Results and Discussion

Chapter
Part of the Springer Theses book series (Springer Theses)

Abstract

In this chapter, the results of the considered performance parameters for fresh as well as engine-aged oil samples have been provided and discussed. In the first stage, average COF profiles and wear volume of piston ring as well as cylinder liner specimen, have been reported and discussed for blank palm TMP ester. It is followed by the investigation of dispersion stability and discussion of tribological parameters for all the nanolubricant samples. After this, the EP behavior of all the lubricant samples has been discussed.

References

  1. Agency., E. P. (2002). A Comprehensive Analysis of Biodiesel Impacts on Exhaust Emissions: US Environmental Protection Agency Washington DC.Google Scholar
  2. Amiruddin, H., Abdollah, M., Idris, A., Abdullah, M., & Tamaldin, N. (2015). Stability of nano-oil by pH control in stationary conditions. In Proceedings of Mechanical Engineering Research Day 2015: MERD’15, 2015 (pp. 55–56).Google Scholar
  3. Arumugam, S., & Sriram, G. (2014). Synthesis and characterization of rapeseed oil bio-lubricant dispersed with nano copper oxide: Its effect on wear and frictional behavior of piston ring–cylinder liner combination. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 228(11), 1308–1318.CrossRefGoogle Scholar
  4. Arumugam, S., Sriram, G., & Ellappan, R. (2014). Bio-lubricant-biodiesel combination of rapeseed oil: An experimental investigation on engine oil tribology, performance, and emissions of variable compression engine. Energy, 72, 618–627.CrossRefGoogle Scholar
  5. Asfar, K. R., & Hamed, H. (1998). Combustion of fuel blends. Energy Conversion and Management, 39(10), 1081–1093.CrossRefGoogle Scholar
  6. Chang, L., Zhang, Z., Breidt, C., & Friedrich, K. (2005). Tribological properties of epoxy nanocomposites: I. Enhancement of the wear resistance by nano-TiO2 particles. Wear, 258(1–4), 141–148.CrossRefGoogle Scholar
  7. Choi, Y., Lee, C., Hwang, Y., Park, M., Lee, J., Choi, C., et al. (2009). Tribological behavior of copper nanoparticles as additives in oil. Current Applied Physics, 9(2), e124–e127.CrossRefGoogle Scholar
  8. Chou, R., Battez, A. H., Cabello, J. J., Viesca, J. L., Osorio, A., & Sagastume, A. (2010). Tribological behavior of polyalphaolefin with the addition of nickel nanoparticles. Tribology International, 43(12), 2327–2332.CrossRefGoogle Scholar
  9. Demas, N. G., Timofeeva, E. V., Routbort, J. L., & Fenske, G. R. (2012). Tribological effects of BN and MoS2 nanoparticles added to polyalphaolefin oil in piston skirt/cylinder liner tests. Tribology Letters, 47(1), 91–102.CrossRefGoogle Scholar
  10. Devlin, C. C., Passut, C., Campbell, R., & Jao, T.-C. (2008). Biodiesel fuel effect on diesel engine lubrication. SAE Technical Paper, 2008-01-2375.Google Scholar
  11. Fang, H. L., Whitacre, S. D., Yamaguchi, E. S., & Boons, M. (2007). Biodiesel impact on wear protection of engine oils. SAE Technical Paper, 2007-01-4141.Google Scholar
  12. Ingole, S., Charanpahari, A., Kakade, A., Umare, S., Bhatt, D., & Menghani, J. (2013). Tribological behavior of nano TiO2 as an additive in base oil. Wear, 301(1), 776–785.CrossRefGoogle Scholar
  13. Jiao, D., Zheng, S., Wang, Y., Guan, R., & Cao, B. (2011). The tribology properties of alumina/silica composite nanoparticles as lubricant additives. Applied Surface Science, 257(13), 5720–5725.CrossRefGoogle Scholar
  14. Koshy, C. P., Rajendrakumar, P. K., & Thottackkad, M. V. (2015). Evaluation of the tribological and thermo-physical properties of coconut oil added with MoS2 nanoparticles at elevated temperatures. Wear, 330–331, 288–308.CrossRefGoogle Scholar
