp. 197–210Google Scholar
  15. 15.
    P. Zhou, M. Li, G. Shen, Use it free: instantly knowing your phone attitude, in ACM MobiCom (2014), pp. 605–616Google Scholar
  16. 16.
    D. Gusenbauer, C. Isert, J. Krosche, Self-contained indoor positioning on off-the-shelf mobile devices, in IEEE IPIN (2010)Google Scholar
  17. 17.
    M. Ester, H.-P. Kriegel, J. Sander, X. Xu, A density-based algorithm for discovering clusters in large spatial databases with noise, in AAAI KDD (1996), pp. 226–231Google Scholar
  18. 18.
    G. Einicke, L. White, Robust extended kalman filtering. IEEE Trans. Signal Process. (1999)Google Scholar
  19. 19.
    M. Montemerlo, S. Thrun, D. Koller, B. Wegbreit, Fastslam: a factored solution to the simultaneous localization and mapping problem, in AAAI (2002), pp. 593–598Google Scholar
  20. 20.
    D.G. Lowe, Object recognition from local scale-invariant features, in IEEE ICCV (1999), pp. 1150–1157Google Scholar
  21. 21.
    S. Thrun, Learning occupancy grid maps with forward sensor models. Auton. Robots 15(2), 111–127 (2003)CrossRefGoogle Scholar
  22. 22.
    S. Chen, M. Li, K. Ren, X. Fu, C. Qiao, Rise of the indoor crowd: Reconstruction of building interior view via mobile crowdsourcing, in ACM SenSys (2015)Google Scholar
  23. 23.
    Amazon mechanical turk. https://www.mturk.com
  24. 24.
  25. 25.
  26. 26.
  27. 27.
    X. Zhang, G. Xue, R. Yu, D. Yang, J. Tang, Truthful incentive mechanisms for crowdsourcing, in IEEE INFOCOM (2015), pp. 2830–2838Google Scholar
  28. 28.
    J. Chung, M. Donahoe, C. Schmandt, I. Kim, P. Razavai, M. Wiseman, Indoor location sensing using geo-magnetism, in MobiSys (2011), pp. 141–154Google Scholar
  29. 29.
    L. Li, G. Shen, C. Zhao, T. Moscibroda, J.-H. Lin, F. Zhao, Experiencing and handling the diversity in data density and environmental locality in an indoor positioning service, in ACM MobiCom (2014), pp. 459–470Google Scholar
  30. 30.
    N. Roy, H. Wang, R.R. Choudhury, I am a smartphone and i can tell my users walking direction, in ACM MobiSys (2014), pp. 329–342Google Scholar
  31. 31.
    A. Sankar, S. Seitz, Capturing indoor scenes with smartphones, in ACM UIST (2012), pp. 403–412Google Scholar
  32. 32.
    S. Chen, M. Li, K. Ren, C. Qiao, Crowdmap: accurate reconstruction of indoor floor plans from crowdsourced sensor-rich videos, in IEEE ICDCS (2015)Google Scholar
  33. 33.
    A.T. Mariakakis, S. Sen, J. Lee, K.-H. Kim, Sail: single access point-based indoor localization, in ACM MobiSys (2014), pp. 315–328Google Scholar
  34. 34.
    I. Simon, S.M. Seitz, S. Agarwal, N. Snavely, R. Szeliski, Building rome in a day, in ICCV (2009)Google Scholar
  35. 35.
    J. Dong, Y. Xiao, M. Noreikis, Z. Ou, A. Ylä-Jääski, iMoon: Using smartphones for image-based indoor navigation, in ACM SenSys (2015)Google Scholar
  36. 36.
  37. 37.
    S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R. Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Freeman, A. Davison et al., Kinectfusion: real-time 3d reconstruction and interaction using a moving depth camera, in ACM UIST (2011), pp. 559–568Google Scholar
  38. 38.
    K. Konolige, M. Agrawal, Frameslam: from bundle adjustment to real-time visual mapping. IEEE Trans. Robot. 24(5), 1066–1077 (2008)CrossRefGoogle Scholar
  39. 39.
    B. Ferris, D. Fox, N.D. Lawrence, Wifi-slam using gaussian process latent variable models, in IJCAI, vol. 7 (2007), pp. 2480–2485Google Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  1. 1.Beijing Jiaotong UniversityBeijingChina
  2. 2.Stony Brook UniversityStony BrookUSA
  3. 3.Peking UniversityBeijingChina
  4. 4.UCLALos AngelesUSA

Personalised recommendations