  15. Labeckas, G., & Slavinskas, S. (2006). The effect of rapeseed oil methyl ester on direct injection Diesel engine performance and exhaust emissions. Energy Conversion and Management, 47(13–14), 1954–1967.CrossRefGoogle Scholar
  16. Lockledge, S. P., & Brownawell, D. W. (2013a). Materials and processes for reducing combustion by-products in a lubrication system for an internal combustion engine. USA: Google Patents, US8607991 B2.Google Scholar
  17. Mohsin, R., Majid, Z. A., Shihnan, A. H., Nasri, N. S., & Sharer, Z. (2014). Effect of biodiesel blends on engine performance and exhaust emission for diesel dual fuel engine. Energy Conversion and Management, 88, 821–828.CrossRefGoogle Scholar
  18. Padgurskas, J., Rukuiza, R., Prosyčevas, I., & Kreivaitis, R. (2013). Tribological properties of lubricant additives of Fe, Cu and Co nanoparticles. Tribology International, 60, 224–232.CrossRefGoogle Scholar
  19. Peng, D. X., Chen, C. H., Kang, Y., Chang, Y. P., & Chang, S. Y. (2010a). Size effects of SiO2 nanoparticles as oil additives on tribology of lubricant. Industrial Lubrication and Tribology, 62(2), 111–120.CrossRefGoogle Scholar
  20. Peng, D. X., Kang, Y., Chen, S., Shu, F., & Chang, Y. (2010b). Dispersion and tribological properties of liquid paraffin with added aluminum nanoparticles. Industrial Lubrication and Tribology, 62(6), 341–348.CrossRefGoogle Scholar
  21. Petraru, L., & Novotny-Farkas, F. (2012). Influence of biodiesel fuels on lubricity of passenger car diesel engine oils. goriva i maziva, 51(2), 157–165.Google Scholar
  22. Ratoi, M., Castle, R. C., Bovington, C. H., & Spikes, H. A. (2004). The influence of soot and dispersant on ZDDP film thickness and friction. Lubrication Science, 17(1), 25–43.CrossRefGoogle Scholar
  23. Rudnick, L. R. (2013). Synthetics, mineral oils, and bio-based lubricants: Chemistry and technology. Boca Raton: CRC Press.CrossRefGoogle Scholar
  24. Sahoo, R. R., & Biswas, S. K. (2014). Effect of layered MoS2 nanoparticles on the frictional behavior and microstructure of lubricating greases. Tribology Letters, 53(1), 157–171.CrossRefGoogle Scholar
  25. Socrates, G. (2004). Infrared and Raman characteristic group frequencies: tables and charts. Chichester: Wiley.Google Scholar
  26. Stepien, Z., Urzedowska, W., Oleksiak, S., & Czerwinski, J. (2011). Research on emissions and engine lube oil deterioration of diesel engines with BioFuels (RME). SAE International Journal of Fuels and Lubricants, 4(1), 125–138.CrossRefGoogle Scholar
  27. Sugiyama, G., Maeda, A., & Nagai, K. (2007). Oxidation degradation and acid generation in diesel fuel containing 5% FAME. SAE Technical Paper, 2007-01-2027.Google Scholar
  28. Thottackkad, M. V., Perikinalil, R. K., & Kumarapillai, P. N. (2012). Experimental evaluation on the tribological properties of coconut oil by the addition of CuO nanoparticles. International Journal of Precision Engineering and Manufacturing, 13(1), 111–116.CrossRefGoogle Scholar
  29. Truhan, J. J., Qu, J., & Blau, P. J. (2005a). The effect of lubricating oil condition on the friction and wear of piston ring and cylinder liner materials in a reciprocating bench test. Wear, 259(7), 1048–1055.CrossRefGoogle Scholar
  30. Truhan, J. J., Qu, J., & Blau, P. J. (2005b). A rig test to measure friction and wear of heavy duty diesel engine piston rings and cylinder liners using realistic lubricants. Tribology International, 38(3), 211–218.CrossRefGoogle Scholar
  31. Waara, P., Norrby, T., & Prakash, B. (2004). Tribochemical wear of rail steels lubricated with synthetic ester-based model lubricants. Tribology Letters, 17(3), 561–568.CrossRefGoogle Scholar
  32. Wan, Q., Jin, Y., Sun, P., & Ding, Y. (2014). Rheological and tribological behaviour of lubricating oils containing platelet MoS2 nanoparticles. Journal of Nanoparticle Research, 16(5), 1–9.CrossRefGoogle Scholar
  33. Watson, S. A. (2010). Lubricant-derived ash: In-engine sources and opportunities for reduction. (Ph.D.), Massachusetts Institute of Technology.Google Scholar
  34. Watson, S. A., & Wong, V. W. (2008). The effects of fuel dilution with biodiesel on lubricant acidity, oxidation and corrosion—A study with CJ-4 and CI-4 PLUS lubricants. Paper presented at the 2008 Diesel Engine-Efficiency and Emissions Research (DEER) Conference.Google Scholar
  35. Watson, S. A., Wong, V. W., Brownawell, D., & Lockledge, S. P. (2009). Controlling lubricant acidity with an oil conditioning filter. Paper presented at the ASME 2009 Internal Combustion Engine Division Spring Technical Conference.Google Scholar
  36. Watson, S. A., Wong, V. W., Brownawell, D., Lockledge, S. P., & Harold, S. (2009). Oil conditioning as a means to minimize lubricant ash requirements and extend oil drain interval. SAE Technical Paper, 2009-01-1782.Google Scholar
  37. Windom, B. C., Sawyer, W. G., & Hahn, D. W. (2011). A Raman spectroscopic study of MoS2 and MoO3: Applications to tribological systems. Tribology Letters, 42(3), 301–310.CrossRefGoogle Scholar
  38. Xie, H., Jiang, B., He, J., Xia, X., & Pan, F. (2015). Lubrication performance of MoS2 and SiO2 nanoparticles as lubricant additives in magnesium alloy-steel contacts. Tribology International, 93(A), 63–70.Google Scholar
  39. Xu, J., Ji, W., Shen, Z., Li, W., Tang, S., Ye, X., et al. (1999). Raman spectra of CuO nanocrystals. Journal of Raman spectroscopy, 30(5), 413–415.CrossRefGoogle Scholar
  40. Xu, H., Wang, W., & Zhu, W. (2006). Shape evolution and size-controllable synthesis of Cu2O octahedra and their morphology-dependent photocatalytic properties. The Journal of Physical Chemistry B, 110(28), 13829–13834.CrossRefGoogle Scholar
  41. Yadgarov, L., Petrone, V., Rosentsveig, R., Feldman, Y., Tenne, R., & Senatore, A. (2013). Tribological studies of rhenium doped fullerene-like MoS2 nanoparticles in boundary, mixed and elasto-hydrodynamic lubrication conditions. Wear, 297(1–2), 1103–1110.CrossRefGoogle Scholar
  42. Yu, W., & Xie, H. (2012). A review on nanofluids: Preparation, stability mechanisms, and applications. Journal of Nanomaterials, 2012, 1.Google Scholar
  43. Yu, H. L., Xu, Y., Shi, P. J., Xu, B. S., Wang, X. L., Liu, Q., et al. (2008). Characterization and nano-mechanical properties of tribofilms using Cu nanoparticles as additives. Surface and Coatings Technology, 203(1–2), 28–34.CrossRefGoogle Scholar
  44. Zdrodowski, R., Gangopadhyay, A., Anderson, J. E., Ruona, W. C., Uy, D., & Simko, S. J. (2010). Effect of biodiesel (B20) on vehicle-aged engine oil properties. SAE Technical Paper, 2010-01-2103.Google Scholar
  45. Zhou, Y.-H., Harmelin, M., & Bigot, J. (1989). Sintering behaviour of ultra-fine Fe, Ni and Fe-25wt%Ni powders. Scripta Metallurgica, 23(8), 1391–1396.CrossRefGoogle Scholar
  46. Zhu, J., Bi, H., Wang, Y., Wang, X., Yang, X., & Lu, L. (2008). CuO nanocrystals with controllable shapes grown from solution without any surfactants. Materials Chemistry and Physics, 109(1), 34–38.CrossRefGoogle Scholar
  47. Zulkifli, N. W. M., Kalam, M. A., Masjuki, H. H., Al Mahmud, K. A. H., & Yunus, R. (2014). The effect of temperature on tribological properties of chemically modified bio-based lubricant. Tribology Transactions, 57(3), 408–415.CrossRefGoogle Scholar
  48. Zulkifli, N. W. M., Kalam, M. A., Masjuki, H. H., Shahabuddin, M., & Yunus, R. (2013). Wear prevention characteristics of a palm oil-based TMP (trimethylolpropane) ester as an engine lubricant. Energy, 54, 167–173.CrossRefGoogle Scholar

Copyright information

© Springer Nature Singapore Pte Ltd. 2018

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations